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Modeling Heterogeneous Network Traffic 
in Wavelet Domain 
Sheng  Ma, Member, IEEE, and Chuany i  Ji 

Abstract--Heterogeneous network traffic possesses diverse 
statistical properties which include complex temporal correlation 
and non-Gaussian distributions. A challenge to modeling hetero- 
geneous traffic is to develop a traffic model which can accurately 
characterize these statistical properties, which is computationally 
efficient, and which is feasible for analysis. This work develops 
wavelet traffic models for tackling these issues. In specific, we 
model the wavelet coefficients rather than the original traffic. Our 
approach is motivated by a discovery that although heterogeneous 
network traffic has the complicated short- and long-range tem- 
poral dependence, the corresponding wavelet coefficients are all 
"short-range" dependent. Therefore, a simple wavelet model may 
be able to accurately characterize complex network traffic. We 
first investigate what short-range dependence is important among 
wavelet coefficients. We then develop the simplest wavelet model, 
i.e., the independent wavelet model for Gaussian traffic. We define 
and evaluate the (average) autocorrelation function and the buffer 
loss probahUity of the independent wavelet model for Fractional 
Gaussian Noise (FGN) traffic. This assesses the performance of the 
independent wavelet model, and the use of which for analysis. We 
also develop (low-order) Markov wavelet models to capture ad- 
ditional dependence among wavelet coefficients. We show that an 
independent wavelet model is sufficiently accurate, and a Markov 
wavelet model only improves the performance marginally. We 
further extend the wavelet models to non-Gaussian traffic through 
developing a novel time-scale shaping algorithm. The algorithm 
is tested using real network traffic and shown to outperform 
FARIMA in both efficiency and accuracy. Specifically, the wavelet 
models are parsimonious, and have the computation complexity 
O(N) in developing a model from a training sequence of length 
N ,  and O ( M )  in generating a synthetic traffic trace of length M .  

Index TermsmLong-range dependence, network traffic mod- 
eling, self-similiar traffic, wavelets. 

I. INTRODUCTION 

T RAFFIC modeling and understanding is imperative to net- 
work design and simulation, to providing quality of  ser- 

vice (QoS) to diverse applications, and to network management 
and control. Numerous models have been proposed in the past 
for modeling network traffic. However, it remains open how to 
model heterogeneous network traffic possessing two pertinent 
statistical properties: complex temporal correlation and mar- 
ginal distributions that result from the complexity of (IP) net- 

Manuscript received March 3, 1999; revised March 13, 2000; recommended 
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor T. V. Lakshman. This 
work was supported by the National Science Foundation under contracts NCR 
9805338 and CAREER IRI-9502518. 

S. Ma is with Machine Learning for Systems, 1BM T. J. Watson Research 
Center, Hawthorne, NY 10532 USA (e-mail: shengma@us.ibm.com). 

C. Ji is with the Department of Electrical and Computer Systems Engi- 
neering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail: 
chuanyi @ ecse.rpi.edu). 

Publisher Item Identifier S 1063-6692(01)09000-8. 

works and diverse network applications. The goal of this work 
is to develop a traffic model that is both accurate in capturing 
the aforementioned statistical properties and computationally 
efficient for developing a model as well as generating synthetic 
traffic. 

The complex temporal correlation of network traffic can 
be characterized by the short-range (SRD) and the long-range 
dependence (LRD). Examples of traffic exhibiting SRD in- 
clude voice-over IP (Volp) [41] and VBR video traces [21]; 
and examples of  traffic possessing LRD include web request 
traffic [12] and Ethernet data traffic [32]. The autocorrelation 
function of SRD traffic decays exponentially, and that of  LRD 
traffic decays hyperbolically. For real-time applications, it has 
been shown that only SRD is relevant [25], [55], [7], [21], 
and [32]. Numerous models corresponding to short-range-de- 
pendent processes can be used to model SRD reasonably 
well. These models include variants of  Markov processes [3], 
[20], [49], [57], [61], [64] and DAR [16], [25]. For nonreal 
time applications such as video-on-demand, most of  the data 
communications and some network management tasks, a traffic 
model needs to capture the temporal dependence at large time 
scales, i.e., the long-range dependence. The Markov-type 
models, when extended to capture LRD, often result in a com- 
plicated structure with many states/parameters [3]. Models such 
as Fractional Gaussian Noise (FGN) processes [32] can capture 
the long-range dependence but not the short-range dependence. 
In fact, network traffic such as VBR video can exhibit a 
complex mixture of SRD and LRD. That is, the corresponding 
autocorrelation function behaves similarly to that of long-range 
dependent processes at large lags, and to that of  short-range 
dependent processes at small lags [7], [21]. Models developed 
to characterize both SRD and LRD include FARIMA [21], a 
model based on the Hosking procedure [26], the scene-based 
model [27], the Markov Modulated Process [3], [52], the fractal 
point process [54], and the M/G/oo model [31]. Among 
these methods, the scene-based model [27] and the Markov 
Modulated process [3], [52] provide a physically interpretable 
model to include both long-range and short-range dependence. 
However, due to the stochastic nature of network traffic, it is 
difficult to accurately define and segment network traffic into 
different states in the time domain. FARIMA models are not 
computationally efficient. They may require a large number of  
model parameters, and O ( N  2) computational time to develop a 
model from a traffic trace of  length N and to generate synthetic 
traffic of  length N [21], [26]. The M/G/oo model has been 
shown to have a moderate number of  parameters. However, it 
is a point process. Its efficiency in generating a high volume of 
synthetic traffic needs further investigation. 
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Non-Gaussian distribution is another important statistical 
property of heterogeneous traffic. It has been shown that both 
video and data traffic have heavy-tailed non-Gaussian marginal 
probability density functions (PDFs) [21], [53], [30]. Moreover, 
the higher order statistics of traffic can have a significant impact 
on accurately predicting the buffer overflow probability [26], 
[23]. Algorithms have been proposed to incorporate higher 
order statistics b~ matching the marginal distribution and the 
second-order statistics of network traffic [26], [44], [24]. How- 
ever, their performance, measured by the queueing results, is 
still not as desirable [26]. This is because these algorithms only 
model the marginal distribution of the traffic at the finest time 
scale, whereas the marginal distributions across different time 
scales should be modeled for accurately predicting queueing 
behavior. 

The goal of this x~ork is to develop a traffic model which 
can capture complex temporal dependence in terms of both 
LRD and SRD, which can model non-Gaussian distributions to 
achieve accurate queueing performance, and which is computa- 
tionally efficient. Why are these aspects difficult to be achieved 
simultaneously? The main reason is that the heterogeneous 
traffic is intrinsically complex in the time domain. This makes 
it difficult for the time-domain models to be both accurate and 
efficient. Models have been developed in the frequency domain 
[34]. Although the harmonics are not a generic representation of 
heterogeneous traffic, the idea of modeling in a transformation 
domain [34] motivate,; our work in this paper. 

Which transformation domain may be suitable for modeling 
network traffic? Sherman etal. [56] demonstrated that the statis- 
tical properties of the aggregated traffic are self-similar across a 
wide range of time scales. In addition, network control and man- 
agement are often performed at different time scales. All these 
motivate us to model heterogeneous traffic based on time scales. 
We show later that time scales can be naturally represented by 
wavelets. We also demonstrate that the wavelet representation 
matches the properties of the bursty network traffic, in that the 
wavelet coefficients are short-range dependent even though the 
corresponding heterogeneous traffic may be long-range depen- 
dent. Consequently. a simple yet accurate model can be derived 
in the wavelet domain. 

