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Polynomial Cost Approximations in Markov Decision 
Theory Based Call Admission Control 

Hannu Rummukainen and Jorma Virtamo, Member ,  I E E E  

Abstract--The problem of call admission control and routing 
in a multiservice circu~it-switched loss network can be solved opti- 
mally under certain assumptions by the tools of Markov decision 
theory. However, in nel:works of practical size a number of simpli- 
fying approximations ~re needed to make the solution feasible. As- 
suming link independence, we propose a new method for approxi- 
mating the state-dependent link costs accurately and relatively ef- 
ficiently, even on links with extremely large state spaces. The pro- 
posed polynomial approximations are optimal in the sense of min- 
imizing the residual in the continuous-time Howard equations of 
the Markov decision processes associated with the links. Numerical 
results are presented, and the proposed approximations are found 
superior to some earlier link-cost approximation methods. 

Index Terms--Broadband networks, connection admission 
control, Markov decis;ion processes, network revenue, piecewise 
polynomial approximation, telecommunication congestion control, 
telecommunication network routing. 

I. INTRODUCTION 

T HE PROBLEM of routing and call admission control in 
multiservice loss networks has been widely studied; see, 

e.g., [1]. By assuming Poisson call arrival processes and expo- 
nential call holding times, a multiservice circuit-switched loss 
network can be treated as a continuous-time Markov decision 
process. In this contexl, a number of related approaches [2]-[10] 
have been proposed for finding a call admission and routing 
policy that maximizes the rate of revenue from the network, or 
equivalently, minimizes the rate of accumulating costs. In all 
of these approaches, the decision on which route to accept a 
new call is made by a condition equivalent to comparing the ex- 
pected costs of accepting the call on different routes, or in other 
words, the expected revenue loss caused by additional blocked 
calls if some bandwidl:h on a particular route is allocated for a 
new connection. The wew call is carded on the route where the 
expected costs are the smallest, unless the costs exceed the ex- 
pected revenue of carrying the call, in which case the call is re- 
jected. Unfortunately, it is practically impossible to compute the 
exact costs in the complete network Markov process, because 
the number of states in a nontrivial network is astronomical. 

To simplify the problem, it is commonly assumed that the 
state processes of d! fferent links in the network are statistically 
independent, so that the expected costs of accepting an arriving 
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call on a route can be computed by summing costs from indi- 
vidual links on the route. However, when there are more than 
a few different traffic classes, the number of states even in a 
single-link model can easily be prohibitive, calling for further 
approximations in computing the link costs. In the link-cost ap- 
proximation proposed by Hwang, Kurose, and Towsley [11], 
as well as in the one by Krishnan and Hiibner [5], all traffic 
classes are effectively coalesced into one, reducing the link- 
state space into one dimension. Dziong et al. [12] compute the 
link costs of each traffic class from a separate one-dimensional 
process. Another decomposition into separate processes is given 
by Liao et al. [13] for link blocking evaluation, and this too 
can be extended for approximating link costs. Because of the 
heavy model simplifications all these link-cost approximations 
depend on the exact link state in a very limited manner, and are 
thus unable to take into account much of the interactions be- 
tween the different traffic classes. In this paper, we propose a 
method for computing polynomial approximations for the link 
costs without simplifying the link model, thus allowing for more 
accurate link-cost approximations. 

Polynomial cost approximations have been proposed before 
by Schweitzer and Seidmann [14] for the problem of control- 
ling a queueing network. However, the amount of work required 
by their computational methods is at best proportional to the 
number of system states, making the methods too expensive to 
be applicable on large multiservice links. In the context of a 
multiservice loss network, Marbach et al. [15] apply reinforce- 
ment learning to estimate the optimal second-degree polynomial 
link-cost approximation; this requires lengthy simulation runs. 
The contribution of this paper is to present considerably more ef- 
ficient computational methods for determining the coefficients 
of polynomial cost representations. 

