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Abstract--In this paper, we propose an approximation for the 
loss probability, PL (x) ,  in a finite buffer system with buffer size 
x. Our study is motivated by the case of a high-speed network 
where a large number of sources are expected to be multiplexed. 
Hence, by appealing 1:o Central Limit Theorem type of arguments, 
we model the input process as a general Gaussian process. Our re- 
sult is obtained by making a simple mapping from the tail proba- 
bility in an infinite buffer system to the loss probability in a finite 
buffer system. We also provide a strong asymptotic relationship be- 
tween our approximation and the actual loss probability for a fairly 
large class of Gaussian input processes. We derive some interesting 
asymptotic properties of our approximation and illustrate its effec- 
tiveness via a detailed numerical investigation. 

Index Terms--Asymptotic relationship, loss probability, queue 
length distribution, maximum variance asymptotic. 

I. INTRODUCTION 

L OSS PROBABILITY is an important quality of service 
(QoS) measure in communication networks. While  the 

overflow probabiiity, or the tail of  the queue length distribution, 
in an infinite buffer system has been extensively studied [1 ]-[7],  
there have been relat!vely few studies on the loss probability in 
finite buffer systems [8]-[11]. 

In this paper, we propose a simple method to estimate the 
loss probabili ty [ E  (.v) in a finite buffer system from the tail of  
the queue length distribution (or tail probability) P{Q > x} 
of  an infinite buffer system. We estimate P r ( x )  by making a 
simple mapping from F { Q  > x}. Hence, we consider both a 
finite buffer queueing system and an infinite buffer queueing 
system. We model both systems by a discrete-time fluid queue 
consisting of a server with constant rate c and a fluid input An. 
Both queues are fed with the same input. Let Qn and Qn denote 
the queue length in the finite queue and in the infinite queue at 
time n, respectively. We assume that An is stationary and er- 
godic and that the system is stable, i.e., K{An} < c. Under this 
assumption, it has been shown that Q,~ converges to a stationary 
and ergodic process [12]. It has also been shown that Qn con- 
verges to a stationary process when the system is a GI/GI/m/x 
type of  queue [13], [14], and when the system is a G/M/m/x type 
of  queue [15]. Sinze proving the convergence of  Qn is not the 
focus of  this paper, and moreover, practical measurements of  
PL (x) and F { Q  > x' .  are based on "time averaging'^' assuming 
ergodicity [see (1) a rd  (2)], we assume that both Qn and Q ,  

started at n = -c<~, and that they are ergodic and stationary.' 
The time index n is often omitted to represent the stationary dis- 
tribution, i.e., P{Q > x} = P{Q,~ > x} and F{A} = F{An}. 

The loss probability, PL (x),  for a buffer size x is defined as 
the long-term ratio of  the amount of  fluid lost to the amount of  
fluid fed. It is expressed as 

N ÷ 

PL(X) = l im k=l 
N--.oc N 

k=l 

= (1) 
E{An} 

where (x) + denotes max{a ,  0}, and where the second equality 
is due to the ergodicity assumption. The tail probabili ty (or tail 
of  the queue length distribution, also sometimes called the over- 
flow probability) P{Q > x} is defined as the amount of  time 
the fluid in the infinite buffer system spends above level x di- 
vided by the total time. It is expressed as 

N 
P { Q > x } =  lira 1 N--,~ --N E I(Qk > x) (2) 

k=l 

where I(A) = 1 i f A  is true; I(A) = 0 otherwise. From now on, 
when we write "loss probabil i ty" it will only be in the context 
of  a finite buffer system, and when we write "tail probabili ty" it 
will only be in the context of  an infinite buffer system. Note that 
since P{Q > x} is averaged by time, a n d / ° i ( a  ) is averaged by 
the input, in general there is no relationship between these two 
quantities. However, PL (x) is often approximated as 

PL(X) ,-~ P{Q > x}. (3) 

This approximation usually provides an upper bound (some- 
times a very poor bound) to the loss probability, although in 
general this cannot be proven, and in fact counterexamples can 
easily be constructed. What  we have learned from simulation 
studies is that the curves PL(X) versus x and P{Q > x} versus 
x exhibit a similar shape (e.g., see Fig. 1), which motivates this 
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Fig. 1. Comparison of loss and tail curves in a 45-Mb/s link where 2900 voice 
sources or 69 MPEG video sources are multiplexed: Loss and tail curves seem 
to have the same shape. 

work. Further, it has been shown in [16] that for M/Subexpo- 
nential/1 and GI/Regularly-varying/1 with independent identi- 
cally distributed (i.i.d.) interarrival times and i.i.d, service times, 
P{Q > x}/PL(X) converges to a constant, as x ~ c~. 

Hence, it seems reasonable that if we have a good estimate 
of the tail probability P{Q > x} and a way to calculate Pr(a), 
the loss probability for some buffer size a, then we can calculate 
the loss probability PL(X) as 

P c ( x )  - PL(a)  p{Q > x}. (4) 
P{Q > a} 

In particular, we will choose a = 0 because this allows us to 
compute the loss probability [Pr (0) ]  quite easily. This is the 
basic idea that drives this paper. In addition to developing a 
methodology to calculate the loss probability, we will also show 
that asymptotically the loss probability and the tail probability 
curves are quite similar, and if they diverge, they do so slowly, 
which is an interesting result by itself. 

For our study in this paper, we focus on the case when the 
aggregate traffic can be characterized by a stationary Gaussian 
process. Recently, Gaussian processes have received significant 
attention as good models for the arrival process to a high-speed 
multiplexer [3], [18]-[23]. There are many reasons for this. Due 
to the huge link capacity of  high-speed networks, hundreds or 
even thousands of network applications are likely to be served 
by a network multiplexer. Also, when a large number of  sources 
are multiplexed, characterizing the input process with tradi- 
tional Markovian models results in computational infeasibility 
problems [24] that are not encountered for Gaussian processes. 
Finally, recent network traffic studies suggest that certain types 
of  network traffic may exhibit self-similar or more generally 
asymptotic self-similar type of  long-range dependence [25], 
[26], and various Gaussian processes can be used to model 
this type of  behavior. Hence, our motivation to study the case 
when the input process A,~ can be characterized by a Gaussian 
process. 

This paper is organized as follows. In Section II, we review 
the maximum variance asymptotic (MVA) results for the infi- 
nite buffer queue, and then demonstrate how to obtain similar 
results for the loss probability. Then, we compare our approach 
to an approach based on the many-sources asymptotics. In Sec- 
tion III, we validate our result with several numerical examples, 
including those for self-similar/long-range dependent traffic. In 
Section IV, we find the asymptotic relationship between the loss 
probability and our approximation. In Section V, we describe the 
applicability of our approximation for on-line traffic measure- 
ments. We finally state the conclusions in Section VI. 

II. MAXIMUM VARIANCE ASYMPTOTIC (MVA) 
APPROXIMATION FOR LOSS 

Remember that the first component in our development of  an 
approximation for Pc(x) is to find a good estimate of P{Q > 
x}. Fortunately, this part of the problem has already been solved 
in [20], [21], [27]. By developing results based on Extreme 
Value Theory, it has been found that the MVA approach (first 
named in [20]) provides an accurate estimate of  the tail proba- 
bility. We briefly review it here. As mentioned before, we focus 
on the case when the aggregate traffic can be characterized by 
a Gaussian process, hence A,~, the input process to the queue is 
Gaussian. Let A :=  K{A,} and ~r 2 :=  Var{A,~}. 