Wavelet models have been developed for fractional Brownian 
motion (FBM) and scale-invariant processes [4], [5], [35], and 
[18] in signal processing. Wornell et al. [63] have proven that the 
spectrum of the independent wavelet model of an FBM process 
is very close to that of 1If  processes. Therefore, the indepen- 
dent wavelet model has been proposed to rapidly generate FBM 
of FGN-like synthetic sample paths. However, the previous in- 
vestigation on (asymplotic) correlation structure of wavelet co- 
efficients has been focased mostly on a limited scope for FBM 
[63], [19], [42], [59], FGN [28], or AR(1) [14]. The correlation 
structure has not been well studied for short-range dependent 
processes nor for a mixture of long- and short-range dependent 
processes. To appl) wavelet models to networking related ap- 
plications, [2], [1], [18] proposed to estimate Hurst parameters 
by wavelet models. The possibility of using wavelets for mod- 
eling network traffic was mentioned in [48] and [17]. However, 
wavelet approaches have not been applied to modeling hetero- 
geneous traffic when this work is developed [37], [38]. Recently, 

[51 ], [50] have applied multiplicative wavelet models to model 
network traffic. 

The main contributions of this work include: 1) the applica- 
tion of the wavelet approach for modeling heterogeneous traffic; 
2) the development of a novel time-scale shaping algorithm to 
incorporate non-Gaussian distributions of network traffic; and 
3) investigation of the performance of the wavelet models using 
networking-related performance measures. 

Herein, we first investigate whether/why the wavelet mod- 
eling approach is indeed capable of capturing the complex 
temporal dependence in heterogeneous traffic. For this, we de- 
rive analytical results on the correlation of wavelet coefficients. 
These results show that a key advantage of using wavelets 
is their ability to reduce the complex temporal dependence 
so significantly that the wavelet coefficients only possess the 
short-range dependence. With these results, we first develop 
wavelet models for both SRD and LRD Gaussian traffic, and 
then develop a novel multitime-scale shaping algorithm for the 
non-Gaussian distributed traffic. After we assess our models 
through intensive experiments, we further assess our wavelet 
models analytically for modeling FGN traffic. In particular, 
we shows that the average buffer overflow probability of the 
independent wavelet model, when used to model FGN traffic, 
is asymptotically close to that of the original traffic. We show 
that the autocorrelation function of the independent wavelet 
model of FGN traffic has the same (hyperbolic) decay rate as 
the original traffic, with an approximation error of less than 
15%. From the computational efficiency perspective, we show 
that wavelet models are parsimonious, and have the lowest 
computational complexity. In specific, the computational 
complexity is O(N) in developing a wavelet model from a 
training sequence of length N,  and O(M) in generating a 
synthetic sample path of length M. 

The paper is organized as follows. Section II provides back- 
ground knowledge. Section III studies why wavelet models are 
good candidates for long- and short-range dependent traffic. 
Section IV investigates Gaussian wavelet models. Section V 
develops a time-scale shaping algorithm to extend the inde- 
pendent wavelet models to non-Gaussian traffic. Section VI 
presents experimental results which validate the performance 
of the wavelet models. Section VII provides analysis on the 
autocorrelation function and the buffer loss probability of the 
independent wavelet model of FGN traffic to further evaluate 
the performance of the wavelet models. Section VIII discusses 
our results. Section IX concludes the paper. 

II. BACKGROUND 

A. Long~Short-Range Dependence and Performance Measures 

Intuitively, long-range dependence (LRD) can be considered 
as a phenomenon that current observations are significantly cor- 
related to the observations that are far away in time. One formal 
definition [21 ] of a long-range dependent stationary process can 
be described as that the sum of its correlation function r (k) over 
all lags is infinite. ~ This implies that the correlation function 
r(k) decays asymptotically as a hyperbolic function of k, i.e., 

1Please see [32], [21], [11 ], and [6] for other definitions and properties of the 
LRD. 
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Fig. 1. (a) Haar wavelet basis functions. (b) Corresponding tree diagram and two types of operations. The number in the circle represents the one-dimensional 
index of the wavelet basis functions. For example, the equivalent notation of d~ is d6. s, u (s) and "7 (s) represent the one-dimensional index of wavelet coefficients. 
? ( s )  is defined to be the parent node of node s. u(s)  is defined to be the left neighbor of node s. 

r(k) ~ O(k -(2-2H)) f o r k  >_ 0. H(0 .5  < H < 1 ) i s  the 
so-called Hurst parameter, which is an important quantity for 
characterizing the LRD. Examples of  such long-range depen- 
dent processes include the FGN process and the fractional au- 
toregressive integrated moving average process (FARIMA). The 
nature of  these random processes is "self-similar," i.e., the cor- 
responding statistical properties are invariant at different time 
scales [6], [11]. In particular, FGN is a Gaussian process, and 
can be completely specified by three parameters: mean, vari- 
ance, and the Hurst parameter. FARIMA (p, d, q) is a fractional 
differentiation of an auto-regressive moving average (ARMA 
(p, q)) process, where p and q represent the orders of  the ARMA 
(p, q) process and d(0 < d < 0.5) is a differentiation de- 
gree. The Hurst parameter H of FARIMA (p, d, q) equals to 
0 .5+d.  FARIMA (p, d, q) has p + q + 3  parameters, and is much 
more flexible than FGN in terms of simultaneously modeling 
of both long-range dependence and short-range dependence in 
network traffic [6]. Examples of  short-range dependent random 
processes include auto-regressive (AR) and ARMA processes 
with exponentially decaying correlation functions, i.e., r(k) 
pk(-1 < p < 1). 

The criteria that we use to measure the performance of the 
wavelet models are the autocorrelation function and the buffer 
loss rate. The autocorrelation function is an important quantity 
characterizing the second-order statistics of  a wide-sense-sta- 
tionary process. If  a model is able to capture both LRD and SRD 
components in network traffic, it should be able to match the au- 
tocorrelation function of network traffic in a long enough range. 
The buffer loss rate is chosen as one other criterion, since an im- 
portant goal for traffic modeling is to assist designing the buffer 
size of  a server, 2 and estimating the packet loss rate. 

B. Wavelet Transformation 
Wavelets are complete orthonormal bases which can be used 

to represent a signal as a function of time [13]. In LZ(R), dis- 
crete wavelets can be represented as 

¢ ~ ( t )  = 2-J/2dp(2-Jt -- m) (1) 

2This can be modeled as a single queue with capacity C and a buffer size B. 

where j and m are positive integers. The dilation index j char- 
acterizes the function ¢(t)  at different time scales, m repre- 
sents the translation in time. Because ¢ ~ ( t )  are obtained by 
dilating and translating a mother function ¢(t) ,  they have the 
same shape as the mother wavelet and therefore are self-similar 
to each other. 

A discrete-time process x(t) can be represented through its 
inverse wavelet transform 

K 2 K - j  - 1  

x(t) = E E d~]~¢~ ~(t) + ¢o (2) 
j = l  m=0  

where 0 < t < 2 K. ¢0 is equal to the average value o f x ( t )  over 
t E [0, 2 K - 1]. Without loss of  generality, ¢0 is assumed to be 
zero for the rest of this paper, d ~ '  s are wavelet coefficients and 
can be obtained through the wavelet transform 

2 K - - I  

C = }2 xCt)¢?(t). (3) 
t=0 

The mother wavelet we choose in this work is the Haar 
wavelet, where 

1 i f 0 _ < t < l / 2 ,  
¢(t)  = - 1  if 1 / 2 _ < t  < 1, (4) 

0 otherwise. 

To explore the relationships among wavelets, Willsky et al. 
defines a tree diagram and the corresponding one-dimensional 
indices of  wavelet coefficients [5], [35], [10]. Fig. l(a) shows 
an example of  Haar wavelets for K = 3, and Fig. l(b) shows 
the corresponding tree diagram. The circled numbers represent 
the one-dimensional indices of  the wavelet basis functions, and 
are assigned sequentially to wavelet coefficients from the top to 
the bottom and the left to the right. The one-dimensional index 
s is thus a one-to-one mapping to the two-dimensional index 
(j(s), re(s)), where j(s) and re(s) represent the scale and the 
shift indices of  the sth wavelet. The equivalent notation 3 of  d8 

3For example, d6 is d~ in the given example. (The shift index m starts from 
0.) 
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is then d~!~ ) In addition, we denote the parent and the neigh- ~,~,( • 
boring wavelets of a wavelet through the tree diagram. As shown 0.9 
in Fig. 1, q,(s) and u(s) are the parent and the left neighbor 0.s 
of node s, respectively. We use both the one-dimensional and 0.7 
two-dimensional indizes of a wavelet coefficient in this paper. 

