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Abstract- In this paper, we study P(Q > x), the tail of 
the steady-state queue length distribution at a high-speed mul- 
tiplexer. In particular, we focus on the case when the aggregate 
traffic to the multiplexer can he characterized by a stationary 
Gaussian process. We provide two asymptotic upper bounds for 
the tail probability and an asymptotic result that emphasizes 
the importance of the dominant time scale and the maximum 
variance. One of our bounds is in a single-exponential form 
and can be used to calculate an upper bound to the asymptotic 
constant. However, we show that this bound, being of a single- 
exponential form, may not accurately capture the tail probability. 
Our asymptotic result on the importance of the maximum vari- 
ance and our extensive numerical study on a known lower bound 
motivate the development of our second asymptotic upper bound. 
This bound is expressed in terms of the maximum variance of 
a Gaussian process, and enables the accurate estimation of the 
tail probability over a wide range of queue lengths. We apply 
our results to Gaussian as well as multiplexed non-Gaussian 
input sources, and validate their performance via simulations. 
Wherever possible, we have conducted our simulation study using 
importance sampling in order to improve its reliability and to 
effectively capture rare events. Our analytical study is based on 
extreme value theory, and therefore different from the approaches 
using traditional Markovian and Large Deviations techniques. 

Index Terms- Asymptotic upper bound, Gaussian process, 
queue lenght distribution, strong asymptotics. 

1. INTRODUCTION 

A DVANCES in lightwave communication technol- 
ogy have enabled high-speed networks, such as the 

asynchronous transfer mode (ATM) networks, to support 
various real-time applications. Statistical multiplexing is 
very important in such networks, since it increases network 
efficiency by allowing a large number of applications to 
share network resources (e.g., buffer space and link capacity). 
However, when these resources are shared, there also exists 
the possibility of excessive congestion, which could impact the 
quality of the underlying applications. Therefore, a network 
has to be designed and controlled based on certain measures 
that reflect the degree of the expected congestion in the 
network. A fundamental measure of congestion that we study 
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in this paper is P(Q > x), the tail of the steady-state buffer 
occupancy (queue length) distribution at a multiplexer. 

The tail probability $(Q > Z) has been extensively studied, 
but usually can be computed exactly only for a limited class 
of queuing systems. Further, even for traffic sources (such as 
the Markov arrival processes (MAP) or Markov modulated 

JEuid (MMF) Processes) for which exact analytical techniques 
have been developed [14], [22], one quickly runs into classical 
computational infeasibility problems when the number of 
multiplexed traffic sources is increased [13], [31]. At the same 
time, analyzing the queuing system with many multiplexed 
sources is extremely important, since real networks are ex- 
pected to support a large number of heterogeneous network 
applications. To address this problem, a large-scale effort 
has been devoted to the study of the asymptotic behavior 
of the tail probability, and a number of approximations for 
P( Q > x) have been developed (see [27] for a recent overview 
of queuing analysis in broadband networks). We next briefly 
overview related work on the asymptotics of $(Q > x). 

Large deviation techniques have been developed on gen- 
eral mathematical settings and are used to investigate the 
asymptotic behavior of P(Q > x). For instance, in [ 191, 

the following asymptotic log-similarity (‘3) relation has been 
obtained for $(Q > x) in considerable generality:’ 

P(Q > x) %?? (1) 

Here f(x) ‘zg(x) if log f(x) N log g(z), and f(x) N g(z) 
means limZ-+m f(x)/g(x) = 1. The positive constant q in 
(1) is typically called the asymptotic decay rate and can 
be easily obtained even when the number of traffic sources 
being multiplexed is very large. Therefore, this result has lead 
researchers to propose the well known effective bandwidth 

(EB) approximation $(Q > x) M e-qx (e.g., see [8] and 
references therein for more about the EB approximation and 
its theoretical foundation). However, the great generality of 
the large deviation techniques comes at a cost: the asymptotic 
relation in (1) captures only the leading (fastest decaying) 

term in log P(Q > x). For example, there are an infinite 
number of functions such as e -9x+& and x1’e--77”, which 

’ This result has been extended to the queues serving long-range dependent 
input processes (see [15]) in which case, the tail probability may not be 
asymptotically exponential (even in a log-similar sense). This paper focuses 
on Gaussian processes but does not cover long-range dependency. Readers 
that are interested in our work are referred to a more recent study of the tail 
probability for long-range dependent Gaussian processes [lo]. 
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are significantly different from eeqx but can replace e-qx in 
(1) to result in another valid log-similar relation. 

To alleviate the poor “resolution” of log-similarity, a 
stronger form of asymptotics has also been developed for 
different classes of queuing systems. These asymptotics show 
that (1) can be significantly strengthened to obtain a similarity 
(-) relation (e.g., see [I], [2], [20], [32]); i.e., 

P(Q > X) N Ceeqx. (2) 

Here, C is a positive constant called the asymptotic constant. 
From this stronger asymptotic relation, the asymptotic approx- 
imation P(Q > z) M Ce-q”, has been suggested for large 
values of 5 (e.g., see [l], [2], [13], [20]). Unlike the EB 
approximation (which can also be obtained by setting C = 1 
above), it has been shown that the asymptotic approximation 
does account for statistical multiplexing. The reason is that the 
effect of statistical multiplexing is captured by, the asymptotic 
constant C [13], [31], and not by the asymptotic decay rate 
7. Unfortunately, unlike the asymptotic decay rate 7, the 
exact value of the asymptotic constant C cannot usually be 
determined (especially when a large number of traffic sources 

are multiplexed). Hence, methods have been developed to 
approximate C for special cases (e.g., see [2], [13], [16], [31]). 

In this paper, we focus on the case when the input process 
is stationary Gaussian. Gaussian process modeling is useful 
for two main reasons. First, Gaussian processes have sev- 
eral appealing properties. For example, independent Gaussian 
processes are closed under superposition, and any stationary 
Gaussian process can be completely specified by its mean and 
autocovariance. Therefore, unlike the case of MMF processes, 
analyzing a queue with a large number of Gaussian input pro- 
cesses is no more difficult than analyzing a queue with a single 
Gaussian input process. Second, and more importantly, the 
large bandwidth (compared to the bandwidth required by a typ- 
ical network application) of high-speed networks make it a nat- 
ural approximation for the aggregate input process. Due to the 
huge capacity of network links, hundreds or even thousands of 
network applications are likely to be served by a multiplexer. 
Therefore, even when the traffic from each individual appli- 
cation cannot be characterized by a Gaussian process, by ap- 
pealing to the central limit theorem, the aggregate traffic to the 
multiplexer can be effectively modeled as a Gaussian process. 

Such queues (fed by a stationary Gaussian input process) 
have recently received some attention (e.g., see [2], [9], [25], 
[26]). We already know from [ 191, that the log-similarity rela- 
tion (1) holds for Gaussian processes. The excellent work by 
Addie and Zuckerman [2] strengthens this result by showing 
that for fairly general discrete-time Gaussian sources, the tail 
probability is in the form of (2). They also suggest possible 

approximations of the asymptotic constant C. In [26], Norros 
provides an approximation to determine the tail probability for 
the special case of fractal Brownian motion. In this case, the 
asymptotic behavior of the tail probability is not in the form 
of (2). 