The rest of the paper is organized as follows. In Section II, 
we briefly introduce the Markovian single-link model con- 
sidered. In Section III, we specify the class of polynomial 
cost approximations to be discussed, and define the linear 
least-squares problem from which the polynomial coefficients 
are determined. In Section IV, we study the structure of the 
normal equations of the least-squares problem, obtaining 
expressions that are polynomial in link-state space coordinates. 
In Section V, we develop recursion formulas for computing 
certain sums of monomials over subsets of the link-state space; 
these recursion formulas are integral to efficient computation 
of the link-cost approximations. 

In Section VI, we sketch an algorithm for constructing the 
normal equations and determining the approximations effi- 
ciently, and discuss the choice of the approximation basis from 
the point of view of the time complexity of the algorithm. In 
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Section VII, the method is extended for a class of link-control 
policies that do not need to have product form stationary 
probabilities. In Section VIII, we discuss results of numerical 
evaluation of the proposed approximations on a few link 
models, comparing to three earlier approximation methods. 
Finally, in Section IX, we summarize our findings and identify 
areas for future research. 

I I .  L I N K  M O D E L  

The independent Markov model of a single link is defined 
as follows. The link carries connections of K different traffic 
classes; calls of traffic class k arrive at rate Ak and have an 
expected holding time 1/#k. The call arrival processes of the 
traffic classes are assumed to be independent Poisson processes, 
and the call holding times are assumed to be independently 
exponentially distributed. The expected revenue from a carried 
class k call is wk; the control policy optimization criterion 
is based on these values. Link capacity is divided into C 
fixed-size bandwidth units called trunks, and all connections of 
traffic class k take up bk trunks on the link. The link state is 
characterized by a vector i C N K, where element ik indicates 
the number of connections of traffic class k in progress; note 
that we include 0 in the set of natural numbers N. Denoting by 
b the vector of traffic class trunk requirements, the complete 
link-state space is defined as 

ft = {i C NKI iTb _< C} (1) 

where the constraint ensures that no more than C trunks can be 
occupied simultaneously. For convenience, we denote by ft(c) 
the subset of states where exactly c trunks are occupied: 

ft(c) = {i E a ]iTb = c} ,  c = 0 , . . . ,  C. (2) 

The cardinality of the state space ft is denoted by N; as an 
example of the magnitude of N, we remark that for K -= 5, 
C = 100 and b = (1 2 3 4 5) T, the number of states is already 
over 106 . In order to simplify the notation, in the sequel we as- 
sume that all traffic class trunk requirements bk, k = 1, . . . ,  K ,  
are different from each other; this is not a limitation of the ap- 
proach. 

A link-control policy R assigns each state i ~ f~ a set Ri C 
{1, . . . ,  K} of traffic classes that are admitted in state i. For the 
most part we will be concerned only with the complete sharing 
policy, which accepts a call whenever there is sufficient free ca- 
pacity, but some other kinds of policies are discussed as well. 
Under a specific control policy, the link state forms a contin- 
uous-time Markov process. When the Markov process is in state 
i E $2, the system accumulates cost from blocked calls at the ex- 
pected rate 

K 

ri = Z lk~ nlwkAk (3) 
k = l  

where we use the notation l c  for the indicator function that is 1 
when condition C is true, and 0 when C is false. The expected 
long-run average cost rate of the system under policy R is de- 
noted by 9. We define the relative values vi, i Ef t ,  of the system 

states so that vl plus some state-independent constant indicates 
the expected costs accumulated in addition to the average cost 
rate, from the time the system visits state i onwards, when the 
system is controlled by policy R. The absolute values of these 
expected costs are inconsequential in the sequel, and thus we fix 
the state-independent constant component by arbitrarily setting 

vo = 0. (4) 

Denoting by ek the unit vector of all zeros except the kth com- 
ponent one, the N by N infinitesimal generator matrix Q of the 
link-state process under policy R is defined by 

ik/~k i f j = i - - e k f o r s o m e k =  1 , . . . , K  
K qu 

- ik#k + Z Ak if j  = i 
\ k = l  kCRI / 

0 otherwise. 