A key advantage of using Haar wavelets is simplicity. The 5_0 0.6 
computational complexity of  the (Haar) wavelet transform and -~ 0.s 
inverse transform is O(N), where N is the length of the time 

0.4 
series. 

When x(t) is a random process, which is of  interest to this 0.3 
work, the corresponding wavelet coefficients d)'~'s define a 0.2 
two-dimensional random processes in terms of  j and m (see 

0A 
[22], [63], [5], and references therein for details). Due to 
the one-to-one correspondence between x(t) and its wavelet 0 
coefficients, the statistical properties of the wavelet coefficients -0.~ 
are completely determined by those of x(t). Likewise, if 0 
the statistical properlies of the wavelet coefficients are well 
specified, they can be used to characterize the original random 
process. This motivates our approach of  traffic modeling by 
characterizing statistical properties of wavelet coefficients. 

III .  WHY W~VELETS: CORRELATION OF WAVELET 
COEFFICIENTS 

One of  the main motivations for using wavelets is their ability 
to reduce the temporal correlation so that wavelet coefficients 
are less correlated, hi this section, we first provide (asymp- 
totic) analysis on correlation structures of  wavelet coefficients 
for well-known LRD and SRD processes. We then provide em- 
pirical studies to show that the correlation structures are domi- 
nated by only a few key elements. This motivates traffic mod- 
eling in the wavelet domain, and the simple wavelet models we 
will choose in Section IV. 

A. Analysis on Correlation Structure of Wavelet Coefficients 

1) Correlation Structure of Wavelet Coefficients of LRD 
Processes: The correlation structure of  (long-range dependent) 
FGN process has been investigated extensively in [28], [63], 
[19], and can be applied to the problem we consider in this 
work. 

Theorem h (Kaplan and Kuo [28]; Flandrin [19]): Let x(t) 
be a FGN process with Hurst parameter H(0.5  < H < 1). Let 
d}~s be the (Haar) wavelet coefficients of  x(t). Then: 

1) For a given time scale j ,  d}'s are i.i.d. Gaussian 
random variables with zero mean and variance 
2J(2H-1)(2211-H) -- 1)o "2, where ~ is the variance 

of  x(t).  
2) For (ml + 1~ 2J' - m22 j~ large, where j l ,  j2, m l  and m 2  

are the dilation and the translation indices of  two different 
wavelet coefficiems, respectively, the correlation between 
two wavelet coefficients is 

E (djl . . . . .  dj 22,1 .~ 0 (J2Jl?7~1 -- 2J2~2]  - 2 ( 1 - H 1 ) )  (5) 

where H ~ = 1 -- H .  
H e r e  ]2 jl ~,. 1 - -  2 j~ m2] is the shortest distance between 

two wavelets, and greater than 1. The exponent, 1 - H ~, 
is between 0 and 0.5 since 0.5 < H < 1 for FGN pro- 
cesses. This shows that the correlation changes from the 
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Fig. 2. Solid line: Autocorrelation coefficients of the original process. 
Dotted line: the normalized autocorrelation of wavelet coefficient, i.e., 
(E(d'~d'~'~+k)/aa,~ad,,~+~). (a) AR(1) process. (b) FARIMA (0, 0.4, 0) 
process. 

mean-revert (0.5 < H < 1) in the time domain to the 
mean-avert (0 < H t < 0.5) in the wavelet domain. Re- 
call that the temporal autocorrelation of  FGN decays at a 
rate O( Ik1 -20 -H) )  for k being the lag, and is thus non- 
summable. The above theorem indicates that the wavelet 
transformation has changed the long-range dependence 
m the time domain so significantly that the summation 
of  the correlation of  wavelet coefficients converges to a 
constant. Fig. 2 illustrates how drastic the reduction is 
by comparing the autocorrelation function of  the original 
FARIMA (0, 0.4, 0) process to the corresponding auto- 
correlation function 4 of  wavelet coefficients (of d~  and 
d~+k).  

2) Correlation Structure of Wavelet Coefficients of SRD Pro- 
cesses: For short-range dependent processes, we derive the cor- 
relation of  wavelet coefficients. 5 

Theorem 2: Let x(t) be a zero mean wide-sense-stationary 
(discrete) Gaussian process with the autocorrelation r (k), where 
7"(k) = 0-2,o[k[ with IP[ < 1, k is an integer and 0 -2 is the vari- 
ance ofx( t ) .  Let d~s  be the (Haar) wavelet coefficients of  x(t).  
Then: 

1) For a given time scale j ,  d~s  are Gaussian random vari- 
ables with a zero mean and a variance 0-2(1 + (2p/1 - 
p) - (3p/(1 - p)22J-1)) + O(p2J-'). 

2) For m12 jl - (m2 + 1)2 j2 > 0 

E( d ~  d']: 2 ) 
= 2 ( - j l - j2 /2)  pm~ 25~ - (r~2 +1)2J2 

× (1_p252-1]2 (1_p2J l - l ) 2  P cr 2. (6) 
k / k ) ( 1  - o) ~ 

4I t  c a n  be easily shown that the time series d~ ~ for a fixed j is stationary in 
terms of m. Therefore, the autocorrelation exists. 

5No previous results exist on the explicit correlation structure of wavelet co- 
efficients for discrete processes except the bounds for some of the continuous 
random processes [14]. 
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Correlation matrix of FARIMA (0, 0.4, 0). 

The sketch of the proof of the theorem is in Appendix A, and 
the details are in [38], [36]. 

This theorem shows that the correlation of wavelet coeffi- 
cients decays exponentially as Im12Jl - m22 j~ I, and there- 
fore remains short-range dependent in the wavelet domain. In 
fact, the decay rate is even faster than the corresponding cor- 
relation in the time domain due to the "differencing operation" 
performed by the Haar wavelet transform. Fig. 2 illustrates the 
decay rate by comparing the (temporal) correlation for an AR(1) 
process with that of its wavelet coefficient for j l  = jz = 1. 

The above investigations suggest that a complex short- and/or 
long-range dependent process in the time domain may be suf- 
ficiently modeled by a short-range dependent process in the 
wavelet domain. That is, simple models which are insufficient 
for the temporal process may be accurate when used to model 
the wavelet coefficients. 

B. Empirical Studies on Correlation Structure 
of LRD and SRD 

What short-range dependence needs to be captured among 
wavelet coefficients? Unfortunately, an answer to this question 
cannot be provided by Theorems 1 and 2, since they only hold 
for I(ml - 1)2 jl - m22 j~ [ large. We thus address this issue 
through experiments. Using sample paths of FARIMA (0, 0.4, 
0) and AR(1), we obtain the corresponding correlation matrices 
of wavelet coefficients plotted in Figs. 3 and 4, respectively. 
A pixel (i, k) in an image represents the correlation between 
the ith and the kth wavelet coefficients, where i and k are the 
one-dimensional indices shown in Fig. 1. The gray level is pro- 
portional to the magnitude of the correlation. The higher the 
magnitude of the correlation, the whiter the pixel in the image. 
These figures show that in addition to the diagonal line, 6 there 
are four pairs of lines having "visible" correlation. 7 They corre- 
spond to the correlation between 7 k (s) and s, where 7(s) rep- 
resents the parent of the node s, and @ (s) denotes the parent of 

6In order to have enough gray level to see more subtle details, the diagonal 
pixels, which is always 1, is set to 0.5. 

7We only consider K = 5 which has only five levels in the tree diagram. 

Fig. 4. 