The queue length Qn (or workload) at time n in the infinite 
buffer system is expressed by Lindley's equation: 

Qn = (Qn-1  + - c) +. (5) 

We define a stochastic process Xn as 

n 

Xn := E Ak - cn. (6) 
k = l  

We assume that A,~ is stationary and ergodic and that the system 
is stable, i.e., ~:{A~} < c. Then, it has been shown that the 
distribution of  Qn converges to the steady state distribution as 
n ~ c~ and that the supremum distribution of  X,~ is the steady 
state queue distribution [12]: 

P{Q > x} =F ~supXn > x } .  (7) 
t . n > _ l  

Let CA (l) be the autocovariance function of A,~. Then, the vari- 
ance of  X~ can be expressed in terms of  CA (l). For each x > O, 
define the normalized variance as,2 n of  X~ as 

n - - 1  

nc (0) + 2 - Oc (o 
2 Var{Xn} / = 1  

n : =  ( x  - E { x , , } ) 2  = ( 5  + 

(8 )  
where n :=  c - A. Let m~ be the reciprocal of  the maximum of 
ax,2 n for given 5, i.e., 

1 (x + ~n) 2 
m~ . -  - min (9) 

maxn_>l o'~,~ n > l  Var{Xn} 

and we define n~ to be the time n at which the normalized vari- 
ance (Var{Xn}/(x + nn) 2) is maximized. Although the esti- 
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mate e-(m~/2) called the MVA approximation has been theoret- 
ically shown to be only an asymptotic upper bound, simulation 
studies in different papers have shown that it is an accurate ap- 
proximation even for small values of z [27], [18], [20], [28]. 

Now, for some a, we need to evaluate the ratio PL(a) /P{Q > 
a} given in (4). As mentioned earlier, it is easy to find PL(a) for 
a = 0, hence what we need to do is to first estimate P{Q > 0} 
from the MVA result. For a given z both nx and rn= in the MVA 
approximation cannot generally be obtained in a simple closed 
form, hence, search algorithms 2 are likely to be used to evaluate 
them, but n~ may not be unique especially for a small value of 
x. However, when ~ = 0, we can obtain them right away, as 
demonstrated in the following proposition. 

Proposition 1." Let n~ be the value o f n  at which cr 2, n attains 
its maximum (a~ I. "['hen, no = 1 and 

t~ 2 
= (10)  

Proof of Propo.,'ition 1: To prove the proposition, it suf- 
fices to show that 

SUF 0" 2 = cr 2 _ CA(0) (1l) 
n > ]  O, ~. 0, 1 /~2 

Since CA(0) _> Cx(n),  for all n > 1 

[ 1 _ 1 nC (O) + 2 - nOCa(, ) 0, n 

I [ .,,-i 
-< L Ca(°) + 2 Z (n - 

n z = l  

r?C'a(o) 

= , ,  (12) 

Since a2 = (Ca, 0) /he) ,  we have (11). II 0,1 
Now, we show how to calculate Pc(O). Since An is assumed 

Gaussian, the mean arid the variance provide sufficient informa- 
tion to calculate PL (0), i.e. 

& ( 0 )  = Et:(:~n - c)+} 
E{an} 

/7 _ 1 (r - c)e -(('--2)~/2~) dr (13) 

where ~ :=  V{A,, t. ,,is long as the number of input sources is 
large enough for the aggregate traffic to be characterized as a 
Gaussian process, (12,) gives an accurate estimate (exact for a 
Gaussian input) and is often called the Gaussian approximation 
[29]. Note that Ca i0) = ~r 2 and n = c - ~ in (10). From (4), 
(10), and (13), we have 

igL(0) e - ( ~ / 2 )  = ae -(m~/2) (14) 
PL(X) ~' e_.(m0/2 ) 

2Simple local search algorithms starting at (/3x/(2 -/3)n) are good enough 
to find n, within a small n amber of iterations. 

where 

-  zv%- e × p  e × p  

We call this above approximation the MVA approximation for 
loss. The MVA approach is based on the large buffer asymptotics 
and it also applies in the context of  the many-sources asymp- 
totics [20], [28]. We next compare this approach with an ap- 
proximation based on the many-sources asymptotics. 

The many-sources asymptotics have been widely studied 
and can be found in many papers on queueing analysis using 
large-deviation technique [5], [30]-[32]. Most of  the papers 
deal with the tail distribution rather than the loss probability. In 
[9], the authors developed the first result on the loss probability 
based on the many-sources asymptotics. We call this the 
Likhanov-Mazumdar (L--M) approximation for loss. Since the 
L - M  result was obtained for a fairly general class of  arrival 
processes and is much stronger than typical large-deviation 
types of  results, we feel that it is important to compare our 
result with the L - M  result. 

Consider N i.i.d, sources, each with input rate A~ ), 
n E {0, 1, 2, . . .} ,  i E {1, 2, . . . ,  N}.  It is assumed that the 
moment generating function of A (1) exists, and that the input 
rate A~ i) is bounded. The L - M  approximation has the following 
form: 3 

e--NIa(C,B) 
PL(NB) ~ 0,~A12- ~ N  3 (15) 

and is theoretically justified by 

e-NIa(C,B) 
PL(NB) = 0 ¢ ) ~ 1 ~  ( 1 2 -  a + O(1/N)) (16) 

where N is the number of  sources, N C  is the link capacity, N/3 

is the buffer size, ~1 = E{A!~)}, Cn(0) = E { e ° ~ ' = l a ~ l ) } ,  

On is a value of 0 such that 

_ c n  + / 3 ,  
C n ( 0 )  

2 _ ~n~ nj (Cn+/3)2 ,  
Cn(On) 

1,~(C, /3) = (Cn + ~3)On - log Cn(0n) 

and ¢~ is a value of  n that maximizes I,~(C, B),  for a given C 
and/3.  This approximation (15) becomes exact as N -+ c~. 

Consider the numerical complexity of  (16). Suppose that we 
calculate (16) for given N, C , /3 ,  and A!~ ). In general, since 
there are no closed-form solutions for 0n and A, we have to 
find them numerically. Two iteration loops are nested. The inner 
loop iterates over 0 to find 0n for given n, and the outer loop 
iterates over n to find A. Hence, it can take a long time to find 
a solution of  (16) by numerical iteration. However, the MVA 
approximation requires only a one-dimensional iteration over n 
to find n:~ at which rax is minimized. 

3This expression is just a rewriting of equation (2.6) in [9], 
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There is another problem in applying the L - M  approximation 
for control based on on-line measurements. When the distribu- 
tion of a source is not known beforehand, in the L - M  approach 
the moment generating function of a source should be evaluated 
for the two-dimensional arguments (0, n), whereas only the first 
two moments are evaluated for the one argument, n, in the MVA 
approach (see Section V). 