We will provide two asymptotic upper bounds for P(Q > X) 
for a large class of Gaussian processes for which (2) holds. Our 
approach is quite novel: it is based on extreme value theory 
for Gaussian processes [4] and is different from traditional 

Markovian or large deviation techniques. One of our bounds 
is of a single exponential form and results in an accurate 
upper bound to the asymptotic constant C. For the reason 
mentioned earlier, this bound (as an accurate estimate for the 
asymptotic constant) is important in effectively exploiting the 
statistical multiplexing gain. Further, since the upper bound is 
obtained as a simple expression in terms of the autocovariance 
function of the input process, it gives us important insights into 
the relationship between the correlation structure of an input 
process and its queuing behavior. In spite of the theoretical 
value of our single-exponential asymptotic upper bound, we 
show that it suffers from the same limitation inherent in all 
single-exponential based approximations for P(Q > z); when 

the tail probability converges to its asymptote slowly, a single 
exponential approximation may fail to accurately approximate 
P(Q > X) even for fairly large values of 2. To address this 
problem, we introduce another asymptotic upper bound which 
is asymptotically similar to the first bound, but also accurately 
captures the tail probability over a wide range of queue lengths 
5. The development of the second asymptotic upper bound is 
motivated by our past numerical studies on a well known lower 
bound2 and a theoretical result (Theorem 2). This theoretical 
result also serves to emphasize the importance of the dominant 
time scale in queuing analysis for Gaussian sources. We further 
provide an extensive numerical study involving importance 
sampling and actual video traces to demonstrate the accuracy 
of our analytical results. 

Here, we should distinguish our work in this paper from 
some results in the literature. All of the above discussion 
(including the work in this paper) is about “2-asymptotics” 
i.e., the asymptotic behavior of P(Q > x), as the queue length 
LG increases. There has been recent work that focuses on the 
asymptotic behavior of P( Q > X) when the number of sources, 
the queue length, and the service rate are all proportionally 
sent to infinity (e.g., [6], [25]). We classify these studies as M- 
asymptotics, where A4 represents the number of sources in the 
system. In particular, Montgomery and De Veciana [2.5] have 
significantly strengthened the corresponding log-similarity re- 
lation in [6] using the Bahadur-Rao asymptotics, and obtained 
asymptotic bounds for the tail probability. However, note that 
M-asymptotics considers a limit in a different direction from 
that in z-asymptotics. Therefore, results in M-asymptotics 
cannot be extended to z-asymptotics (and vice versa) unless 
very strong properties such as uniformity of convergence can 
be shown (which is usually not the case). Hence, the results 
in this paper belong to a different category, from those in 
M-asymptotics. 

As an important final note, due to space limitations, we do 
not provide any proofs to the theoretical results in this paper. 
Interested readers are referred to our technical report [l 11. 

II. PRELIMINARIES 

A. Fluid Queue Model 

We model a high-speed statistical multiplexer by an infinite 
buffer fluid queue shown in Fig. 1. The fluid queue consists of 

‘As will be described in Section IV, approximations equivalent to this lower 
bound have already been suggested (e.g., see [25], [27]). 
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Infinite Buffer 

Fig. 1. A typical fluid queue model. 

a server that drains the fluid from the buffer at a constant rate 
p, and a fluid input that fills the buffer at a rate Xt. The fluid 
input Xt corresponds to the aggregate arrival process to a high- 
speed multiplexer, and p corresponds to the rate at which fixed 
size packets (such as ATM cells) are transmitted onto the link. 
Consequently, Qt, the amount of fluid in the buffer at time t, 
represents the number of cells in the multiplexer. 

Depending on the index set T, from which the time index t 
takes its value, a fluid queue is classified as either a continuous- 
time fluid queue (T = (- 00, co)) or a discrete-time fluid 

queue (T = {. . . , -1, 0, 1, . . .}). In this paper, we only 
consider discrete-time fluid queues, although equivalent results 
can also be obtained for the continuous-time case [12]. 

In a discrete-time fluid queue, the evolution of Q,, the 
amount of fluid in the buffer, can be expressed by Lindley’s 
equation: 

Qn = (&n-l + m)+ (3) 

where “in := X, - ,U is the net amount of fluid input at time 
n and (zE)+ := max{O, z}. In [24], it has been shown under 
some mild assumptions (such as the stationarity and ergodicity 
of 7% and the stability condition, i.e., E{y,} < 0), that the 
distribution of Qn determined by (3) converges to a unique 
limiting distribution (the steady-state queue distribution) as 
n goes to infinity, regardless of the initial condition &a. In 
addition, it has been shown that the supremum distribution of 
{X,: n = 0, 1, ...} defined by X, := Cz=, Y-~, is equal 
to the steady-state queue length distribution, i.e., 

~(QW=+;Xn>+ (4) 

This relation, which originally comes from [24], has played 
a key role in obtaining a number of important results on the 
steady-state queue length (or waiting time) distribution. 

From here on, throughout this paper, we focus on the cases 
for which the aggregate arrival process X, (and hence m) can 
be characterized by a stationary Gaussian process. 

B. Important Notations and Definitions 

Let C,(1) denote the autocovariance function of the sta- 
tionary Gaussian net input process 7n = X, - b (note that 
C,(Z) = CA(Z) since we set the service rate to a constant ,u). 
It is easy to see from the definition of X,, that it is also a 
Gaussian process. The mean and autocovariance function of 
X, can be computed in terms of K. := -E{ya} and C, (1) as 

E{X,} = -672, and CX(W, n2) = CT=1 CI1zz_l C,(b - 

II). By a change of variables 1 = 12 - II, the variance 

of X, can be expressed as a weighted sum of C,(Z), i.e., 

Var{X,} = nC,(O) + 2 cy:; (n - l)C,(l). 
Note that Var{X,} can also be expressed in terms of 

Idc(n) := Var{Cz=, X,}/E{Ck=, X,}, the (general- 
ized) index of dispersion for counts (IDC) by the relation 
Var{X,} = n(,~ - /t)Idc(n). Assuming that the net input 
process ‘yn is stationary Gaussian, its distribution is completely 
determined by either K and Idc(n), or IC. and Var{X,}. 
Therefore, this paper also falls into the classification of 

queuing analysis based on the mean and the index of dispersion 
of the input traffic (e.g., [18], [34]). 

For notational simplicity, for each n: > 0, we define a new 

stochastic process YiZ’ := [,/Z(X, + K~)]/(z + ~.n). It then 

follows that for any z > 0 and any 71 E (0, 1, 2, . .} 

X, > IC if and only if Y,‘“) > 6. (5) 

Hence, from (4), we have P’(Q > x) = P(suP,~,, YAZ’ > 

fi). Note that for each 5, YLZ) is a centered Gaussian process, 

and its autocovariance function C,c,) is given by 

Further, cz, ~, the variance of YAZ’, can be written as 

n-1 

2 

zv4x,> ( n&(O) + 2 c (n - l)C,(Z) 

flk= (z+r;n)2 = 

I=1 ) 

(X+&n)2 . 