10 20 30 

Correlation matrix of AR(1). 

40 50 60 

the node @ - l ( s )  with k being 1, 2, 3, 4 from the diagonal line. 
We then conclude that the most significant correlation is due to 
the parent-child relationship. Since the complicated temporal 
correlation concentrates on only a few key correlation patterns 
in the wavelet domain, we can use a parsimonious model in the 
wavelet domain to represent the original traffic. 

IV. GAUSSIAN WAVELET MODELS 

We begin developing the wavelet models from the traffic with 
Gaussian distribution, for which we only need to characterize 
the autocovariance function through the wavelet models. 

A. General Markov Models in Wavelet Domain 

We capture the short-range dependence among wavelet coef- 
ficients using Markov models. Such Markov models can be im- 
plemented through a linear model on wavelet coefficients [5], 
where 8 

s--1 

d8 = as(1)d  + b8 8. (7) 
/=1 

Here, as(l)(1 < 1 < N)  and bs are weighting factors depending 
on the one-dimensional index s, and we is i.i.d Ganssian noise 
with zero mean and a unit variance. 

The order of the Markov model, s, can be chosen to make a 
tradeoff between model complexity and performance. Since our 
empirical study has demonstrated the regular patterns of the cor- 
relation structure for a wide range of SRD and LRD processes, 
we can choose s accordingly to capture several strongest corre- 
lations and ignore the insignificant ones. 

B. Independent Wavelet Model for Gaussian Traffic 

The simplest model is the independent wavelet model when s 
is chosen to be 1, and as(l) = 0 for all I. This corresponds to the 
case that d~s  are independent Gaussian random variables with 
zero mean and variance crj. crj can be estimated from data at 

8Here we assume causal relations among wavelet coefficients. 
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each j independently. This model only characterizes the mean 
and the variance of individual wavelet coefficients, and com- 
pletely neglects the interdependence among them. Therefore, 
the resulting correlation is 

ml m2 { cry, ml  = m 2  and j l  = j2 = j 
E(djl dj~ )=  O, otherwise. (8) 

How can the independent wavelet model represent LRD/SRD 
processes in the time domain? To provide answers to this ques- 
tion, Fig. 5 plots the variances of wavelet coefficients from an 
independent wavelet model for several well-known processes: a 
long-range dependent FARIMA (0, 0.4, 0), a short range depen- 
dent process AR(1), an d a mixture of long-range and short-range 
dependent process FARIMA (1, 0.4, 0). 

The figure shows that variances of the three processes exhibit 
different behavior. In particular, the variance of LRD increases 
with j exponentially f3r all j .  Intuitively, this is due to the fact 
that the statistical variation of a LRD process persists through 
all time scales. The wmance of SRD first increases rapidly at 
small time scale j ,  but saturates when j is large. This is be- 
cause that the statistical variation of SRD processes only per- 
sists at small time scales. 9 For a mixture of LRD and SRD, the 
variance shows the mixed behaviors from both SRD and LRD. 
These plots suggest that the variances of independent wavelet 
coefficients are capab:Le of distinguishing LRD from SRD for 
Gaussian processes. 

C. (Low-Order) Markov Wavelet Models 

The next simplest model is the first-order Markov model, 
which captures the parent-child relationship, the most signifi- 
cant correlation among wavelet coefficients as shown in the pre- 
vious section. Specifically 

d~ = a' (j( s) )d.~(~) + b' (j( s) )w~ (9) 

9As an extreme case, the variance of an i.i.d, temporal process, which includes 
Poisson-type processes and i.i.d. Gaussian processes, the variances of the cor- 
responding wavelet coe~]cients do not vary with respect to the time scale at all 
[47], [62]. 

where a '  (j  (s)) and b' (j  (s)) are the parameters to be determined 
from a training sequence, s is the one-dimensional index of 
a wavelet coefficient, andj(s) is the scale index of s. w~ is 
Gaussian noise with zero mean and the unit variance. This is 
a special case of (7) for all a~(l)s to be zero except a~(7(s)), 
where "/(s) is the parent node of s. The resulting correlation pat- 
tern of this wavelet model consists of the diagonal line and the 
next brightest off-diagonal line in Figs. 3 and 4. Markov wavelet 
models with even higher orders can be used to capture more cor- 
relations among wavelet coefficients, and can be implemented 
in a similar manner. 

D. Algorithm for Developing Wavelet Models and Generating 
Synthetic Traffic 

Once the form of a wavelet model is chosen, two issues need 
to be considered: I) how to obtain parameters of a wavelet 
model from a training sequence; and 2) how to generate 
synthetic traffic from the obtained model. The algorithm given 
below implements these two tasks. Assume a training sequence 
~(t) of length N is given from a Gaussian process. 

Algorithm: 
1) Estimate parameters from 3:(t). 

• Perform the wavelet transform on 2(t) to obtain the 
corresponding training sequence of wavelet coeffi- 
cients, d~s. 

• Estimate the required parameters in the selected 
wavelet correlation model (Section IV) from d~ s.1° 

2) Generate synthetic traffic. 
• Generate coefficients d~ from the wavelet correla- 

tion model using the estimated parameters for all m 
and j .  

• Perform the inverse wavelet transform to the gener- 
ated wavelet coefficients (d~s). This results in the 
synthetic traffic in the time domain. 

Efficiency of traffic models can be measured through two 
quantities: 1) the computational time needed to develop a model 
using a training sequence and to generate synthetic traffic; 
and 2) the number of parameters of a model. In particular, the 
wavelet transform, the inverse transform, and the parameter 
estimation for the wavelet models are all linear [13]. Thus, the 
computational time is O(N) for developing a wavelet models, 
and O(M) for generating synthetic traffic of length M.  As a 
comparison, FARIMA requires O(N z) for estimating param- 
eters H using a training sequence of length N,  and O ( M  2) for 
generating a synthetic trace. In terms of the actual computing 
time, it usually takes at most a few minutes on a Sparc station 
to develop a wavelet model and to generate a trace of length 
2 is, whereas a FARIMA model needs at least several hours to 
complete the same task. 

As for the number of parameters of a wavelet model, an inde- 
pendent wavelet model has at most log N parameters for mod- 
eling a training sequence of length N. An nth order Markov 
wavelet model has about (n + 1) log N parameters (in this 
work, n = 1, 2, 3). 

l°For example, for the independent wavelet model, the sample variances of 
wavelet coefficients are estimated. 

]1Through maximum-likelihood estimation. 
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V. NON-GAUSSIAN INDEPENDENT WAVELET MODEL 

As heterogeneous network traffic often possesses a 
non-Gaussian distribution, we extend the Gaussian wavelet 
models to non-Gaussian traffic. The key idea is to shape the 
distributions of synthetic traffic at multiple time scales. To 
motivate this approach, we first discuss the relationships among 
queueing behaviors, time scales, and wavelets. We then present 
our algorithm. 

A. Time Scale and Buffer Overflow Probability 

What should be modeled to accurately predict buffer overflow 
probability? Queueing analysis shows that the marginal distri- 
bution of  the cumulative process of traffic at the critical time 
scale is crucial for determining the buffer overflow probability 
[15], [81, [91. 

To briefly review these results in the large deviation theory, 
we let C be the capacity of  a single first-in-first-out (FIFO) 
buffer with an infinite waiting room, Qt be the buffer size at 
time t, and /3  be the threshold for the buffer overflow. Qt is 
known to satisfy Qt = sups>l(Xt(s) - c~) [29], where Xt(s)  
is the cumulated process of  a work load x(t) 

8--1 

Xt(s)  = E x(t  + j) (10) 
j=o 

and s represents the period for cumulation. 
The buffer overflow probability has shown to satisfy [15], 

[45], [81, [9] 

P r (Qt  > B) ~ Pr(Xt(s*) > cs + B) (11) 

where s* is the so-called critical time scale, and s* = 
arg sups_> 1 P r (Xt ( s )  > cs + B).  This approximation has 
been shown to be valid asymptotically (for large B) for a 
wide range of traffic including the long-range dependent 
FGN process [15]. It has also been shown to be a reasonable 
approximation even for a moderate buffer size with various 
traffic loads [8], [9]. 