Note that one could avoid the above problems by making 
a Gaussian approximation on the aggregate source first, and 
then using the L - M  approximation given by (16). Specifically, 
if we assume that the input process is Gaussian, we have a 
closed-form solution for 0,~, i.e., as ,;bn (0) = e Om(n)+(1/2)O2v(n) 
with re(n) = K {Ek=ln A~I) } and v(n) = Vai .{E ~=l A~I)}, we 
have 

C n  + B - re(n) 
0n = (]7)  v(n) 

Hence, for given C and B,  both L,,(C, B) and cr 2 (the nor- N B ,  n 
malized variance of Xn)  are expressed in terms of  n, re(n),  and 
v(n), we can avoid the two-dimensional evaluation of  the mo- 
ment generating function. 

The only problem is that the theoretical result that says that 
the L - M  approximation in (116) becomes exact as the number 
of  sources N becomes large is not proven for unbounded (e.g., 
Gaussian) inputs. Still, since making this approximation reduces 
the complexity of the search space, it would be instructive to 
also investigate the performance of  such an approximation. In 
Section Ill, we will numerically investigate our MVA approx- 
imation for loss, the L - M  approximation, and some other ap- 
proximations developed in the literature. 

I I I .  N U M E R I C A L  VALIDATION OF THE MVA APPROXIMATION 

FOR LOSS 

In this section, we investigate the accuracy of the proposed 
method by comparing our technique with simulation results. In 
all our simulations, we have obtained 95% confidence intervals. 
However, to not clutter the figures, the error bars are only shown 
in the figures when they are larger than -t-20% of the estimated 
probability. To improve the reliability of  the simulation, we use 
importance-sampling [33] whenever applicable. 4 We have at- 
tempted to systematically study the MVA approximation for 
various representative scenarios. For example, we begin our in- 
vestigation with Gaussian input processes. Here, we only check 
the performance of our approximation (we do not compare with 
other approximations in the literature), since other approxima- 
tions are not developed for Gaussian inputs. We then consider 
non-Gaussian input sources and compare our MVA approxima- 
tion for loss with other approximations in the literature. Specif- 
ically, we consider Markoff Modulated Fluid (MMF) sources 
which have been used as representative of voice traffic in many 
different papers (e.g., [34], [35]) and also consider JPEG and 
MPEG video sources that have been used in other papers in the 
literature (e.g., [20], [36]). 

4For interested readers, the software used for the analysis and simulation will  
be available upon request. 
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Fig. 2. Loss probability for a Gaussian input process with autocovariance 
function Cx(1) = 258 x 0.9 Iq (mean rate: A = 1000; service rate-mean 
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Fig. 3. Loss probability for a Gaussian input process with autocovariance 
function C~,~l) = 49.80 x 0.9 Itl + 16.18 x 0.99 Iq + 57.96 x 0 .999 Iq 
(mean rate: .~ = 3000;  service ra te-mean rate: n = 10, 20, 30). 

A. Gaussian Processes 

We begin by considering the simple case when the input is 
a Gaussian autoregressive (AR) process with autocovariance 
CA(l) = 258 x 0.91q (note that AR processes have been used to 
model variable bit-rate (VBR) video [22]). In Fig. 2, one can see 
that the simulation and MVA loss result in a close match over 
the entire range of  buffers tested. 

The next example, in Fig. 3, covers a scenario of multiple- 
timescale correlated traffic. Note that multiple-timescale cor- 
related traffic is expected to be generated in high-speed net- 
works because of  the superposition of different types of sources 
[37]. In this case, the autocovariance function of  the Gaussian 
input process is the weighted sum of three different powers, i.e., 
Ca(1) = 49.80 x 0.9 Itl + 16,18 x 0.99 Iq +57 .96  x 0.999 I/I. One 
can see from Fig. 3 that because of the multiple-timescale cor- 
related nature of  the input, the loss probability converges to its 
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Fig. 4. Loss probabdity for a fractional Brownian motion process (Hurst 
parameter: H ---- 0.7, , 0.8; mean rate: A = 300;  variance: a ~ = 100; service 
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asymptotic decay rat~ only at large buffer sizes. This observa- 
tion is consistent with observations made on the tail probability 
when fed with multiple-timescale correlated traffic [20]. Again, 
it can be seen that the analytical result tracks the simulation re- 
sults quite closely. 

The next example deals with a well-known input process, the 
fractional Brownian motion process, which is the classical ex- 
ample of  a self-similar process [23]. s The results are shown in 
Figs. 4 and 5, demonstrating the accuracy of MVA loss, even 
for self-similar sources. Due to the difficulty in applying im- 
portance-sampling techniques to obtain loss probabilities for 
self-similar traffic, in Figs. 4 and 5, we show probabilities only 
as low as  10  - 6 .  In F:ig. 4, the input traffic is characterized by 
a single Hurst parameter. However, even if the traffic itself is 
long-range dependent, due to the heterogeneity of  sources that 
high-speed networks will carry, we expect that it will be difficult 
to characterize the traffic by simply one parameter, such as the 
Hurst parameter. Hence, we also run an experiment for a more 
realistic scenario, i.e., the input process being the superposition 
of fractional Bro~nizJa motion processes with different Hurst 
parameters. The numerical result is shown in Fig. 5. One can 
see from Figs. 4 and 5 that MVA loss works well for self-sim- 
ilar sources. 

B. Non-Gaussian Processes 

In this section, we will compare the performance our 
MVA-loss approximation with simulations and also with other 
schemes in the literature. We call the Likhanov-Mazumdar  
technique described earlier "L-M,"  or "L-M:Gaussian" when 
further approximated by a Gaussian process, the Chernoff 

5For computer simulations, since continuous-time Gaussian processes cannot 
be simulated, one typically uses a discrete-time version. In the case of fractional 
Brownian motion, the discrete-time version is called fractional Ganssian noise 
and has autocovariance funztion given by 

c~(0 = -g(ll - + + - 21~1") 

where H E [0.5, 1) is the Hurst parameter. 
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Fig. 5. Loss probability for the superpostition of two fractional Brownian 
motion processes. (Hurst parameters: H1 = 0.6, H2 = 0.8; mean rates: 
A1 = 150, A2 = 150, variances: ~r~ = 50, a~ = 50, service rate-mean rate: 

= 5, 10, 15). 

dominated eigenvalue technique in [38] "Chernoff-DE," the 
average/peak rate method in [39] "Ave/Peak," the analytical 
technique developed in [24] "Hybrid," and the famous effective 
bandwidth scheme "Effective BW" [40]. 

We now consider the practically important case of  mul- 
tiplexed voice sources• The input MMF process, which has 
widely been used to model voice traffic source [34], [35], has 
the following state transition matrix and rate vector: 

State transition matrix: [ 0 0 9 : : :  0.0167] 
• 0.975 J 

[ 0 cells/slot ] 
Input rate vector: [ 0.85 cells/slotJ " 

These values are chosen for a 45-Mb/s ATM link with 10-ms 
time slot and 53-byte ATM cell. In this example, we assume that 
2900 voice sources are multiplexed on a 45-Mb/s ATM link with 
10-ms time slot and 53-byte ATM cell. As shown in Fig. 6, the 
MVA loss obtains the loss probability calculations accurately 
and better than the other techniques. 