(6) 

Henceforth, we let (w)~ denote supego we. Moreover, we 
do not specify the index range 0 when it includes the entire 
domain of we. For example, (02) represents the supremum of 

a;,, = Var{Y,(“)} over n E (0, 1, 2, .} (the index omitted 

in (.)), and (Y(Z))l,, bl represents the supremum of YiZ’ over 

11 E [a, b]. We now list three important conditions on C,(Z), 

and state three important propositions (we provide detailed 
proofs in [ 111) which will be referred to later in the paper: 

2 IC,(Z)l < cc and 9 C,(Z) > 0 (Cl) 
l=-Ct.3 l=-CC 

2 IZC,(Z)l < 00 63 
l=-Co 

F ZC,(Z) + 2 mC,(Z) > 0, 
l=l 1=m+1 

and 

2 ZC,(Z) > 0. 
I=1 

Vm = 1, 2, . , 

(C3) 

Proposition 1: Let ki and 1, be two nonnegative sequences 
such that Ic,, Zi -+ cc and kill; -+ a > 1 as i -+ co. Then, 
under condition (Cl), 

lim C,u(ki, li) Cx& J%) = S 
i-00 li = ;l!: 1; 

where 5’ := C;“_, C,(I). In particular, 

limn+m Var{X,}/n = S. 
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Proposition 2: Define fiZ to be the time at which crf, 7L 

attains its maximum (~2). Then, under condition (Cl), 

n, N -. 
rc 

Proposition 3: Under condition (Cl), limZ+m (02) = 
S/4& 

It should be mentioned that (Cl)-(C3) characterize a fairly 
large class of Gaussian processes. Condition (Cl) is mainly on 
the absolute summability of the autocovariance function of the 
input process. Hence, a sufficient condition for (Cl) [assuming 

c:_oo Cx(l) > 01 is that there exists an E > 1 such that 
CA(I) < I-’ for all sufficiently large 1. It should be noted that 
condition (Cl) can be thought of as the boundary between the 
processes that exhibit long-range dependence and those that do 
not (see [5], [23] for the definition and properties of long-range 
dependence and/or self-similarity). In other words, under this 
condition the tail probability satisfies (2) with v = ~/G/S and 
some finite constant C [2]. 

This section proceeds as follows. We first make some 
interesting observations by time-scaling the stochastic process 

YiZ’. These observations provide some insight on the behavior 

of IP(Q > Z) and point us in the development of our 
asymptotic upper bound. 

A. Interpretation of Time-Scaling Y,‘“’ 

Consider a continuous-time stochastic process YJx) defined 

for each 2 > 0 as $“) := Y/z:,,, , where 1~1 denotes the 

largest integer that is smaller than or equal to Z. The stochastic 

process Y,(“) is simply an interpolated (by holding its value 
for a period of length n/z) and scaled (in time) version of 

Y,‘“’ , that is enforced to attain its maximum variance around 
t = 1, as n: --+ 00 (see Proposition 2). From the definition of 

YJZ’), the following can easily be verified: 

Condition (C2) is on the absolute summability of a weighted 
autocovariance function of the input process. This condition 
is somewhat more restrictive than (Cl), and satisfied if there 
exists an E > 2 such that CA (I) < I-‘, for all sufficiently 
large 1. 

P(Q > x) =P((p’“‘) > &) 

lim Cp(,,(tl, t2) = 
S min{tl, t2) 

ztcc /c(l +t1)(1 +t2) 

While (Cl) and (C2) are related to the decay rate of an 

autocovariance function, condition (C3) is related to its shape 
and sign. Roughly speaking, (C3) is satisfied when CA(I), the 
autocovariance function of an input process, is positive for 
most values of 1. The class of input processes characterized 

(from Proposition 1). (8) 

Since YJZ) is a centered Gaussian process for each z > 0, (8) 

implies that, as 17: + co, 

,>4 d-t 
+&I= &(1+t) 

in distribution (9) 

by (C3) is very important for the analysis of network delay, 
since positive autocovariance is related to the bursty nature of 

where Bt is the standard Brownian motion process. 

an input process, which in turn is the main cause of network Now, we briefly move our attention to continuous-time 

congestion. 
fluid queues. For continuous-time fluid queues, continuous- 

time stochastic processes Xt, YJZ), and Y+ - (Z) can be defined 
L 

both theoretical and practical importance, as will be discussed 

shortly. 

III. SINGLE EXPONENTIAL ASYMPTOTIC UPPER BOUND 
in an analogous way to their discrete-time counterparts: 

In this section, we introduce our first asymptotic up- 
per bound for $(Q > Z) expressed as an exponential 
function of 2, and illustrate its theoretical importance. We 
say that f(x) asymptotically bounds g(z) from above if 

lim s~p~+~ g(x)/f(x) 5 1. We also briefly discuss its 
performance as an approximation for P( Q > Z) through 
numerical examples. 

xt := IT’0 - r-t, 
y-p) := 6(X, + 6.t) 

Y z + r;t 
and 

It should be noted here that Simonian [33] has derived an el- 
egant upper bound in an integral form for general continuous- 
time fluid queues fed by input processes having density 
function. However, in spite of its significant theoretical value, 
the upper bound usually results in a fairly complicated expres- 
sion when it is evaluated for a specific fluid queue. Moreover, 
the asymptotic behavior of this upper bound has only been 
shown to be exponential for the Omstein-Uhlenbeck process. 
For more general processes we do not even know if the 
bound is asymptotically log-similar to the tail probability, thus 
limiting its practical value. 

Here, It is a stochastic process with stationary increments 
and negative drift such that It - rs(s 5 t) represents the 
net input into a fluid queue during the interval (s, t], and 
/c := -[@{I, - I‘,})/(t - s)]. Remember that the results 
[including (7)] obtained for discrete-time fluid queues can 
also be derived for continuous-time fluid queues [12]. Also, 
note that if we set rt = 6 Bt - r;t (which corresponds 

to an uncorrelated input process) Y,(“) would have the same 

distribution as lJt. This fact together with (7) and (9) indicates 
that as z increases, $(Q > Z) behaves as if the fluid queue is 
driven by a completely uncorrelated input process, regardless 
of the correlation structure of the actual input process. 

In contrast, the asymptotic upper bound for P(Q > Z) that This phenomenon can be intuitively interpreted as follows. 

we introduce in this section is in a simple exponential form From Proposition 2, &, the time at which X, (Y,‘“‘) is most 
which can easily be obtained from the mean and autocovari- likely to be larger than z (&) increases linearly with 5. 
ante of the net input Gaussian process. Although it is not a Therefore, as z increases, ?L, eventually becomes significantly 
global upper bound, but an asymptotic upper bound, it is of larger than the time scale over which the net input process 
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is correlated. As a result, the effect of the correlated input 

process is negligible on the time scale of fix, and Y,‘Z’ 
behaves as if the input is an uncorrelated Gaussian process 
(with the same value of S as the original input process). 
For instance, let xn be an i.i.d. Gaussian process and let 

& = 0.5~~ + 0.3x+1 + 0.2x+2. Then, although xn is not 
correlated, & is a correlated process. However, if we compare 
the two partial sums, C’:n=, xm and CzL=, cm over a much 
larger time scale (say n > 100) than the time scale over which 
& is correlated, the difference, 0.5(~u-x~~)+0.2(~-1 -x+1) 
between these sums becomes very minor. Therefore, we can 
expect that these two partial sums will exhibit very similar 
stochastic behavior for such large values of R. 

The above discussion suggests the following simple approx- 
imation for the tail probability: 

F’(Q > x) =P((Y(“)),> &), from (7) 

zP(W) > fi), from (9) 

=P({& > g(t+l), ever}) 

e.g., see [29, p. 1991. (10) 

Since 17 in (1) and (2) has been shown to be 26./S [2], 
[19], (10) corresponds to the famous EB approximation. This 
means that to go beyond the EB approximation and obtain 
some information about the asymptotic constant in (2), more 

than the limiting distribution of Yt(“) has to be considered. 
The asymptotic upper bound that we now introduce, can be 

obtained by capturing the way in which the variance of Yt(Z) 
converges to its limiting value. 

B. Single-Exponential Asymptotic Upper Bound 

By observing how the variance of YJx) converges to that 
of U, around the time (r&/x M 1, from Proposition 2) at 

which the variance of Yt(“) attains its maximum, we get the 
following theorem. 