An important implication of  the above approximation is that 
the tail distribution of  the cumulated process at the critical time 
scale determines the buffer overflow probability. Therefore, an 
accurate traffic model should capture the tail distribution of the 
cumulated process of  the original traffic at the critical time scale. 
However, the critical time scale depends on the buffer size B,  the 
capacity C, and the utilization. Therefore, in order to perform 
well under a wide range of  conditions, a traffic model should 
match marginal distributions of  the cumulated process at a wide 
range of time scales. 

B. Time Scales and Wavelets 

The time scale has a natural relationship with wavelets. 
Specifically, as given in [39], the (Haar) wavelet coefficients 
can be related to the so-called scale coefficients by 

2m 1 m vrr~ - ,A (%1+ 

where the scale coefficient v} ~ is defined as 

(~n+l)2J--1 

t=m2J 

(12) 

(13) 

f o r j  > 1 and integer of  re. By comparing this equation with the 
definition of  cumulative process Xt (s) [see (10)], we can relate 
the scale coefficient v~  to the cumulative process Xt(s)  as 

v~ = 2-~/2x~2~ (2J). (14) 

In other words, a scale coefficient v~  is simply the weighted 
cumulative process over the interval [m2J, (ra + 1)2J - 1] with 
a length s = 2J and a starting point t = m2J. 

The scale coefficient can be further related to wavelet coeffi- 
cients through the recursive relation [see (12)] as 

K 

Z (15) 
k = j + l  

where wk = 2 - (k - j /2 )  is a weighting factor, and v ° is the 
scale coefficient at the coarsest time scale. Finally, combining 
(15) and (14), wavelet coefficients can be related to a cumulative 
process through scale coefficients. 

C. Time-Scale Shaping Algorithm 

Using the relationships among wavelet coefficients, scale 
coefficients, and the cumulative process, we can now derive 
our shaping algorithm for non-Gaussian traffic. The key 
idea consists of  the following: 1) generating the so-called 
background wavelet coefficients by Gaussian wavelet models 
(Section IV-D); 2) computing the empirical distributions of  
scale coefficients of a training sequence; and 3) shaping the 
background wavelet coefficients so as to match the empirical 
distributions of  the scale coefficients. 

The idea can be implemented through a top-down procedure, 
i.e., the background wavelet coefficients are shaped from the 
coarsest to the finest time scales. Specifically, let d E and c1~ '~ be 
the unshaped and the shaped wavelet coefficients at the kth time 
scale, respectively. Assume that the shaping has been done from 
the coarsest (Kth) to the [ (K - j + 1)th] time scale. At step j ,  
we fix the following: d~s  for all m and K _> k > K - j + 1, 
and ~ _ j  [related to d r through (15)]. Our objective at step j 
is to transform the (unshaped) wavelet coefficient d~_j  to the 

shaped wavelet coefficient d ~ _ j  so as to match the empirical 
distribution of the scale coefficients v~_j_ls .  To do so, we de- 

fine an intermediate variable z ~ _ j  = ( l / v / 2 ) ( d ~ _ j  + v ~ _ j ) .  
We note that if an appropriate transform can be applied to d ~ _ j ,  
then z ~ _ j  would become the new scale coefficient, VK_j_ 1 
[see (12)], 12 whose desired distribution can be computed by the 
training sequence at scale K - j - 1. Hence, we obtain 

dK__j'ITYt ---- V/2~-~21K__j_l (Fz,y_j(z~_9)) - ~ _ j  (16) 

where F,~m 1 (.) represents the distribution of the scale coeffi- 
cient at scale K - j - 1,13 and can be estimated through the 
histogram [57], [26] of  training traffic using (14). 

12By (12), 9 ~ _ j _  1 needs to be obtained to march the marginal of a cumula- 
tive process. But from (13), v~_j_~ ---- (1/v~)(v~'~_i + v~_+l). Therefore, 
either V2K*Zj or v ~  +1 can be chosen arbitrarily for shaping in order to match a 
desired marginal with that of a cumulative process. We choose to shape v~'Lj 
in this work. 

13We assume that v~_ 1 for a fixed j has the same distribution for different 
m. This is true for stationary traffic. Therefore, the distribution of v~_~. can be 
estimated through a histogram of v~L 1 for a fixed j. 
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To understand what transformation FzT . (z~_j) is, we note 
that for an independent wavelet model, ~1~ is independent of 
v ~ .  This is because v ~  only depends on wavelet coefficients 
at time scales larger than j .  Therefore, we have 

F~_.~ (z~_j) = FdT_j (d~:_j) (17) 

where d~_j is a Gaussian random variable determined by the 
wavelet model. For Markov wavelet models with dependent 
wavelet coefficients, the cumulative distribution function 
F~-, (z~ .) is equal to the conditional cumulative distribu- K - j  ix  --3 

tion function of d~_ j  given v~_j ,  

Fz~__j(z'~) = Fd~_jI~_~ (d~_j). (18) 

Such a conditional distribution is difficult to estimate empiri- 
cally. Therefore, the transformation for the independent wavelet 
model [see (17)] can be used as an approximation. 

Combining (16) and (17), we have 

7m v/-2F~-~ (Fd~_j m ) ) _ ~ m  (19) dK-j -~ (dK-j K-j" 
--j--1 

From the shaped waw~let coefficient cl~, the shaped scale coef- 
ficient can be obtained as 

1 ~_j ) .  
: + 

~ 2 m  has It can be verified that the (shaped) scale coefficient, v K_j_  1 
indeed the (targeted) distribution F~2m (.). 

K-- j - - I  
The above procedures can be summarized by the following 

algorithm. 

Time-Scale Shaping Algorithm 
Input: a training sequence (network 
traffic) ~(t). Output: synthetic traffic 
~(t) or model :~arameters (wavelet coeffi- 
cients, d ~ s )  

• Traffic modeling 
i. Do wavelet transform on the training 
sequence 9(~] =o obtain wavelet coeffi- 
cients d~s and then scale coefficients 
%~s [see (15)]. 

^2 2. Estimate the variance ~j of wavelet 

coefficients ,~?~ at each time scale i. 
3. Estimate the cumulative probability 
function of scale coefficients, F~j(.), 
at each time scale j using a training 
sequence on the cumulative process ~4 

Sin25 (2J) • 
• Synthetic traffic (or the model parame- 

ters) generation 
i. Generate background (Gaussian) 
wavelet coefficients d~ from a wavelet 
correlation model. 
2. Recursively compute the (shaped) 
wavelet coeff:_cients ~'~ [(16) and (19)] 
and scale coefficients vj-1 [see (20)] 
from j : K to 1 for all m. 
3. Do wavelet inverse transformation and 
obtain the synthetic traffic x(t). 

14Which  can be obtained by aggregating the ~ginal ~aining sequence 
v~ous time sc~es. 

Wavelet Model 

Fig. 6. Experimental setup. 

VI. PERFORMANCE OF WAVELET MODELS: NUMERICAL 
INVESTIGATIONS 

In this section, we report numerical investigations on the per- 
formance of the wavelet models, where the performance for 
modeling Gaussian traffic is measured by the autocovariance 
function, and that for modeling non-Gaussian traffic is mea- 
sured by the buffer loss probability. The results on modeling 
Gaussian traffic are verified using training sequences generated 
from known processes, and those for non-Gaussian traffic are 
validated using real network measurements. 