We next investigate the accuracy of our approximation when 
the sources to the queue are generated from actual MPEG video 
traces. The trace used to generate this simulation result comes 
from an MPEG-encoded action movie (007 series) which has 
been found to exhibit long-range dependence [36]. In Fig. 7, 
240 MPEG sources are multiplexed and served at 3667 cells/slot 
(OC-3 line), where we assume 25 frames/s and a 10-ms slot 
size. The loss probability versus buffer size result in this case 
is shown in Fig. 7. Again, it can be seen that the MVA-loss 
approximation tracks the simulation results quite closely. 

C. Application to Admission Control 

The final numerical result is to demonstrate the utility of 
MVA loss as a tool for admission control. We assume that a 
new flow is admitted to a multiplexer with buffer size x if the 
loss probability is less than the maximum tolerable loss proba- 
bility e. 
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1 0  - 6  ,. , , 
0 0 5 1 1.5 2 

Buffer Size[cell] x 104 

Fig. 7. Loss probability for 240 real MPEG traces from a 007 movie. [Mean 
rate (total): A = 3469.45 cells/slot; service rate-mean rate: ~ = 197.55 
cells/slot.] 

In this example,  we consider  mult iplexed voice sources on a 

45-Mb/s  l ink [Fig. 8(a)] or mult iplexed video sources [Fig. 8(b)] 
for an admission-control  type of  application. The QoS param- 
eter c is set to 10 -6 .  For  each voice source in Fig. 8(a), we use 
the same M M F  ON--OFF process that was used for Fig. 6. For  
each video source, we use the same M P E G  trace that was used 
in Fig. 7 (with start t imes randomly  shifted). Then,  the admis-  
sion policy using MVA loss is the following. Let ~ and v(n) be 
the mean  and the variance funct ion of  a single source, i.e., let 

:=  E{A!~ )} and v(n) : =  V a r { ~ =  1 A~I)}. W h e n  ( N  - 1) 
sources are currently serviced, a new source is admit ted if 

Nv(n) 
- < 2 1 o g e  (18) 2 l o g a  sup~ ((c_N~)n+x)2 

where c~ is defined as in (14). In Fig. 8(a) and (b), we provide 
a compar ison of  admissible  regions using different methods.  It 
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0.9] ~ . . . . . . . . . . .  : . 7 7 7 7 7 7 7 . 7 . 7 . -  7.77772.777.- 7 - ' 7  ........ 
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0.65 , "  / ...... L-M 
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0.6 , /  / ...... Ave/Peak 
0.55 / / "  [ . . . .  Effective BW 
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/ i i t i 
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- e - MVA-Loss 

0.3 ...... k-M:Gaussian 
~ Chernoff DE 

0.2 Ave/Peak 
0.1 -~ Effective BW 

' ' ' 0' 0'0 % 1000 2000 3000 4 00 5 0 
Buffer Size (cell) 

(b) 

Fig. 8. Admissible region for a 45-Mb/s link where voice/video sources are 
multiplexed. (Link capacity: c = 45 Mb/s = 1046.7 cells/slot; QoS parameter: 
e = 10-6.) 

can be seen that MVA-loss  curve most  closely approximates  the 
s imulat ion curve in both figures. In  Fig. 8(a), the L - M  approx- 

imat ion performs as well, and the Chernoff  DE approximat ion 
does only  slightly worse. In  Fig. 8(b), however, the Chernoff  DE 
approximat ion in this case is found to be quite conservative.  This 
is because for sources that are correlated at mul t iple  t imescales 
[such as the M P E G  video sources in Fig. 8(b) shown here], 
the loss probabil i ty  does not  converge to its asymptotic decay 
rate quickly (even if there exists an asymptotic  decay rate), and 
hence approximations such as the Chernoff  DE scheme (or the 
hybrid scheme shown earlier) perform quite poorly. 

Admiss ion  control by MVA loss can be extended to a case 
where heterogeneous flows are mult iplexed.  The l ink capacity 
is 622.02 Mb/s  (OC-12 line), the buffer size z is fixed to 
20 000 cells, and the QoS parameter  e is 10 -6 .  In  this system, 
the input  sources are of  two types, JPEG video and voice. 
As a video source, we use a generic model  that captures the 
mult iple- t imescale  correlation observed in JPEG video traces. 
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4.5 x 104. 
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Fig. 9. Admissible region for an OC-12 line where voice and JPEG video 
sources are multiplexed. (Link capacity: c = 622.02 Mb/s = 14467.7 
cells/slot; buffer size: .9 =: 2000 cells; QoS parameter: e = 10-C) 

It is a superposition of an i.i.d. Gaussian process and three 
two-state MMF processes: 

0.99 
0.01 

State transition matrices: 
0.011 ['0.999 0.001] [0.9999 0.0001] 
0.99J [.0.001 0.999 L0.0001 0.9999J 

Input rate vectors [cells/slot]: 

Mean of i.i.d. Gaussian: 82.42 

Variance of i.i.d. Gaussian: 8.6336. 

Then, the admission policy is the following. Let A1 and V 1 ( n )  

be the mean and the variance function of a single voice source. 
Let A2 and v2(n ) be the mean and the variance function of a 
single video source. When (N1 - 1) voice and N2 video flows 
are currently serviced, a new voice flow is admitted if 

N1 Vl ( n )  AV N 2 v 2 ( n )  

21oga - sup [ ' (c--NIAx-N2A2) n + x  "2) < 2logo. (19) 
n , 

The boundary of the admissible region is obtained by finding 
maximal N1 satisfying (19) for each N2. 

As one can see in Fig. 9, the admissible region estimated by 
simulations and via MVA loss is virtually indistinguishable. In 
fact, the difference between the two curves is less than 1% in 
terms of utilization. 

IV. ASYMPTOTIC PROPERTIES OF THE MVA APPROXIMATION 

FOR LOSS 

We now find a strong asymptotic relationship between the 
loss probability and the tail probability. More specifically, under 
some conditions (to be defined later in Theorem 5), we find that 

m= = O ( l o g z )  log.PL (z) + Z -  (20) 

where f = O(ff) means that l imsup ]f/gl < oo. Equation 
(20) tells us that the divergence between the approximation 
ae - m ' / z ,  given in (14), and the loss probability is slow if at 
all [this may be easier to see if we rewrite (20) in the form 
log PL(Z) -- log ae  . . . .  /2 = O(log z)]. 

In [27] and [28], under a set of general conditions it has been 
shown for the continuous-time case that 

m ~ c  

logP{Q > x} + ~- -  = O(logz) .  (21) 

We will obtain (20) by finding a relationship between PL (x) 
and P{Q > x}, i.e. 

logP{Q > x} - logPL(x)  = O(logx)  (22) 

under the set of conditions given in Theorem 5 [Pz(x)  will be 
bounded from above and below by some expressions in terms of 
P{Q > z}], and then by applying (21) and some properties of 
m=. Note, that finding the asymptotic relationship (22) between 
P{Q > x} and PL(X) is by itself a valuable and new contribu- 
tion. 

We first list a set of conditions for which (21) 
holds in the discrete-time case that are equivalent to 
the set of conditions in [27] defined for the contin- 
uous-time case. Let V n := Var{X~}, ¢(n)  := logv~, and 
/3 := l i m , ~  ~b(n)/log n (assuming that the limit exists). 

(H1) l i r n  n [~b(n + 1) - ¢(n)] -----/3. 

n - - - + o o  r v  f l  

(H2) v,~ ,-, ~n  for s o m e S > 0 .  