Theorem 1: Under conditions (Cl)-(C3), 

$(Q>x)Iexp 

where D := 2 Cz”=, 1(?,(I). 
Proof Refer to [ll, Theorem 3.21. W 

Theorem 1 gives us an exponential asymptotic upper bound 
exp[-(2K/S)(x + &D/S)] to the tail probability fP(Q > 
x). Further, since it has been shown under condition (Cl) 
that (2) holds for stationary Gaussian input processes with 
71 = 2&/S [2], Theorem 1 also provides us with an upper 
bound exp[-(2K2D/S2)] to the asymptotic constant C. The 
asymptotic upper bound accounts for statistical multiplexing 
in the sense that the bound for the asymptotic constant de- 
creases exponentially when more sources are multiplexed. For 
instance, consider a fluid queuing system serving M identical 
input processes with an infinite buffer and a fixed service rate 
p per input, and let P(Q” > x) denote the corresponding 
tail probability. Then, the bound for the asymptotic constant 

of $(Q” > x) can be written as exp[-(2r;‘DM/S2)] where 
K, S, and D are defined by the first two moments of a single 
input process and the service rate p per input. Note that the 
bound decreases exponentially as M increases. Therefore, if 
we quantitatively define statistical multiplexing gain as the 
reciprocal of the asymptotic constant, then this gain increases 
at least exponentially with the system size. This result, in fact, 
supports the behavior of the asymptotic constant that has been 
observed in empirical studies (e.g., see [13, eq. (1.6)]). 

The form of the upper bound to the asymptotic constant 
gives us more insight into the queuing behavior for stationary 
Gaussian input processes. It is well known that S, in con- 
junction with n, determines the asymptotic decay rate 7 given 
in (2) [2], [ 191. Further, the limiting value of the IDC of an 
input process [i.e., lim,,oo &(r~) = S/(p - K)] can also be 
expressed in terms of S [3]. Therefore S can be thought of 
as a measure of the “burstiness” of the input process, which 
is invariant to filtering or finite time-shifting of the arrival 
process. For example, let a, E [0, l] be a sequence that sums 
to 1, and consider a linear smoothing system which delays 
the a,, portion of the input at time n by rn 2 0. Then, the 
output process Xi can be expressed as a convolution of a, and 
the input process X,, i.e., Xi = C,“R=, amX7L--m. From this 
relation, the autocovariance function of XL can be computed as 

CA!(Z) = Cz,=, Cz2’,=, a,,, a,,Cx(Z + ml - ,rm). Hence, 
we have 

In other words, since the system does not impose an infinite 
amount of delay (that is, Cz=, (L,,~ = l), the autocovariance 
function of the input process and that of the output process 
have the same sum. On the other hand, Cl”=, 1Cx(Z) could 
be quite different from CEO ICx,(l). In other words, the 
parameter D is not invariant to filtering or finite time-shifting, 
and many autocovariance functions with the same S may have 
very different values of D. Now, consider two nonnegative 
autocovariance functions Cl (I) and C2 (I) having the same 
sum S. The autocovariance function Cl (1) has most of its mass 
distributed close to 1 = 0, while Cz(Z) has its mass spread over 
a wider range of 1. In this case, it is obvious from the definition 

of D, that Cl (I) will have a smaller value of D than Cz(l). 
In other words, for the same amount of total burstiness in the 

arrival process, the more the burstiness is spread over time, the 
larger is the corresponding value of D. Hence, from our bound 

to the asymptotic constant, the larger is the eventual statistical 
multiplexing gain. This implies that for a given constraint 
on the tail probability, by spreading the burstiness over time 
(e.g., the familiar smoothing concept [30]), we can get better 
statistical multiplexing gain. In the following section, we will 
show just how dramatic the difference in this gain can be for 
two different Gaussian processes having the same value of S. 
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Fig. 3. The exact tail probability and the asym totic upper bound for a 
Gaussian input process with CA(Z) = 100 x 0.911 P + 60 x 0.981’1. 

C. Numerical Examples and Discussion 

In this section, we experimentally investigate the perfor- 
mance of the asymptotic upper bound as an approximation to 
the tail probability. To validate our results numerically, we 

use the Importance Sampling simulation technique described 
in [7] (see [21] for a general overview of Importance Sampling 
techniques). We have calculated 95% confidence intervals for 
each tail probability estimated via simulation by the method of 
batch mean. However, to not unnecessarily clutter the figures 
we only show confidence intervals when they are larger than 
+20% of the estimated tail probability. 

Example 1: In this example, we consider fluid queues fed 
by two different Gaussian input processes. In particular, in 
Figs. 2 and 3, we show the exact tail probability and the 
asymptotic upper bound for two Gaussian input processes 
with the autocovariance functions 200 x 0.951’1 and 100 x 
0.9111 + 60 x 0.981’1, respectively, for six different values of 
K. Note that these autocovariance functions are nonnegative 
and vanish exponentially as 1 increases, so that they satisfy 
conditions (Cl)-(C3). Therefore, from Theorem 1, an expo- 
nential asymptotic upper bound for the tail probability can be 
computed for these two Gaussian sources. As one can see in 
Fig. 2, for large 2, the asymptotic upper bound parallels the 
tail probability for all values of 6. This is not a surprising 
result because both the asymptotic upper bound and the tail 
probability are asymptotically exponential with the same decay 
rate. Therefore, the logarithmic error between the bound and 
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Fig 4. The exact tail probability, the EB approximation, and the asymptotic 
upper bound for a Gaussian input process with CA (I) = 104 x 0.99 )I1 + 
64.14 x 0.999f’i + 31.86 x 0.9999)“1 when K = 33.33. 

the tail probability will eventually converge to a finite value. 

Further note that the bound matches the simulation results 
quite well. This indicates that the limiting error will be fairly 

small, and that exp[-(2?D/S2)], the upper bound for the 
asymptotic constant is an accurate estimate of the asymptotic 
constant. The same observations can be made in Fig. 3; the 

asymptotic upper bound parallels the tail probability as z 

increases and the difference between the bound and the exact 
tail probability is less than an order of magnitude for large 

enough values of z. However, in Fig. 3, the asymptotic upper 

bound fails to approximate the tail probability for small queue 
lengths (<500) for r; = 33.33, 42.86. This is because the tail 

probability in Fig. 3 converges to its exponential asymptote 
slowly, while the tail probability in Fig. 2 converges to its 
asymptote fairly fast, and forms a nearly straight line. Note 
that the autocovariance function of the Gaussian input used 

in Fig. 3 consists of two power terms with different decay 
rates. Hence, the input is correlated at different time scales, 

which typically results in a slower convergence of the tail 

probability to its asymptote. In the following example, a far 
more significant effect of this multiple time-scale correlation 

is demonstrated. 
Example 2: In this example we consider a fluid queue fed 

by a Gaussian input process with autocovariance function 
CA(Z) = 104 x 0.991’1 + 64.14 x 0.999111 + 31.86 x 0.99991”1. 

As can be observed, the autocovariance function is a sum of 
three weighted powers with very different decay rates. This 
means that the source is correlated at very different time scales. 