A. Simulation Setup 

The experimental setup we use is shown in Fig. 6. A trace 
Y:(t) is fed into a traffic model for estimating parameters of a 
wavelet model. The model obtained is then used to generate syn- 
thetic traffic x'(t). The original and synthetic traffic traces are 
then used to obtain empirical autocovariance functions and the 
buffer losses probabilities, which are compared to measure the 
performance of the wavelet models. A FARIMA model is used 
similarly to further compare with the performance of the wavelet 
model. Both the sample autocorrelation functions and the buffer 
loss probabilities are obtained and compared with the true au- 
tocovariance functions and the buffer loss rates. The results for 
wavelet models are averaged over ten random sample paths. 

B. Performance on Gaussian Traffic 
The performance of three types of wavelet models are investi- 

gated, which are independent wavelet models and the first-order 
and the third-order Markov wavelet models. A sample path 2(t) 
of length 105-106 is generated from either an AR or a FARIMA 
model. As various model parameters are used in our simulations, 
we report results in this paper based on two representative cases: 
a short-range dependent process, AR(1) with an AR parameter 
0.9, and a mixture of both SRD and LRD processes, FARIMA(1, 
0.4, 0), with an AR parameter 0.9 and the Hurst parameter 0.9. 

Figs. 7 and 9 show the sample autocorrelation functions for 
AR(1) and FARIMA(1,0.4, 0); and Figs. 8 and 10 plot the buffer 
loss rates, respectively. To examine further the performance of 
each wavelet model, we plot the mean square error MSE(T) 
between the original autocorrelation and the one from a wavelet 
model summing up to a lag T, where 

MSE(~-) = _1 ~ (r(k) - ~ ( k ) )  2. (21) 
7- 

k = l  
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wavelet model. The normalized buffer size is 0 .1 ,  0 .5 ,  1, 10  from top down. 

Figs. 11 and 12 plot MSE(~-) for AR(I) and FARIMA(1, 0.4, 
0), respectively. 

As observed from the figures, the independent wavelet model, 
which neglects all the dependence in the wavelet domain, per- 
forms reasonably well. Markov wavelet models which capture 
more correlations among wavelet coefficients improve the per- 
formance only marginally. 

C. Performance on Real Network Traffic 

The performance of the independent wavelet model and the 
time-scale algorithm is investigated in this section using real 
network traffic. Specifically, two widely used traffic traces are 
used. One is JPEG-coded Star Wars at the frame level [21]. 
The trace is obtained by applying a JPEG-like encoder to each 
of 171 000 frames at intervals of  1/24 second per frame of the 

0.95 

F i g .  10. Buffer response, x-axis: utilization, y-axis: l o g  l 0 ( o v e r f l o w  
probability). - -  : F A R I M A ( 1 , 0 . 4 ,  0 )  ( t h e  t r u e  buffer loss r a t e ) ; - - .  : third-order 
M a r k o v  wavelet model; - -: f i r s t - o r d e r  M a r k o v  wavelet model; ... : independent 
wavelet model. The normalized buffer size is 0 .1 ,  0 .5 ,  1, 10 from top down. 

two-hour movie Star Wars. The other is an Ethemet data trace 
used by Leland et al. [33]. ~s The data set records the number of 
bits for every 10 ms during the half hour collection period. The 
length of this training sequence is 176 000. 

An independent wavelet model is used and the time-scale 
shaping algorithm developed in Section V are applied. 
FARIMA(25, d, 20) model is used for comparison, where 
FARIMA(25, d, 20) has 25 AR parameters and 20 MA pa- 
rameters. 16 The algorithms used for FARIMA to estimate 
its parameters and to generate synthetic traffic are from a 
commercial software package, Splus [58]. As the two training 
sequences have non-Gaussian marginal distributions, the 
generated Gaussian traffic by FARIMA is further transformed 
using a standard method [26] so that the resulting synthetic 

l S W e  only report results on the data set collected in August 1989 .  

1 6 F A R I M A ( 2 5 ,  d, 2 0 )  is selected by compromising performance and c o m -  
p l e x i t y  through multiple trials. 
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traffic has a desired marginal distribution as estimated from the 
real trace. 

Figs. 13 and 16 plot the autocorrelation functions resulting 
from the FAR1MA~ 25, d, 20) and the wavelet model for both 
traces, respectively. These figures show that the wavelet model 
has a comparable perf3rmance to that of FARIMA in terms of 
modeling the second-o:rder statistics. Figs. 14 and 15 give the re- 
suits on the buffer loss 2robabilities for both traces, respectively. 
As observed, the performance of the wavelet model resulting 
from the time-scale shaping algorithm is comparable to that of  
FARIMA(25, d, 20) at small buffer sizes but is much improved 
at large buffer sizes. This shows the importance for the wavelet 
model and the time-scale shaping algorithm to match the non- 
Gaussian marginal distributions of the cumulative process at a 
wide range of  time scales. 
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Fig .  13. - -  : Autocorrelation of Star W a r s ;  - - F A R I M A ( 2 5 ,  d,  20 ) ;  ... : 
Algorithm 2. 
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VII. P E R F O R M A N C E  O F  I N D E P E N D E N T  W A V E L E T  M O D E L S :  

A N A L Y S I S  

One observation from our empirical studies is that indepen- 
dent wavelet models are rather accurate measured by both the 
autocovariance function and the buffer overflow probability, 
and the Markov models which include additional dependence 
only improve the performance marginally. This motivates us to 
further access the performance of independent wavelet models 
through analysis. We focus our analysis in this work on a lim- 
ited case when independent wavelet models are used to model 
an FGN process. An FGN process is of  the particular interest, 
since it is the only long-range dependent process with an 
explicit autocorrelation function. In addition, the independent 
wavelet model of  an FGN process can be expressed explicitly 
[28]. This makes it possible for us to analyze the corresponding 
buffer overflow probability and the autocorrelation explicitly, 
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and compare with those of the original FGN process given in 
the prior work [15], [46], [43]. 

A. Definitions and Notations 

Let ~(t) represent an FGN process, x~K(t) is a random 
process resulting from the (Haar) independent wavelet model, 
where 

K 

X~K(t) = ~ Z d a ¢ ? ( t ) .  (22) 
j = l  m = 0  

t > 0, and K represents the limited resolution. ¢~  (t) is a (Haar) 
wavelet basis function with a scale index j _> 1, and a shift index 
m > 0. d} '~ is an independent Ganssian random variable defined 
in (8). Let x~(t) be the limit 17 Of Xwg(t) with respect to K,  i.e. 

x~(t)  = lim X~K(t). (23) 
/< ---+ oo 

Since xw~c(t) is a cyclostationary rather than a stationary 
process [63], we need to define the average buffer overflow 
probability of the independent wavelet model. 

B. Average Buffer Overflow Probability 

Consider a discrete time queue with an infinity buffer and the 
capacity c. x~(t) and £'(t) are fed into two such queues at the 
beginning of a discrete time slot t for t _ 0, Let B~t and/3t be 
the buffer sizes at the end of the tth time slot due to x~(t) and 
~(t), respectivelyJ 8 where 

Bwt = sup(X~t(s) - sc) (24) 
s_>l 

and 

/)t = sup(Xt(s) - sc). (25) 
s > l  

)(t(s) and Xwt(s) are the cumulated process, Xwt(s) = 
~i~----0s 1 Xw(t - -  i), and Xt(s) = ~7__-01 k(t - i). 

17Assume the limit exists. 

t SAs the subscript  w represents for  the wavelet  model,  x ~ t  ( t )  corresponds  
to the synthetic traffic f rom the independent  wavelet  model ,  and B ~ t  is the 
corresponding buffer  size. 
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Let Pr(B~,t > B) denote the buffer overflow probability due 
to the independent wavelet model at time-slot t, where 

Pr(Bwt > B ) :  Pr  ( s u p ( X w t ( S ) -  sc) > B ~ .  (26) 
\s>_l / 

Since xw(t) is nonstationary [63] as mentioned in the previous 
section, Pr(Bwt > B) varies with t. Therefore, to have a mean- 
ingful buffer loss rate of the independent wavelet model, we de- 
fine the average buffer overflow probability as 

1 T-1 
LwL(B) = Tlim ~ Z er(B~t > B). (27) 

t = 0  

Since an FGN process is a stationary process, its buffer overflow 
probability, L~oN(B), is 

LI~GN(B) = Pr  (/)t  > B )  (28) 

for any positive integer t. The average buffer overflow proba- 
bility of the independent wavelet model for an FGN process can 
then be derived and compared with the true value as shown by 
the following theorem. 