• n - - - +  O o  

The notation f ( n ) ,,~ g( n ) means that hm~__,~ ( f ( n ) / g( n ) ) = 
1. The parameter/3 cannot be larger than 2 due to the station- 
arity of An, and fl C (0, 2) covers the majority of nontrivial sta- 
tionary Gaussian processes. The Hurst parameter H is related 
to/3 by/3 = 2H. We now state the following results that are 
the discrete-time versions of the results in [27], [28], [41]. The 
proofs for these results are identical to those given in [27], [28], 
[41 ], with trivial modifications accounting for the discrete-time 
version, and, hence, we omit them here. These results are stated 
as Lemmas here, since we will be using them to prove our main 
theorem. 

Lemma 2: Under hypotheses (H1) and (H2) 

4n fl x ---, e o  X 2 _ f l  

sy(2 

Lemma 3." Under hypotheses (HI) and (H2) 

m= = O(logx).  log e{O > x} + y 

It is easier for us to work with conditions on the autocovariance 
function of the input process rather than conditions (H1) and 
(H2). Hence, we first define a condition on the autocovariance 
function C~ (1) which guarantees (HI) and (H2): 

(c1) c (l) ~ s/3  . 
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Note that condition (C1) is quite general and is satisfied not 
only by short-range dependent processes but also by a large class 
of long-range dependent processes including second-order self- 
similar and asymptotic self-similar processes [42]. 

Lemma 4: If  the autocovariance function C~ (1) of A,~ satis- 
fies (C1), then (H1) and (H2) hold. 

C Proof of Lemma 4: Let h(n) := ~ z = - n  a(1). Note that 

vn := Var{X~} = ~ ~ Cx(1-  k) 
k=l  /=1  

n - - 1  

= + 2 - 1)c (l) 

l = l  

and that Vn+i - V n  = h(n). First, we show condition (H2). 
Since both vn and n ~ approach 0% l i m ~  (v~/n ~) should 
be equal to 

lim Vn+l  - -  vn  
n~oo (n + 1)# - nZ 

if it exists (this is the discrete version of L'Hospital's rule). 
Hence 

lira Vn+l  - -  v n  - -  - -  V n + l  - -  vn  

n~oo ( n + l )  # - n  # 
flnZ-1 

f l n ~ - i  (n  + l )f l  - nf  3 

h(n) fin z - i  
flnZ -1 (n + 1)Z - nZ 

n ~ + o o  
-~ S .  1 (23) 

where limn--+~o (vn/n ~) = S. Now, we show that (H1) also 
follows from (C1). Since h(n)/Vn ~ fl/n, f (x)  = o(h(n)/v,~) 
implies that f (x)  = o(n-1). Note that a function 9(x) is o(x) 
i f l imx- ,oo 9(x)/x -+ O. Now 

n [ ¢ ( n  + 1 ) -  ~b(n)] = nlog/\{vn+---~l/ 
\ V n J  

= n l o g  ( v n  +h(n)~vn / 

: n l o g ( l + h ( n ) ~  
Vn ] 

= n  + 0  
[. Vn 

(by Taylor Expansion) 

-- + no 
?'t, f l -1  Vn 

rt -.+ o o  1 
- .  f l s . ~ + o = ~ .  (24) 

The loss probability is closely related to the shape of the 
sample path, or how long Qn stays in the overflow state. Be- 
fore we give an illustrative example, we provide some notation. 
We define a cycle as this period, i.e., an interval between time 
instants when Qn becomes zero. We let S~ denote the duration 

. . . . . . . . . . . . . . .  iioss.) ..... . . . . . . . . . . . . . . . . . . . . . . . . . .  

T s~"' w~" 

Q]o \ . . . . . . . . . .  . . . . . . . . . . . .  I  "ss2- '°s# . . . . . . . . . . .  

S ~, (2) = 2S a o) W (a) = 2W(~ ) 
{ 

b(2)= 2b <l) 

Fig. 10. Illustration o f " same  F { Q  > x} but different PL(X)." 

n 

for which Qn stays above threshold x in a cycle to which n be- 
longs. Formally, let: 

• U,~ := sup{k ___ n : Qk-1  > 0, Qk = 0}. (Start time of 
the current cycle to which n belongs.) 

• V~, := inf{k > n : Qk-1  > 0, Qk = 0}. (Start time of 
the next cycle.) 

• Wn := V,~ - U,~. (Duration of a cycle to which n belongs.) 
• Z,~ := Vn - n. (Residual time to reach the end of cycle.) 

V - - 1  
• S~ := Y]k~vn l{Q~>x}. (Duration for which Qk > x in 

a cycle containing n.) 

Note that if Q,~ > 0, Zn is equal to the elapsed time to return 
to the empty-buffer (or zero) state. Since Qn is stationary and 
ergodic, so are the above. Hence, their expectations are equal to 
time averages. 

Consider two systems whose sample paths look like those 
in Fig. 10. The sample paths are obtained when the input is 
a deterministic three-state source which generates fluid at rate 
c + a, c -  a, and 0, at state 1, 2, and 3, respectively. The duration 
of each state is the same, say, b. Use the superscript (1) and (2) 
to represent values for the upper and the lower sample path. Set 
a (1) = 2a (2) and b (2) = 2b (1). Then, both cases have the same 
overflow probability. Now, consider a time interval from 0 to 
3b (2) . The amount of  fluid generated for that interval is clearly 
the same for both cases. But, the amount of  loss in the upper case 
is exactly the twice of that in the lower case, hence, the upper 
case has the larger loss probability. We can infer from this that 
the loss probability is closely related to the length of S~ and 
the slope of the sample path. Since loss happens only when Q,~ 
is greater than the buffer size x, we consider the condition that 
Qn > x. Since it is difficult to know the distribution of S~, and 
since S~ is determined by the sample path, we use a stochastic 
process defined as 

Y~ = ~ Ak + Qo - cn. 
k = l  

(25) 

Here, we have chosen 0 as the origin, but, because of station- 
arity, the distribution of Yr~ does not depend on the origin. Note 
that if Q0 > 0, Y,~ will be identical to Qn until the end of cycle. 
We want to know the distribution of Yn given Q0 > x. Since 
Yn is Gaussian, the distribution of Yn can be characterized by 
the mean and the variance of Y,~. However, since Q0 is the re- 
sult of  the entire history up to time 0 and the future is corre- 
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lated with the past, it is difficult to find an explicit expression 
of  the mean and the variance of Y~ given Q0 > x. Hence, we 
introduce upper-bound types of  conditions on the mean and the 
variance of  Yn as (26) and (27). For notational simplicity, let 
P~{" } = P{" ]Q0 > x}, and let E~{.  } and Vary{.  } be the 
expectation and the variance under P~, respectively. 