In Fig. 4, the asymptotic upper bound, the EB approximation 
and simulation results are shown for K = 33.33. Note that 

the slope of the simulation curve significantly differs from 

that of the EB approximation (or the asymptotic upper bound) 
even at z = 105. This implies that the tail probability is not 

close to its asymptote over the entire range of queue lengths 
shown in the figure. Even though we cannot calculate the 

exact asymptote given in (2) we know that it has to be below 
the asymptotic upper bound. Therefore, in this case, neither 
the EB approximation nor the asymptotic approximation can 

accurately estimate the tail probability even for very large 
values of 2. For example, for the queue length as large as 

20000, the EB approximation overestimates the exact tail 
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Fig. 5. The exact tail probability tid the asymptotic upper bound for 
two Gaussian input processes with CA(Z) = 25.641 x 0.95111, CA(Z) = 
2.5063 x 0.9951”1, and K = 5. 

probability by five orders of magnitude, while the asymptotic 
approximation underestimates the exact tail probability by at 
least five orders of magnitude. This also implies that even 
though the asymptotic upper bound provides a close upper 
bound to the asymptotic constant (this is found to be true in this 
case as well by examining larger values of x), since it is in a 
single exponential form, it may not provide a useful estimate of 

P(Q > x) for probabilities of interest. Further, even by using 
current multi-term exponential approximation techniques, it 
is difficult to accurately capture the tail probability for these 
cases [ 131. The slow convergence of the tail probability to its 
asymptote is often observed when the source is correlated at 
multiple time scales. Multiple time-scale correlation in general 
occurs when heterogeneous sources are multiplexed. Also 
certain traffic sources (for example, MPEG and JPEG encoded 
video) are themselves correlated at different time scales. Since 
high-speed networks are expected to support many different 
types of traffic, each of which has its own correlation pattern, 
the network traffic is very likely to be correlated at multiple 

time scales. Therefore, it is important to be able to analyze 
the queue behavior for such traffic. In Section IV, we will 
introduce our second asymptotic upper bound based on the 
maximum variance (~2) which will be useful even when the 

traffic is correlated at different time scales. 
Example 3: In this example, we show that the asymptotic 

constant and the statistical multiplexing gain could be very 
different even for stationary Gaussian input processes having 
the same autocovariance sum S. Consider two autocovariance 
functions, Cl(Z) = 25.641 x 0.951’1 and Cz(Z) = 2.5063 x 
0.9951’1, both of which sum up to S = 1000 and satisfy 
conditions (Cl)-(C3). Although these functions have the same 
values of S, as one can see from their decay rate (as I -+ 
cc), Cs (1) is spread over a wider range of I than Cr (1). 
Therefore, C&(Z) has a significantly larger value of D than 
Cl(Z) [19487.16 for Cl(Z) versus 199501.48 for C$(Z)]. 
Hence, as we discussed in the previous section, the asymptotic 
constant (for the same value of K) for the Gaussian input 
process with autocovariance C&(Z) is expected to be smaller 
than that for the Gaussian input process with autocovariance 
Cl(Z). In Fig. 5, we show the exact tail probability and the 
asymptotic upper bound for two Gaussian input processes 
with autocovariance Cr (1) and C’s (I) when IC = 5. The 

asymptotic constant is accurately estimated by its upper bound 
as in the previous examples, and the asymptotic constant 
for the autocovariance function C’s(Z) is smaller than that 
for Cl(Z) (by almost 4 orders of magnitude!). Further, note 
that the statistical multiplexing gain as a function of M 
(the system scale, i.e., the number of sources, when the 
capacity is also proportionally increased) increases as fast as 
exp[(2rc2D/S2) M]. Therefore, as the system scale increases, 
the (logarithmic) difference between the asymptotic constants 
for these two Gaussian input processes will also increase very 
fast. 

The above example can also be related to the effect of 
smoothing in the following way. The Gaussian process with 
autocovariance Ca(Z) can be thought of as the output of a 
linear smoothing system discussed in the previous section 

fed by the Gaussian process with autocovariance Cr (1) for 
appropriately chosen coefficients a, (m = 0, 1, . . .). There- 
fore, this example illustrates that smoothing certain types of 
network traffic which are correlated over a relatively short 
time scale, can significantly reduce network congestion. On 
the other hand, for some traffic types, such as JPEG-encoded 
video traffic, which are intrinsically correlated over very long 
time scales, smoothing over a small number of time frames 
will only marginally change the value of D and hence will 

not effectively reduce network congestion. For the case of 
real video traffic this type of effect has already been observed 

(e.g., [301). 

IV. MAXIMUM VARIANCE ASYMPTOTIC UPPER BOUND 

We begin this section by studying the importance of ti,, 
the time scale at which 02, 71 attains its maximum, and a well 
known lower bound which motivates the development of our 
second asymptotic upper bound. 

A. Dominant Eme-Scale tiz and a Known Lower Bound 

For a general (including non-Gaussian) stationary ergodic 
net input process TV, it can be shown that P(X, > x) + 0, 
as n -+ co. Therefore, there must exist a finite value of 72 = fiiL, 
at which the function P(X, > 3) attains its maximum. From 
(4) we get the following trivial lower bound: 

P(Q > x) > su; P(X, > z) = P(X;1, > x). (11) 
- 

At first glance, it appears that this simple lower bound is 
probably loose, since it is the probability that X, is greater 
than z at only one point n = tiz in the index set (0, 1, 2, . . .} 
made of infinite elements. However, in many studies, it has 
been found that P’(Q > x) = P((X) > x) is largely 
dominated by $(Xhs > x), the probability that X, exceeds 
II: where it is most likely to happen (i.e., at &). For instance, 

the lim inf-part of many asymptotic results have been derived 
using this lower bound (e.g., see [6], [151, [19], [25]). Further, 
in many cases, this lower bound has been found to be log- 

similar (‘2) to the tail probability as x (or M) goes to infinity. 
From (5), remember that for Gaussian processes, &, the 
dominant time scale is also the time at which a:,, attains its 

maximum value (~2). We will now introduce an asymptotic 
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result for Gaussian input processes that has been used in the 
derivation of Theorem 1, and further illustrates the importance 

of fi., in studying the asymptotic behavior of P( Q > z). 
Theorem 2: Under condition (Cl), for any cy > 1,3 

lirn wqz/av+] > x) = l 

T’cc P((X) > 2;) . 

Proof Refer to Theorem 3.1 in [ Ill. n 

From Proposition 2, note that for arbitrary a > 1, the 

interval [&/a, a&] (and hence fiz itself) will eventually 
be contained in [2/2n~, 2nz/~] as 5 increases. Therefore, 
Theorem 2 implies that for any Q > 1, 

zl@m fY(X)[.iLs~a,ajl,l > xl(X) > X) = 1. (12) 

In other words, as z increases, $(Q > z) = p((X) > :z) 
is essentially determined on a relatively small interval around 

the maximum variance time &. Also, (12) can be interpreted 
as a theoretical verification of the qualitative statement “rare 
events take place only in the most probable way” [15], [26]. 

Observe that P( (X)[fiz,(y, oiFLzl > z) with a = 1 corre- 
sponds to the lower bound, (for Gaussian input processes). 
This lower bound can be written in terms of P(z) := 

I/& J,” exp[-(y2/2)] dy (the tail function of the standard 
Gaussian distribution) as 

(13) 

Note that the lower bound is virtually equivalent to the ap- 
proximation for the tail probability suggested in [25], [27] (the 
approximation in [25], [27] corresponds to the middle term in 
(16) which is almost the same as the lower bound). Since (12) 
holds for any arbitrary Q greater than 1, it suggests that even if 

the lower bound q (dm) were to asymptotically diverge 
from the exact tail probability, it would do so very slowly. In 
fact, through extensive numerical studies [9], [ll], we have 
found that our lower bound accurately captures $(Q > z) 
even for small values of 2. For illustration, in Fig. 6, we 
consider the same multiple time-scale source of Example 2. 
Unlike the earlier asymptotic upper bound, the lower bound 
closely tracks the tail probability over the entire range of queue 

lengths shown. This is a very important feature of the lower 
bound which no single exponential approximation can possess 
(as was illustrated in Example 2). On the other hand, since 
for a very large class of Gaussian input processes, the tail 
probability is asymptotically exponential, our asymptotic upper 
bound is asymptotically tight in the sense that the (logarithmic) 
difference between the exact tail probability and the bound is 
bounded. In contrast, as we will show later, the lower bound 
does in fact asymptotically diverge from the exact tail (albeit 
very slowly). Hence, in the next section, we will provide 
another asymptotic upper bound that has the nice properties of 
both the lower bound, and the single-exponential asymptotic 

upper bound. 