Theorem 3." When the buffer size B goes to infinity, 
the buffer overflow probability of the independent model, 
LWL(B), and that of the original FGN process, LFGN(B), 
satisfies 

1 
lira BZ(l_/~) logLwL(B) 

k0---.oo 

1 
= lira BZ(I_H) lOgLFGN(B)_ _ (29) 

k0 -----~ oo 

( 1 ~ 2 ( * - H , ( ~ . . H _ ) 2 H  

= _ (~ _ . ) 2  , ,~ - - - - ~  / (30)  
232(1 - H) 2 

for 

i~ = (~ - ~)2k°(1  - H )  (31) 
H 

where H (0.5 < H < 1) is the Hurst parameter of the FGN 
process, and k0 is a positive integer. 
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This theorem shows that when the buffer size t3 is assumed to 
be a subset of all possible values, and is large, the independent 
wavelet model is asymptotically close to that of the original 
FGN [15], [46]. In other words, the independent wavelet 
model can faithfully capture a long-range dependent FGN 
traffic. Therefore. the result shows, in this special case, the 
capability and pertb:nnance of the independent wavelet model, 
as well as the feasibility of using the model for queue analysis. 
Meanwhile, we would like to note that even for this special 
case, the proofs of the theorem involve elaborate analysis. The 
difficulty is due to the cyclostationarity of the independent 
wavelet model [63] which leads to the time-varying buffer 
overflow probability. This is, in fact, the consequence of using 
an independent wavelet model by ignoring all the dependence 
in the wavelet domain. As the result, techniques such as the 
large deviation cannot be used directly, and the lower and upper 
bounds have to be derived for the average buffer overflow 
probability. The main idea of the proof is given in Appendix B, 
and the details can be found in [36]. 

C. Average Autocorrelation Function 

The performance of independent wavelet models can be fur- 
ther evaluated through the autocorrelation function. To deal with 
cyclostationarity of the independent wavelet model, we need to 
define the average autocorrelation function. Specifically, let the 
average autocorrelatien function of the resolution-limited inde- 
pendent wavelet model be 

2 K 
- -  ]. 
RK(~-) = ~ E E(ZwK(t)z~K(t + ~')). (32) 

t = l  

The limit defines the average autocorrelation function of x(t),  ]9 
where 

R(r)  = lim R ~ ( T ) .  (33) 
K--+oo 

Using the variance cr!~ of the independent wavelet model for 
FGN process (see Part 1 of Theorem 1) in (33), we can derive 
the following theorem. 

Theorem 4." The average autocorrelation function of the in- 
dependent wavelet model for an FGN process is bounded by 

c~(H)l~-I 2z-2 _< ~(~-) _< c2(H)l~-I 2H-2 (34) 

where 0.5 < H < 1 is the Hurst parameter, el(H) and c2(H) 
are defined by a function f(c~; H) ,  where 

f(c~; H)  = ce2H-2pl 4- a2H-ap2. (35) 

Pl and P2 are 

and 

Then 

Pl = 2 - 22(l-H) (36) 

P2 = 2 z ( l -n)  1 3(1 - 22H-2) 
1 - 22H-3 (37) 

e l (H)  = f(1;  H)  

]9Assuming the limit exists. 

(38) 
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and 

c2(H) = f ( a* ;  H)  (39) 

where o~* = ( - ( 2 H  - 3)p2)/((2H - 2)pl). 
The proof of Theorem 4 is in Appendix C. To understand the 

results given by the theorem, we recall that the autocorrelation 
function of an FGN process is [40] 

RFGN(~-) = ½(Ik + 112H -- 21~12H + Ik + 112H) (4o) 

- -  c0(H)l -I  H-2 + O(1 12H-3) (41) 

where c0(H) = H ( 2 H  - 1). The performance of independent 
wavelet models measured by autocorrelation functions can then 
be evaluated by comparing (34) with (41). The theorem (34) 
shows that the average autocorrelation function of independent 
wavelet model decays hyperbolically. This demonstrates that an 
independent wavelet model is capable of modeling long-range 
dependence in network traffic. In addition, the rate of decay 
( o ( I r l = " - = ) )  for large lags is the same as that of the autocor- 
relation function of the original FGN process. By further com- 
paring the constants c0(H) with e l (H)  and c2(H) shown in 
Fig. 17, we can examine the difference between the autocorre- 
lation function of the independent wavelet model and that of the 
original FGN process. Specifically, the relative difference be- 
tween the constants ([(el(H) - co(H))/eo(H)[ and [(c2(H) - 
co (H)) /c0 (H)[) is plotted as a function of Hurst parameter H in 
Fig. 18, and shown to be no more than 15% between the average 
autocorrelation function of the independent wavelet model and 
that of the FGN. 

VIII. DISCUSSION 

A. Performance and Efficiency of Wavelet Models 

Why do independent wavelet models perform so well even 
when they neglect all the dependence in the wavelet domain? 
Intuitively, the (deterministic) self-similar structure of wavelets 
is a natural match to the statistical self-similarity of traffic. As 
wavelet basis functions have "absorbed" the long-range and 
short-range dependence by differencing the averages at all time 
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scales, the wavelet coefficients are short-range dependent. This 
makes it possible to model wavelet coefficients as independent 
(or low-order Markov dependent) random variables without 
losing much information. The resulting wavelet model is there- 
fore simple and parsimonious. In addition, since there exist fast 
algorithms for both wavelet transforms and inverse transforms 
[13], our method is able to achieve the lowest computational 
complexity in developing the model and in generating synthetic 
traffic. 

B. More on the Related Work 

In signal processing, [4], [5], [35] have established a general 
framework for multiscale representations of a random process 
through the dyadic tree. [63], [19], [42], [59] have shown that 
wavelets can provide compact representations for an FBM 
process. Moreover, it has proven [63] that the spectrum of the 
independent wavelet model of an FBM process is very close 
to that of 1 I f  processes. Therefore, the independent wavelet 
model has been proposed to rapidly generate FBM or FGN-like 
synthetic sample paths. But the previous investigation on 
(asymptotic) correlation structure of wavelet coefficients has 
been focused mostly on a limited scope for FBM [63], [19], 
[42], [59], FGN [28], or AR(1) [14]. The correlation structure 
has neither been well studied for short-range dependent pro- 
cesses 20 nor for a mixture of long- and short-range dependent 
processes. Since network traffic has both short- and long-range 
dependence, we have extended the previous work to a broader 
class of Gaussian processes in order to study correlation struc- 
tures. Wavelets were also used to estimate Hurst parameters 
[2], [1], [18]. The possibility of using wavelets for modeling 
network traffic was mentioned in [48], [17]. 

IX. CONCLUSION 

This work is motivated by the fact that wavelet coefficients of 
network traffic with complex long-range and short-range depen- 

2°Bounds but not the actual correlation function were derived in [14]. 

dence are no longer long-range dependent. Therefore, simple 
models can be developed in the wavelet domain. In this work, we 
have investigated thoroughly the independent wavelet model, 
the simplest wavelet model. In that, we have shown that they 
are capable of characterizing both long- and short-range depen- 
dent (temporal) processes through variances of wavelet coeffi- 
cients at different time scales. We have derived autocorrelation 
functions and the queue loss rate using the independent wavelet 
model for the case of FGN traffic. Further, we have developed 
Markov wavelet models which capture the dependence among 
wavelet coefficients. We have compared the performance of the 
independent and Markov models, and show that independent 
wavelet models are sufficiently accurate and Markov wavelet 
models only improve the performance marginally. Finally, we 
have developed a time-scale shaping algorithm that extends the 
(Gaussian) wavelet models to non-Gaussian traffic. The algo- 
rithm shapes traffic at different time scales by exploiting rela- 
tionships among (Haar) wavelet coefficients, scale coefficients, 
and the cumulative process. We also have demonstrated that the 
wavelet models are parsimonious, and have the lowest compu- 
tational complexity achievable. 