We now state our main theorem. 
Theorem 5: Assume condition (C1). Further assume that for 

any e > 0, there exist x0, K,  M,  and c~ such that 

Ex {Yn} _< ( - n  + e)n (26) 
Varx {Y~} _< K n  ~ (27) 

for all x > x0 and n >_ M x  ~. Then 

1 ( m__~) 
- o c  < liminf,~_.~: ~ logPL(X) + 

_ ~ - ~ .  ~ logPL(z)  + < o~. (28) 

Though the concitions of Theorem 5 look somewhat 
complex, they are expected to be satisfied by a large class of  
Gaussian processes. I:f the input process is i.i.d, with Ca (0) = S 
and Ca(1) -- 0 for I 73 0, it can be easily checked that 

Var~ {Y,~ } = Sn  

and (C1), (26), and (27)are satisfied with/3 = 1, K = S, M = 
l /e ,  and c~ = 1. It has been shown that Gaussian processes 
represented by the foraa of finite-ordered autoregressive moving 
average (ARMA) satisfy (26) and (27) [171. Since the autoco- 
variance function of  a stable ARMA process is in the form of 
C~(1) = ~ N  II 2.,i=1 aipi vcith [Pil < 1, it satisfies (C1) with/3 = 1. 
So Theorem 5 is applicable to Gaussian ARMA processes. 

More generall>, E(~--]~=IAk} - en = - ~ n ,  and 

• Var{~-]~k=lAk } ~ under (C1). Thus, for each 
x, E~{Y,~}n~ ~ - ~ n  and Var,~{Y,~}n-Z~Sn;~, and we 
can find K = / s ' (~ : . x ) ,M = M ( c , x ) ,  and c~ = c~(c,x) 
as small as possible. If  sup~ K(c,  x), supx M(e,  x), and 
supx c~(e, x) are finite, then (26) and (27) hold. We conjecture 
that they are all finite for a large class of  stationary Gaussian 
processes, and we are attempting to show it. 

Note that the rightm ost inequality (lira sup part) in (28) holds 
without conditions (26) and (27), and it agrees with empirical 
observations that the tail probability curve provides an upper 
bound to the loss probability curve. 

Before we prove the theorem, we first define the derivative of 
' Recall (9), or m~ with respect to x, m~. 

( z  + nnx)  2 
l Y t x  - -  

V n  w 

Since n~ is an integer value, m~ is differentiable except for 
countably many x at which n~ has a jump. Let D :=  {x : m~ 
is not differentiable}. Note that D has measure zero, and that 

" exist for all x E D. the left and right limits of  mix and m~ 

' and For simplicity, abuse notations by setting mix = limzt~ m z 
" lirnzlx m~ for x E D. The reason we set the (right) m x 

limit is that we will find the similarity relation (29) in Lemma 6, 
which is useful in proving Theorem 5. In fact, we may take 
the left limit to have the same asymptotic behavior. By building 
m x' and m x" in this way, it directly follows from Lemma 2 that 

! II mx ~ az  1-;~ and mx ~ bz -~  for some constants a > 0 and b. 
We now state three lemmas which are useful in proving the 

theorem. (Their proofs are in the Appendix.) 
Lemma 6: Under hypotheses (HI) and (H2) 

L oo x--,oo 2x K 
yK e-(mY/2) dy ~ i e-(m~/2) (29) 

m x 

where K is a constant. 
Lemma 7: If  P{Q > x} > 0 and E { Z I Q  > x} < oo for all x 

1 
2E{ZlQ > y} P{Q > y} dy < APL(x) .  (30) 

Lemma 8: Under conditions (26) and (27), E{Z]Q > x} = 
O(x  ~) for some c~ _> 1. 

Now, we are ready to prove Theorem 5. 
Proof o f  Theorem 5: First of  all, we find expressions in 

terms of P{Q > x} which are greater than or less than "~PL(X). 
If  P{Q > x} = 0 for some x, it would contradict the asymp- 
totic relation in Lemma 3. Hence, P{Q > x} > 0 for all x. If  
E{Z]Q > x} = co for some x, it would contradict the asymp- 
totic relation in Lemma 8. Hence, E{Z[Q > x} < oo for all 
x. Thus, by Lemma 7 we have (30). Now, since (Q,~ - x) + = 
(Qn-1 + An - e - x) + from (5) 

~ P L ( x )  = E < )n -1  + ;~n - e - x 

_< E { ( Q n _ I  + ;~n - c - ~ ) + }  

= E { ( Q ~  - x )  +}  

F = P{Q > y} ay. (31) 

By Lemma 4, (C1) implies (HI) and (H2). Hence, by 
Lemma 3, we have (21). Equation (21) means that there are x0, 
K1, and K2 such that 

e - - ( m u / 2 ) + K l  logy < _ p { Q  > y}  

<_ e-(mv/2)+K2 logy Vy > x0. (32) 

Note that since E{Z[Q > x}  = O(x  ~) from Lemma 8, we 
can choose Ka > 0 such that E{Z[Q > x} _< Ka x  ~ for all 
x _> x0. Combining with (30) and (31), integrate all sides of  
(32) to get 

L oo 1 yK1 e-(,~y/z) dy 
K3y  ~ 

/5 < APL(x)  <_ yff2e-(mu/2) dy, V x  >_ xo. (33) 

Since m'  x ~ ax 1-~ with the constant a > 0, by Lemma 6, there 
exist x l  _> x0, K4 > 0 and K5 > 0 such that 

K 4 x t h - ~ -  l +Z e-(m~/2) 

< yg~e -(m~/2) dy, V x  > x l  (34) 
- K3y~ 
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and 

x c yK2  e - ( m y / 2 )  dy 

<_ KsxK2-1+Ze - ( ~ / 2 ) ,  Vx  ~ Xl .  (35) 

From (33)-(35) 

K4xK~-~-l+Ze -(m~/2) <-APL(X) <_ KsxK~-l+¢e -(m~/2), 

V X  k X l .  

Take logs and rearrange to get 

l o g ( ~ -  -A4) + ( K l - c ~ - l + ~ ) l o g x  

?7/, x _< log PL( ) + -7- 

_ < l o g ( ~ _  ~ 5 )  + ( K 2 - l + / 7 ) l o g x ,  Vx _xx.  

Divide by log x and take x ~ c~. Then, the theorem follows. • 

W. APPLICATIONS TO O N - L I N E  M E A S U R E M E N T S  

In this section, we describe how to apply the MVA approach 
for the estimation of  the loss probability, based on on-line mea- 
surements. In many practical situations, the characteristics of  a 
flow may not be known beforehand or represented by a simple 
set of  parameters. Hence, when we use a tool for the estimation 
of the loss probability, parameter values such as the moment 
generating function and the variance function should be eval- 
uated from on-line measurements. Then, the question is what 
range of those parameters should be evaluated. If  an estimation 
tool needs, for example, the evaluation of the moment gener- 
ating function for the entire range of (0, n), the tool may not be 
useful. This is fortunately not the case for the MVA approxima- 
tion for loss. 

Note that the MVA result has the form c~e - ' ~ / 2 .  The param- 
eter m~ is a function of e, A, x, and v(n), where A and v(n) 
are the mean and the variance of the input, i.e., A = g{A,~} and 
v(n) = Var{}--~k= 1 Ak}. Hence, by measuring only the first two 
moments of the input we can estimate the loss probability• Re- 
call that 

m x  ~ Sl ip  

and that v ( n ) / ( e -  A + x) 2 is maximized at n = n~. This 
means that the result only depends on the value of v(n) at n = 
n~. This value of  n~ corresponds to the most likely timescale 
over which loss occurs. This is called the dominant time scale 
(DTS) in the literature [43], [20]. Thus, the DTS provides us 
with a window over which to measure the variance function. It 
appears at first, however, that this approach may not work, be- 
cause the DTS requires taking the maximum of the normalized 
variance over all n, which means that we would need to know 
v(n) for all n beforehand. Thus, we are faced with a chicken 
and egg type of problem, i.e., which should we do first: mea- 
suring the variance function v (n) of the input, or estimating the 
measurement window n~. Fortunately, this type of cycle has 
recently been broken and a bound on the DTS can in fact be 

found through on-line measurements (see Theorem 1 and the 
algorithm in [44]). Thus, since our approximation is dependent 
on the DTS, we only need to estimate v(n),  for values of n up to 
a bound on the DTS (given in [44]), thereby making it amenable 
for on-line measurements. 