3 Recently, this theorem has been generalized and significantly strengthened 
[lo]. However, since the improved version has been derived (as yet) for only 
continuous-time Gaussian processes, we do not provide it here. Moreover, the 
theorem in its current form has been used to derive all of the main results in 
this paper [ 111. 
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Fig. 6. The exact tail probability, the lower bound, and the MVA 
upper bound for a Gaussian input process with autocovariance function 
CA(l) = 104 x 0.9911i + 64.14 x 0.9991”1 + 31.86 x 0.99991”1 when 
ti = 33.33. 

B. Maximum Variance Asymptotic Upper Bound 

In this section, we will introduce an asymptotic upper 
bound that, like the lower bound, will be based on the 
maximum variance of a Gaussian process. Recall that the 
lower bound is a simple (standard Gaussian tail distribution) 
function of dm. From Theorem 2, and the fact that 
the lower bound matches the shape of the tail probability 
curve, we can infer that the term z/(gf ), as a function of 
2, contains key information about the behavior of the tail 
probability before it closely converges to its asymptote. Our 
idea is to find a function q(z) which resembles q(z) such that 

q( dm) is similar (-) to the asymptotic upper bound 

exp[-(an/S) (z + 60/S)]. In this way, q(dm) would 
asymptotically bound the exact tail probability from above, 
and also closely track the shape of the tail probability curve. 
In the following theorem, which is based on Theorem 1, we 
find such an asymptotic upper bound. 

Theorem 3: Under conditions (Cl) and (C2) 

exp[-(~/2(~2))1 N exp{-[(2K/S)(z + r;D/S)]}. 

Therefore, with an additional condition (C3), exp[-(z/2(0$))] 
asymptotically bounds $(Q > z). 

Proof Refer to [ll, Proposition 4.11. 
We call this new bound the maximum variance asymptotic 

(MVA) upper bound. Note that the MVA upper bound, as 
a function of z = dm, can be written as q(z) = 
exp[-(z2/2)]. Further, from a well-known bound for q(z) 

[ 171, i.e., 

1 -K2 

__1 

( 22 1 
Q(Z) 

&z-l ( 22 xz 
exp -5 5 exp -- 2 

> 
v’z > 0 .(14) 

we have 

2 

Q(z) N 
exp -T ( 1 42) 

fiz =zz (15) 

Note [from (14)] that the above similarity comes into effect 

very fast as z increases, and @I(z) z exp[-(z2/2)]/v!%z 
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even for fairly small values (>2) of Z. Therefore, the major dif- 
ference between 9 (2) and exp [ - ( z2 /2)] is the multiplicative 
term l/v?% z on the right-hand side of (15). This term is very 
slowly decreasing (as z increases) compared to the remaining 
part exp[- (z2/2)]. Therefore, the shape of the MVA upper 
bound curve should almost be the same as that of the lower 
bound. Also, in a sense this MVA upper bound is obtained 
by “lifting” the lower bound in such a way that it becomes 
a tight asymptotic upper bound. Hence, unlike the asymptotic 
upper bound in Section III, we expect that the MVA upper 
bound will bound the tail probability even for very small 
values of queue lengths as if it were a global upper bound. 
This prediction has been verified through simulations [ 111. In 
addition to the asymptotic tightness of the MVA upper bound, 
this is another property of the MVA upper bound which makes 
it more useful than the lower bound (since conservative, rather 
than optimistic, engineering is often desirable for network 
dimensioning and control). 

A direct result of Theorem 3 is that under conditions 
(Cl)-(C3): 

Q(G) - Ee-(-&) 
-/z.exp{-[$(x+y)]}. (16) 

Note that the second similarity is from Proposition 3 and 
Theorem 3. From (16), it is now clear that the lower bound 

is not asymptotically exponential, and hence cannot be sim- 
ilar to the exact tail probability. However, the leading term 
dw decreases slowly compared to the remaining term 

exp[-(2&/s) (X + &D/S)], as x -+ 00. For this reason, the 
divergence of the lower bound from the tail probability was 
nearly unrecognizable in all our numerical studies [9], [ 111. 
Perhaps the following observation will shed further light on 
this issue. 

The (logarithmic) difference 

between the MVA upper bound and the lower bound is actually 
a function of dm, that can be closely approximated 
by i (log 2~~/(0:)). Therefore, the difference between these 
bounds cannot be arbitrary but can be determined from either 
the MVA upper bound or the lower bound, as illustrated in 
Fig. 7. In the figure, the difference between the two bounds 
is only about an order of magnitude even when the MVA 
upper bound is as small as 10-20. Therefore, Fig. 6 suggests 
that the MVA upper bound and lower bound may provide 
a narrow envelope that bounds the exact tail probability in 
the typical range of interest. This is also suggested in Fig. 6 
earlier, where we plot the lower bound and the MVA upper 
bound for a Gaussian input process correlated at multiple 
time scales. Note that the lower bound and the MVA upper 
bound encapsulate the tail probability over the entire range of 
queue lengths. Since both bounds are based on the maximum 
variance, neither suffers from the slow convergence of the 
tail probability to its asymptote. Similar experimental studies 

0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 

Fig. 7. The difference log exp[-(x/2(a~))] - log Q(Jm) versus 
the MVA upper bound log t?xp[-(z/2(af))]. 

have demonstrated that: 1) the tail probability almost never 
escapes from the envelope constructed by the bounds, as long 
as conditions (Cl)-(C3) are satisfied and 2) that both the lower 
bound and the asymptotic upper bound can approximate tail 
probabilities as small as 10p2’ with errors less than or close 
to an order of magnitude. 

As a final remark of the section, it is interesting to note that 
the approximation for $ (Q > X) based on the large deviation 
M-asymptotics result by Botvich and Duffield [6], results in 
the same expression as the MVA upper bound, when applied 

to Gaussian fluid queues. Remember that the M-asymptotics 
result in [25] improved upon the result in [6] (from log- 
similarity to nearly similarity), and an approximation based on 
these stronger asymptotics was suggested (which is equivalent 
to the lower bound). This tells us that the approximation 
that satisfies only the weaker asymptotics in M-asymptotics 
[6], now satisfies the stronger asymptotics in x-asymptotics 
(and vice versa). As mentioned in Section I, this is because 
z-asymptotics and M-asymptotics consider asymptotic prop- 
erties of p(Q > x) in different limiting regimes. 

V. APPLICATIONS FOR GENERAL INPUT PROCESSES 

The numerical examples provided in Sections III and IV 
were for stationary Gaussian input processes. Further, both the 
asymptotic upper bounds described in the previous sections 
are valid under three conditions (Cl)-(C3). In this section, 
we investigate and discuss the accuracy of the lower bound 
and the MVA upper bound as an approximation for the tail 
probability when conditions (Cl)-(C3) are violated, and also 
when the aggregate input process is itself not Gaussian. 