A possible future direction is to extend our initial (queue and 
autocorrelation function) analysis to a more general setting. An- 
other issue of interest is to better deal with the nonstationary na- 
ture of the independent wavelet model, which we have discussed 
somewhat in this work. Other issues of interest include how to 
apply wavelet models as well as the concept of time scales to 
assist network design, control, and management. 

APPENDIX A 

PROOF OF THEOREM 2 

Proof." Since the proof of Theorem 2(b) is similar to that of 
2(a), in this appendix, we only sketch the proof of 2(a). 

Since x(t)  is stationary and d~ is obtained through the 
wavelet transform which is linear, d~ is stationary in terms of 
m. Without the loss of generality, we only need to consider d °. 
From definition of Haar wavelet coefficients, we have 

Var(d °) 

2 - J E  

= 2 - J E  

¢,2J_i 1 2J_1 N 2 

Z Z (42) 
t=O t=2J-1 

(x(t)- .) + Z (x(t)- ") 
\ t=0 t=2J-1 

(43) 
] 

2-4-i--1 2 -/--1 [ 

-- E E 2(X(~;1) -- ~) (X@2)  -- ~)  J t l=O t2=2 j -1  

(44) 

Through straightforward algebraic manipulations (see [38], [36] 
for details), we can compute the two terms of (44), and thereby 
prove the theorem. 
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APPENDIX B 
M A I N  IDEA OF THE PROOF OF THEOREM 3 

As the buffer loss probability of independent wavelet models 
is defined in the average sense to account for the nonstation- 
arity, the proof of Theorem 3 involves comprehensive analysis 
to bound the average loss rate. Here, we provide the main ideas 
of the proof. More details can be obtained in [36], [38]. 

Since proving Theorem 3 is equivalent to proving that 

1 1 
lim B2(I_H ) log [.WL(B) < lim logLFGN(B) B2(1-H) B--+ oo ~ - -  B---~oo 

(45) 

and 

1 log LwL(B) > B-+oolim B2(I_H ) 
1 

lim B2(I_H ) lOgLFGN(B) 
B----~oo 

(46) 

where B is defined by (31), we need to show (45) and (46) hold 
respectively. 

Note that the buffer overflow probability [see (26)] can be 
generally lower bounded [15], [60] by 

Pr(supXt(s) > cs+ B~ > supPr(Xt(s) > cs+ B) 
\ s > l  / s>l  

(47) 

and upper bounded by the union bound as 

Pr  supXt ( s )>cs+B <_ Pr(Xt(s)>cs+B).  
k.s>l am1 

(48) 

For an FGN process (0.5 < H < 1), Duffield [15] has shown 
that the upper and the lower bounds of the buffer overflow prob- 
ability are asymptotically close to each other. That is 

1 
lim B2(I_H, lOgLFGN(B) (49) 

B--*oo 

= im 1 ( ) B ~  B2[ l-,u) logPr  X(s*)  > cs* + B (50) 

1 ( ) 
= B--.~lim Bz:I_~u) l o g E P r  X(s )  > cs + B (51) 

s ~ l  

2o-2(1 - H)  2 

where s* = argsup.<> 0 Pr(J( t(s)  > cs + B) is the so-called 
critical time scale [45]. 

Therefore, to prove (45), it is sufficient to prove that 

> cs + B) _< Pr (Xt(8) > C8 + B) (53) Pr(Xt(s) 

for all integers t and s, and using (48) and (51). On the other 
hand, the lower bound [see (46)] can be obtained through (47) 
and (50), if we can show that 

er(Xt(s*) > cs*--  B) = Vr (Xt(s*) > cs* + B )  (54) 

where s* is the critical time scale of the FGN, holds under cer- 
tain conditions on B and t. 

Since Xt(s), the cumulative process of the independent 
wavelet model, is a Gaussian random variable for fixed t and 
s, a key step for us to derive the theorem through proving (53) 
and (54) is to derive the variance of Xt(s), and relate it to that 
of Xt(s). 

Because Xt(s) is a function oft ,  our proof contains two main 
steps. The first step is to show that the conclusion holds for the 
special time slot, N - 1 (N = 2 K and K is a large integer). 
This can be done through deriving the wavelet representation of 
XN- 1 (s) and calculating the variance of XN- 1 (s). The second 
step is to relate the variance of Xt(s), for any t > 0, to that 
of XN-I (S) .  The proofs for these two steps are done mostly 
through algebraic manipulations, and are lengthy due to the non- 
stationary nature of independent wavelet models. (Please refer 
[36] for details.) Intuitively, because wavelets provide the multi- 
scale representation of a signal [39], which in our case is traffic, 
the cumulated processes resulting from the independent wavelet 
model Xt(s)s are equal in probability to the cumulated process 
of an FGN process Xt (s) at special set of t and s. This results in 
the fact that Xt(s) is very close to Xt(s) for the rest o f t  and s. 
We prove that the above intuitions are true in [36], and therefore 
prove the theorem. 

APPENDIX C 

PROOF OF THEOREM 4 

To prove the theorem, we first need to derive an expression 
for the average autocorrelation function. 

Inserting the wavelet representation ofxwK (t) defined in (22) 
into (33), we can obtain through some algebraic manipulations 

K 

= Z (55) 
j = l  

where 

0 otherwise. 
o-j represents the variance of wavelet coefficients of an FGN 
process and is given in Theorem 1 as 

o-~ = 2 j(zH-1) (22(1-H) - 1 ) .  (57) 

Then the average autocorrelation function [see (55)] of an inde- 
pendent wavelet model for an FGN process is 

= 1) (58) 
j = l  

Let k = [log2(r)J + 1. Replacing hi(r) by (56), we have 

1) 

+ j = k + l  ~ 2J(2H-Z)(1--~J)) 

(59) 
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= 2 k(2H-2) 2 -- 2 2 ( 1 - H )  + ~-~ 22(1-H) -- 1 

3 (1 - 2 -2 ( l -H) )  ~ 
(60) 

-- 2(1 

The above equation is obtained based on the fact that h j  (7-) is 
zero for j < k. 

Equation (60) can be further written as 

R ( T )  = f(c~;  H ) ~  -2 (1 -H)  (61)  

where 

2 k 
a = - -  (62) 

T 

and 

f ( a ;  H)  = o~2H-2pl + o~2H-3p2. (63) 

Pl and P2, defined by 

Pl = 2 - 2 2 ( l - H )  (64) 

and 

P2 = 2 2 ( 1 - H )  1 3(1 --  22H-2) 
1 - 22H-3 (65) 

are weighting functions which only depend on the Hurst param- 
eter H.  

Using the above expressions, we can bound the function 
f ( a ;  H)  as follows. 

Because~- _< 2 k _< 2T and (62), we have 1 <_ a _< 2. 
Through some algebraic manipulations, it can be shown that 
f (1 ;  H)  = f (2 ;  H) .  Therefore, there is an extreme value 
between 1 < a < 2. Through setting the derivative of  f(c~; H)  
with respect to a to zero, the only root can be found to be 

a* - - (2H - 3)p2 (66) 
( 2 H  - 2 ) p l  

Since the derivative of  f ( a ;  H )  with respect to a is nonnegative 
in (1, 2), we have 

f (1 ;  H)  _< f ( a ;  H)  < f ( a * ;  H)  (67) 

for I < a < 2. The conclusion follows by setting 

c~(H) = f(1;  H)  (68) 

and 

c2(H) = f ( a * ;  H) .  (69) 

Q.E.D 
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