VI. C O N C L U D I N G  R E M A R K S  

We have proposed an approximation for the loss probability 
in a finite queue by making a simple mapping from the MVA es- 
timate of the tail probability in the corresponding infinite queue. 
We show first via simulation results that our approximation is 
accurate for different input processes and a variety of  buffer 
sizes and utilization. Since the loss probability is an impor- 
tant QoS measure of network traffic, this approximation will be 
useful in admission control and network design. Another feature 
of the approximation is that it is given in a single equation format 
and hence can easily be implemented in real-time. We have com- 
pared our approximation to existing methods including the ef- 
fective bandwidth approximation, the Chernoff dominant eigen- 
value approximation, and the many-sources asymptotic approx- 
imation of Likhanov and Mazumdar. 

In this paper we also study the theoretical aspects of  our ap- 
proximation. In particular, we provide a strong asymptotic result 
that relates our approximation to the actual loss probability. We 
show that if our approximation were to diverge (with increasing 
buffer size) from the loss probability, it would do so slowly. For 
future work we plan on simplifying the conditions given in The- 
orem 5 and to extend the approximation result to a network of  
queues. 

A P P E N D I X  

Proof of Lemma 6: Let f ( x )  = (rex/2)  - K log x. Since 
! x ----~ a~ i - -  ! x ----~ c~ / m x ,'~ ax • andf l  < 2, f ( x )  ~ mx/2.  Hence, toprove 

the lemma, it suffÉces to show that 

f oo x~o~ 1 e_y(x)" (36) 
e -f(y) dy ~ f ' ( x )  

Let D = {x : m x  is not differentiable}. For x ~ D, 

d ( l_~e_f(y)" ~ = _e_y(~ ) f " ( x )  e_f(~ ) (37) 
dy \ i f ( y )  ] y=~ f ' ( x )  2 ' 

Since D has measure zero, fl~[ o~)-o("  )dy = f[~,~)(  .) dy 
• ' i i i  E and we may assign any values to f (x) and f (x) for all x D. 

" for x E D. Set limz~x ~ and m~ limzt~ m z Recall m~ = m z = 
i f (x)  = limzl~ i f (x )  and f " ( x )  = limzlx f " ( x )  for x E D. 

Now, let x be any value. Integrating both sides of (37) from 
x to oc, we have 

1 e -f(x)  + lim 1 e_f(x) 
i f (x)  ~ o ~  

_ 1 e _ f ( x )  

f ' (x )  

/? 5 = - e -f(y) dy - f"(Y)  e -f(y) dy. (38) / , (y)2  

" ,,~ bx -9 with constants a > 0 Note that mix ~ ax 1-9 and mx 
and b. Since f ' ( x )  = (m~/2)  - K x  - i  ~ ax 1-~ and f " ( x )  = 
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(m'x'/2) + Kx -2 ~ bx -~, limx+oo ( f" (x) / f ' (x )  2) = 0. Let 
e 6 (0, 1). We can find xo such that I(f"(x)/f'(x)2)l < e for 
all x _> xo. Then 

jfx °° 1 e - f (x )  -- e e - f (y)  dy 
if(x) 

<_ f ~  e -f(y) dy 

1 -s(~.) _ ] ~  f"(Y) e-I(~) ay 
= f'(z-----) e f,(y)~ 

/5 1 e -y(u) dff, Vx > :Co <_ f - f i - ~  e -  ~ ( x ) + ~ (39) 

which means that 

1 l e_f(x) 
1 + e  f ' [ x )  

[° e -f(u) dy 

1 1 
< e- f (x ) ,  
- 1 - - e  f ' ( x )  

V x > xo (40) 

and the result follows, B 
Proof of Lemma 7: Recall the notations: 

• U~ :=  sup{/,- 5_~ n : Qk-1 > 0, Qa = o} (start time of  
the current cycle to which n belongs). 

• Vn :=  inf{k > n : Qk-1 > 0, Qk = 0} (start time of the  
next cycle). 

• I/V,~ :=  V~ - b~ (duration of  a cycle to which n belongs). 
• Zn :=  V~ - n (:residual time to reach the end of  cycle). 

~ v , ~ - i  (duration for which Qk > x in a • S n  x : =  k = U .  l '{Qk>x} 

cycle containing: n). 

Define one more: 

S - ' ; :~-z (residual duration for which 
• Rn :=  ~-~x=n 1{Ok>x} 

Qk > x in a cycle containing n). 

Since Q~ is stationary and ergodic, so are the above. Hence, 
their expectations are equal to time averages. Since we are in- 
terested in the behavior of Q~ after loss happens, we consider 
the conditional expectations: 

k 

E{ZnlQn > x} = :im 1 k~oo k E Zil{Q~>x} (41) 

E l{Q~>x} i=1 

i=1 

k 
E{S~[Qn > x} : ]im 1 k---,oc k E Si 1{ Qi>x} (42) 

E I{Q{>x} i----1 

i=1 

k 
~={R~[Q~ > x} : lim 1 k,-~o, k E H i  I{Q~>~}. (43) 

E I{Q{>x} i=1 

i=l 

Clearly, E{R~IQn > x} _< E{ZnIQ~ > x}. And it can also be 
easily checked that2n={R~lQ~ > x} _> E{S~IQ~ > x}, where 

the inequality is due to that n is discrete. 6 Since E{A} < c, there 
are infinitely many cycles for a sample path. Index cycles in the 
following manner: 

• V (t) : =  V1, U (1) : =  U1, V (1) : =  Vv(i-1)+l , U (i) : =  

V (i-a), for i > 1, 
• A (i) :-- {n  : U (i) < n < V(i ) } .  

Define: 

• S(x i) : :  EkEA({ ) [ (Qk  > x),  i = 1, 2, 3, ..., 

~ s(~) 

~x : = l i m s u p  r~ i=1 

i=1 

Now, we prove the lemma in two steps: 
• 1) Derive 

PL(x)A >_ -~  P{Q > v} dy. 

• 2) Show 2E{ZnlQn > x} >_ ~x. 
Step 1): The amount of  loss in cycle i is greater than or equal 

to the difference between the maximum value of  the queue level 
Qn in cycle i and the buffer size x of  the finite buffer queue, i.e. 