A. General Gaussian Process 

The relation (11) is very generally true, and the lower bound 

Q(v’~) l’d 1 g IS va 1 as on as the input process is stationary 
Gaussian. On the other hand, both the asymptotic upper bounds 

in Sections III and IV, require conditions (Cl)-(C3). 
As mentioned in Section II, when condition (Cl) is vio- 

lated, the input process shows long-range dependence, and the 
corresponding tail probability may not even be asymptotically 
exponential [15]. However, as long as the input process is 
stationary and ergodic, the (finite) maximum variance (05) 
can be found and used to compute the lower bound and 
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Fig. 8. The exact tail probability, the lower bound, and the MVA upper 
bound for a Gaussian input process with autocovariance function CA(Z) = 
10 x 0.9111 cos 7r1/12 + 0.1 x 0.9911i and K = 1, 2. 

the MVA upper bound. In fact, in [26],4 an approximation 
for the tail probability, equivalent to the MVA upper bound, 
has been used for the special case of Fractal Brownian 
motion, and empirically found to be fairly accurate. Our own 
numerical investigations with long-range dependent sources 
[which violate both conditions (Cl) and (C2)] have resulted 
in the same conclusion. Further, in more recent work using 
extreme value theory, we have shown (a significantly stronger 
result than the Large Deviation results) that for a very large 
class of long-range dependent (and other) Gaussian processes, 
the MVA upper bound diverges very slowly (or not at all) 
from the exact tail [lo]. However, in this paper we will not 
explicitly focus on numerically studying long-range dependent 
processes, but instead will provide examples using actual 
traces of video traffic (which is often considered to exhibit 
self-similar behavior). 

Even though any nonnegative autocovariance function sat- 
isfies condition (C3), it should be noted that some types of 
network applications (such as MPEG video) generate network 
traffic in a fairly periodic fashion. This may result in a large 
enough negative component of the autocovariance function to 
violate condition (C3). Thus, in the following example, we 
investigate the performance of the lower bound and the MVA 
upper bound for input processes that do not satisfy condition 

(C3). 
Example 4: In Fig. 8, we show the exact tail probability, 

the lower bound, and the MVA upper bound for a Gaussian 
input process whose autocovariance function is given by 
CA(Z) = 10 x o.9111 cos (7r1/12) f0.1 x 0.99111. One can easily 

check that this autocovariance function does not satisfy condi- 

tion (C3). Hence, the MVA upper bound in this example may 
not be an asymptotic upper bound. However, note that both 
the lower bound and the MVA upper bound still accurately 
match the tail probability curve. In particular, note how both 
these approximations are able to track even minor transitions 
of the exact tail curve from concavity to convexity. This again 
emphasizes the importance of the maximum variance (0%). 

41n this paper, the tail probability was approximated by the lower bound 
given in (13), but the lower bound itself was evaluated through another 
approximation Q( 2) N exp[-(z’/2)]. As a consequence, the resultant 
estimate of P(& > X) actually corresponds to our MVA upper bound. 

Further, the MVA upper bound seems to be asymptotically 
close to the tail probability. This suggests that the bound 
exp[-(2r;‘D/S2)] to the asymptotic constant C in (2) may 
be used to accurately approximate it even when (C3) is 
violated, or when D has a negative value. This may be true in 
part because the expression exp[- (2K2D/S2)] has important 
properties that the asymptotic constant is known to have, such 
as: 1) if the input process is i.i.d. Gaussian, then D = 0 and 
the asymptotic upper bound simply becomes exp[-(2&z/S)] 
which is a well-know bound for the level crossing probability 
of a random walk with drift (see [29, p. 2361) and 2) also, 
D can have a negative value, only when the autocovariance 
function of the input process takes large negative values (i.e., 
when the input process is significantly periodic and less bursty 
than i.i.d. input processes). If D takes on a negative value, 
then exp[-(2rc2D/S2)] is greater than 1, and will increase 
exponentially with the size of the system (as explained in 
Section III). This indicates that for strongly periodic input 
processes, there will be no gain in statistical multiplexing the 
traffic; an observation which is well known for certain types 
of periodic input traffic [13], [31]. 

In the following section, we altogether weaken the Gaussian 
assumption on the input process, and use the lower and the 
MVA upper bounds to approximate the tail probability of fluid 
queues with a large number of non-Gaussian input processes. 

B. Applications to Voice and video TrafJic 

As mentioned in Section I, the huge capacity of high- 
speed network links motivates the Gaussian characterization 
of the aggregate traffic to a multiplexer. For example, FORE 
SYSTEMS has already built commercial ATM switches to 
support OC-12 (622.08 Mb/s) lines, and ATM networks with 
OC-24 (1.2 Gb/s) lines are already operational (at Cambridge 

University). Due to the huge capacity of a single ATM 
link, hundreds or even thousands of network applications are 
expected to share an ATM link; an OC-3 (155.52 Mb/s) line 

can accommodate over 6800 voice calls (assuming 16-Kb/s 
mean bit-rate) and an OC-12 line over 300 MPEG video calls 
(assuming 1.5-Mb/s mean bit-rate) both at a utilization of 
p := IE{Xa}/p = 0.8. These numbers seem to be large enough 
for the central limit theorem to be applied, and to characterize 
the aggregate input process by a Gaussian process. Through 
empirical evidence we have found that a few hundred sources 
are generally sufficient for the Gaussian approximation to be 

quite good (e.g., see [9]). 
In this section, we illustrate the effectiveness of the Gaussian 

characterization and the applicability of the lower and the 
MVA upper bounds for general traffic models. Our examples 
focus on voice and video traffic models. It should be empha- 
sized that since we have weakened the Gaussian assumption, 
both the lower and MVA upper bounds cannot strictly be 
thought of as bounds, but are approximations, even if the 
various conditions on the autocovariance function of the 
aggregate input process were satisfied. However, as will be 
illustrated by the numerical examples, as long as the Gaussian 
model is reasonably good, these analytical approximations 
do behave like real bounds over the tail probabilities of 
interest. 
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Fig. 9. The exact tail probability, the lower bound and the MVA upper bound 
for a multiplexer serving 42 500 and 42 800 voice traffic sources. The output 
link capacity is set to 622.08 Mb/s (OC-12 line). 

In the next few examples, we demonstrate the utility of 
the MVA upper bound and lower bound in analyzing the tail 
probability at a multiplexer for different cases. In each case, 
the sources are fed into a multiplexer being served by an OC-3 
(155.52 Mb/s) or OC-12 (622 Mb/s) line. To save space, we 
refer to our technical report [ 1 l] for the detailed specifications 
of the traffic source models that we use in this section. 

1) Voice Trafic Sources: 

Example 5: The typical behavior of efficiently encoded 
voice traffic is that it alternates between “active” and “inac- 
tive” states. Hence, Markov modulated on-off processes have 
frequently been used to model voice traffic (e.g., see [34]). 
For our experiment, we assume a 10 ms slot size and use a 
discrete-time on-off MMF process as a voice traffic source 
model obtained by discretizing the continuous-time MMF 
voice traffic source model used in [31]. In Fig. 9, we show 
the exact tail, the lower bound and the MVA upper bound for 
42 500 and 42 800 voice sources served by an OC-12 (622.08 
Mb/s) line. As one can see in the figure, the simulation results 
are accurately captured between the lower bound and the MVA 
upper bound. 