L (~) _> max ( Q k -  x)  + 
kCA(i) 

/? ) : I ( max  Qk > Y dy 
\kEA(i) 

Take summation over i and divide by the total time, 2 i % 1  [A(~) l, 
where [A(i)[ denotes the number of  elements of  A (i) . Then 

i•1 - -  I m/=1  I i-~zk-''-CA(i--~)- 

i=1 ~ i=1 kcA() 

> ~ i=1 7ff dy 

i=l 

: f i x  i= l m i~ l---L--'--- dY 
s; i) Z IA( )I 

i=1 i=1 

6Since n is discrete, for given n such that Qn > x, R~ and S~ take (pos- 
itive) integer values. If Sn is, for exanaple 2, R,, can be either 1 or 2, and its 
expectation is 1.5 which is greater than 2/2. 
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l / -1  m 

E s~ i~ E s;'~ 
jfm °° i=1 i=1 dy. 

k sup t m 

L>m E 1  (S(O > O) E [Z(i)[ 
i : l  i=1 

(44) 

Recalling (1) and (2) 

m 

E L(1) 

i=1 + P L ( x )  

i=1 k6A(i) 

i=1 k6A(i) ) -~ 

£ IA(OI 
i=1. 

s; i) 
i = l  , e { Q  > ~} 
m 

i=1 

l 

E 4 ̀ ) 
i=1 ----+ By 

sup l 

i = l  

as m --+ oo. Since all components are nonnegative, by Fatou's 
Lemma, (44) becomes 

f~ °° 1 PL(*)~ > ~7 P{Q > v} dr. 

Step 2)." For better understanding, we first show 

1 £ S(i, 1 £ ( ) . (45) l i m s u p - -  < lim 7 S(i) 2 
m - - - +  o o  

m---+oo m i=1 E s(i) /=1 

i = l  

Note that all components are nonnegative. Let 

a m : = - -  S ) 
~" i=1 

b i n - , o  E <i) 
E s ?  i=1 
i = l  

a* = lim sup am 

and 

b* = lim bin. 

For any e > 0, we can choose M such that aM -- a* < e and 
[b* - b M [  < e. Then, 

b* - a* = bM + (b* - bM) -- aM - -  ( g *  - -  aM) 

since 
>_ (bM -- aM) -- 2e >_ - 2 e  

z(#)  z #  
bM -- aM : 

E s? M 

E (sti) - s!,)) 2 
_ i # j  > O. 

M E s? 
Since e is arbitrary, we have b* >_ a*. 

Now, we will verify that 

~x_< lim l_._l___m £ ( S ( 1 ) )  2" (46) 

~ - ~  E s  ? i=1 
{=1 

Construct a new sequence {T~ (i) } by removing zero-valued ele- 
ments of {S~(0 }. Then, as in (45) 

1 £ T ( i )  1 £(T(i')2 lim sup - -  _< lim ~ (47) 
m--+oo m i=1 m--+OO ~__.T(O i=1 

i=1 

Note that 

1 T(i) 1 S(i) lim sup - -  = lim sup ,~ 
m--+oo m 1:1 m---+oo E '  ( S(/ ,  > 0 )  i=1 

i=1 

= ~x. (48) 

Let B (i) := {n :  U (i) <_ n < V (i), Qn > x}. Since S~ = S (i) 

for all j E B ,  (i) and [B(i)[ = S~ (i) 
k 

1 
E{S~IQn > x} = lira k--*oo k S{ l{Qi>x} 

X 

E l{Q~>x} i=1 

/=1 

= lira 
k---+oo 

k 
1 x 

E E  s,  
E E 1 i:1 jeB(2' 
i = l  jeB(i) 

k 
i S( 0 = lim E E 

k--+oo k 

i=I 

1 k )2 

: - -  E k---+oo k 

i:1 

i k 2 

: lira - -  E (T*(i)) " (49) 
k---+oo k 

E T ( i )  i : 1  

i = l  
Combining (47)-(49), we have (46). 
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At last, we have 

~ _< E{S;~IQn > x} < 2E{R~.IQn > x} 
_<2E{Z~IQ~ > x} (50) 

from which (30) follows. [] 
Proof of  Lemma 8: Define: 

• ~,(~, ~) := P~{Y~ > 0}; 
• V(~o, ~, M ) : =  {(~, . . ) : ~  _ ~0, ~ > Mx~}. 

The proof will be done in two steps: 

• 1 ) F i n d x l  > z(, suchthat  O(x,  n )  < n -2  for all (x, n )  • 

V ( x l ,  0~, M) .  
• 2) Using 1), show that E{ZIQo > x} is O(x~).  

Step 1): Let E be s~ small  that - ~  + e < 0. Then,  we choose 
x0, M ,  and a satisfying (26) and (27). Let re(n) : =  F~{Yn} 
and v(n)  :=  Var~ {Y,~}. Then,  the moment  generat ing funct ion 

of  Gaussian Yn is given by e °m(n)+(U2)°%(~). From (26) and 
(27), r e (n )  _< ( - ~  - e )n  and v(n) << K n  ~ for all (x, n )  

V(xo,  a, M) .  Thus 

• (x, n )  < E~{e °~ ;}  

= eOra(')+(1/2)O~v(n) 

e - 0 "  n - ( I ( / 2 ) O 2 n  ~ ' 

(Chernoff  bound)  

v (x, ~) • v(=0, ~, M),  
(5D 

where n '  = n - e. Let 0 = n -1+~ with 5 E (0, 2 - / 3 ) .  Then,  
for all (x, n) E V(xo ,  a, M )  

~(x ,  n) < e, xp (--t~tn'~ + -~n26- (2 -Z ) )  . (52) 

Note that 5 > 2~ - (2 - / 3 ) .  Since the coefficient of  the leading 
term, - ~ ' ,  is negative and its order, 6, is positive, we have for 
all (x, n) E V(xo.  c~, M )  as n ~ 

( ) n2g~(x, n)  < n 2exp  - t ~ n  6 + n 26-(2-~)  --+ 0. (53) 

Note that in (53) t4. h-, and 5 are fixed constants for all (x, n )  E 
V(xo,  a, M) .  Thus, 1:here exists xz such that ¢ ( x ,  n )  _< n -2  

for all (x, n) E V(xo ,  a, M )  with n _> x2. Now, we choose 
x l  > x0 such that M x ~  >__ x2. Then,  d#(x, n )  <_ n -2  for all 
(x, ~) e v ( ~ ,  ~. ~r). 

Step 2): Consider  

e~{Y~ < 0} = e..{E~ _< olz  _< ~ } e ~ { z  < ~} 
+ p~{Yn _< oIz > n}px{z > n}. (54) 

From the definit ion of Z, Z > n implies Y,~ > 0. Thus, 
Px{Y,~ < 0[Z > n}  = 0. Therefore, we have 

or 

_<i e ~ { z  _< n}, 

e~{Y~ > c} e: P ~ { z  > n}. (55) 

Obviously,  Px{Yn > 0} = ¢~(x, n )  < 1. Let x _> Xl. Then,  as 
shown in Step 3), ~(x ,  n) <_ n -2 for all n > M x  ~. Apply ing  
this and (55) 

oo 

~ex{z>n} 
n = 0  

on 

_< ~Px{v~  > 0} 
n ~ O  

O(3 

= ~ ¢(x, n) 
n = 0  

VM~7 

n=0 n=FMx~7+l 

_ < E l +  Z n -2  , 
n=O n = r M x = ] + l  

ex{z}  = 

• (x, n) 

o:~oo Mx,~ (56) 

where Ix] denotes the smallest  integer which is greater than or 
equal to x. Since E ~ { Z }  is nonnegative,  E ~ { Z }  = O(x'~). [] 
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