2) Video Trafic Sources: In general, the stochastic charac- 
teristics of a video traffic source changes with the type of 
video application which the source represents. For instance, a 
video traffic source that mainly transmits movies is likely to 
have different characteristics from that of a video source that 
transmits news programs. Further, the video coding schemes 
employed to reduce the required bandwidth can also signif- 
icantly affect the stochastic characteristics of the generated 
video traffic. Therefore, the detailed modeling of such diverse 
video traffic sources may neither be an easy nor an efficient 

way of characterizing these sources. From this viewpoint, 
traffic characterization based only on the first two moments 
(mean and autocovariance or mean and IDC) has advantages 
over the characterization based on explicit stochastic modeling, 
since they can be directly measured from the source. In 
the previous example involving a non-Gaussian voice traffic 
source model, the first two moments of the traffic sources 
have been analytically obtained from the source model. In the 
next example, we will show that from the measured mean 
and autocovariance of a real video trace, the queue length 
distribution can also be accurately computed. 

*-a--,_ 
----____ 

- - -Lower Bound 
1x10-51 ” 1 ” 1 ""I 

0 2000 4000 6000 8000 10000 
Queue Length: x 

Fig. 10. The exact tail probability, the lower bound and the MVA upper 
bound for a multiplexer serving 250 and 260 real MPEG sources. The output 
link capacity is set to 155.52 Mb/s (OC-3 line). 

3) Example 6: In this example, we use real MPEG video 
(frame-size) traces generated by Rose [28]. To simulate 
MPEG-encoded video traffic, 16 different MPEG coded traces 
of 40000 frames are concatenated into one trace of 640000 
frames, and the frame sizes are read out sequentially from 
this trace starting at a random position in the trace. Since all 
the concatenated frame-size traces are from video sequences 
captured at 25 frames/s, the total length (640000 frames) of 
the concatenated frame-size trace corresponds to more than 
7 h of play time. Since the trace is very long, by simply 
assigning a random starting position to each simulated MPEG 
video traffic source, we generate a large number of MPEG 
video traffic sources. Since we assume a IO-ms slot size in 
this example, each frame size should be read out over 4 slots. 
We assume that each frame is transmitted uniformly over a 
frame period (40 ms or equivalently four slots). In Fig. 10, 
the lower bound and the MVA upper bound for 250 and 260 
MPEG video sources served at 3667 cells/slot (OC-3 line) 
are compared to the exact tail probabilities. The mean and 
autocovariance function of the simulated MPEG source are 
measured directly from the concatenated frame-size trace, 
and used for our approximation technique. Since we are now 
using real frame-size traces to simulate MPEG encoded video 
sources, the importance sampling technique cannot be used 
for this experiment and, hence, the simulation results show 
larger confidence intervals. Nevertheless, as one can see in 
the figure, both the lower bound and the MVA upper bound 
again seem to encapsulate the exact tail probability within an 
order of magnitude. 

4) Example 7: In this example, we use a frame-size trace 
of the JPEG-encoded movie “Star Wars” to simulate real 
video sources. Also, we design a simple JPEG video traffic 
source model based on the mean and autocovariance function 
measured directly from the frame-size trace. We then use the 
model to obtain our bounds and another set of simulation 
results. Many types of video traffic have been found to be 
heavily correlated over multiple time scales or even thought 
to exhibit self-similar behavior over a certain time-period 
(e.g., see [5]). To capture this multiple time-scale correlation 
of video traffic, we model the JPEG video traffic source 
as the superposition of 3 two-state MMF processes with 
very different mean state sojourn times. More precisely, this 
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Fig. 11. Simulation results, the lower bound, and the MVA upper bound for 
a multiplexer serving 79 and 81 JPEG-encoded movie “Star Wars” through 
an K-12 output link. 

source model is obtained by matching the autocovariance 
function measured from the frame-size trace using the least- 
square method. The main purpose of designing a model for 
JPEG traffic is to demonstrate that the queuing behavior 
of a traffic source can be captured by a relatively simple 
stochastic model of the traffic source, especially when the 
number of multiplexed traffic sources is large. In Fig. 11, we 
show simulation results, the lower bound, and the MVA upper 
bound for a multiplexer serving 79 and 8 1 JPEG traffic sources 
through an OC-12 line. The time slot size is set to 8.333 ms. 
Since the frame-size trace is from video sequences captured 
at 30 frames/s, each frame-size is read out over four slots. As 
in the previous example, we assume that a frame is uniformly 
transmitted over four slots. As one can see in the figure, the 
two simulation results (one using the real frame-size trace and 
the other using the model) are encompassed within the lower 
and MVA upper bounds. 

5) Admission Control-Voice and video: An important ap- 
plication of our analytical results is for admission control. We 
assume that a new call is admitted to an ATM multiplexer with 

buffer size B if the resulting tail probability $(Q > z = B) 
is less than some cp. Hence, cp corresponds to the maximum 
tolerable tail probability for a call to be admitted. 

6) Example 8: In Fig. 12, we show the admissible region 
for voice and JPEG-encoded video calls computed by sim- 
ulation, and via our maximum variance based bounds. The 
maximum tolerable tail probability cp and the buffer size B are 
set to lop6 and 20000 cells, respectively. Again, we assume 
that an OC-12 line serves the multiplexer. Since the required 
constraint cp is quite small, we use simple stochastic models 
for both voice and JPEG video traffic sources in order to 
employ the importance sampling technique. While we use the 
same traffic source model that is used in Example 5, we use 
a JPEG video traffic model that is somewhat different from 
the model used in Example 7 (in order to simulate smaller tail 
probabilities than given in Fig. 11). It is interesting to note 
that in Fig. 12, the admissible region computed by simulation, 
the lower bound, and the MVA upper bound are so close that 
it is almost difficult to distinguish their boundaries. In fact, 
the lower bound overestimates and the MVA upper bound 
underestimates the maximum admissible number of calls by 
less than 1% in terms of utilization. 
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Fig. 12. Admissible combinations of voice and JPEG-encoded video calls 
for an OC-12 link with 20 000 cell buffers, computed by simulation, the lower 
bound, and the MVA upper bound. The maximum tolerable tail probability 
(G) is set to lO_“. 

VI. CONCLUSION 

In this paper, we provide two asymptotic upper bounds to 
analyze the tail of the steady-state distribution $(Q > X) 
at a high-speed multiplexer. We model the multiplexer as an 
infinite buffer fluid queue and characterize the aggregate input 
process as a Gaussian stochastic process. This enables us to 
avoid the classical state explosion problem that occurs when 

many traffic sources are multiplexed. 
For a Gaussian input process satisfying fairly general con- 

ditions, we provide an exponential asymptotic upper bound 
(Theorem 1) exp[-(Z&/S) (X + &D/S)] to the tail proba- 
bility P(Q > XZ) using key results in extreme value theory. 

This asymptotic upper bound in turn results in a theoretical 
contribution to the extreme value literature. The asymptotic 
upper bound also results in an upper bound to the asymptotic 

constant. 
We develop another result (Theorem 2) which emphasizes 

the importance of the maximum variance (gz), and pro- 
vides theoretical grounding for a well-known lower bound. 

Building upon our exponential asymptotic upper bound and 
Theorem 2, we also develop an asymptotic (MVA) upper 
bound exp[-(z/a(az))] (Theorem 3), based on the maximum 
variance ((~2). Through an extensive and systematic numerical 
study, we find that both the lower bound and the MVA upper 
bound accurately approximate the tail probability as long 
as the input process can be effectively characterized by a 
Gaussian process. We also illustrate that our analysis of the 
tail probabilities results in very efficient admission control. 

In this paper, we have provided results only for the discrete- 
time fluid queues in which the fluid arrival and service 
take place only at discrete times. Equivalent results for the 
continuous-time fluid queue have already been derived and are 
available in [ 121. We find that Gaussian modeling of the input 
traffic provides significant simplicity and has great potential, 
and are currently investigating ways to extend the analysis to 
a network end-to-end. 
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