(5) 

Denoting by r the N-vector of state cost rates, and by v the 
N-vector of relative values, the average cost rate 9 and the rela- 
tive value vector are uniquely determined by the Howard equa- 
tions [16, Ch. 3] 

r -  9 1 +  Qv = 0 (6) 

in conjunction with condition (4). 
In the considered model, the state-dependent link shadow 

price for traffic class k under policy R is defined as 

p k ( i ) = v i + e ~ - - v i ,  for k = I , . . . , K ;  i E f t .  (7) 

The link shadow price measures the expected amount of addi- 
tional cost incurred from time t onwards, if the system is in state 
i + ek at time t, as compared to being in state i. In other words, 
pk(i) is the cost of accepting a call of traffic class k in state 
i; it is beneficial to accept the call if the cost is less than the 
value wk of the arriving call. As noted in the introduction, by 
assuming link independence one can compute the expected cost 
on a multilink route, the route shadow price, by adding the link 
shadow prices from all the links of the route; applying the policy 
improvement procedure of Markov decision theory [16], an ar- 
riving call is rejected if the total expected cost on all the available 
routes exceeds the expected revenue wk of the call, and other- 
wise accepted on the route with the least expected cost. Dziong 
[7, Ch. 5] discusses the details, as well as issues of practical im- 
plementation. 

III. APPROXIMATION 

Let R be the link-control policy for which the link 
shadow prices are to be approximated. We assume that for 
c = 0, . . . ,  C, the decisions Ri of the policy are identical for 
each i E ft(c). This assumption is satisfied by the complete 
sharing policy, as well as by so-called trunk reservation policies 
that accept a call if the number of free trunks is above a traffic 
class specific limit. 

In order to evaluate the link shadow prices, we seek to express 
the relative value vector v of policy R as a linear combination of 
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a modest number of  basis vectors u j ,  j = 1, . . . ,  J ,  the exact 
form of which we shall discuss shortly. In matrix form, we have 

J 

v = E a~u5 = U a  (8) 
j ~ l  

where a = (a l  .. • o:j) T are the free coefficients of  the basis 
vectors, and U is a iV by J matrix with the vectors u j ,  j = 
1 ,  . . . ,  J as columns Denoting by [uj]i the element of  u j  cor- 
responding to state i E ~,  we require that 

[Uj]o = 0, for a l l j  = 1, . . . ,  J (9) 

so that (4) is always satisfied. 
Substituting the parametric relative value representation (8) 

in the Howard equations (6) yields the overdetermined linear 
system of N equations in J variables 

r - 91 + QUot  = 0. (10) 

We solve the system as a linear least-squares problem, locating 
the parameters a that minimize the Euclidean norm of the 
left-hand side of  (10). The average cost rate g can be computed 
accurately by independent means when the policy R is of a 
special form: for the complete sharing policy we can use the 
Kaufman-Roberts recursion [17], [18], and for product form 
policies the convolution algorithm [19], [20], [1] is applicable. 
If  the policy R is of  such a form that the average cost rate g is 
not directly computable, it is possible to treat 9 as another free 
parameter in the least-squares problem; we defer the details to 
Section VII. 

As shown in an 3 linear algebra textbook (see, e.g., [21, Sec. 
5.3]), the coefficient vector a minimizing the Euclidean norm 
of the left-hand side of  (10) can be determined as the solution 
of the normal equations 

U T Q T Q U a  = u T Q T ( g l  -- r). (11) 

This is a symmetric linear system of J equations in J variables, 
so that solving it is feasible as long as the number of  coeffi- 
cients J is sufficiently small. It turns out that for simple mono- 
mial forms of  the basis vectors u j ,  j = 1, . . . ,  J ,  the coef- 
ficient matrix and the right-hand side vector of  the system of 
normal equations can be constructe d efficiently, even when the 
link-state space is so large that handling the matrices Q and U 
directly is impracticable. 

We discuss the details of  normal equations construction for 
the following basis vectors. First, we consider the family of  
monomial basis vectors u(v) ,  v E N K,  with the vector ele- 
ments defined by 

K 

II = z k , for i E f~ (12) 
k = l  

where 0 ° is taken as 1 so that uk = 0 indicates that the kth factor 
is always unity; this imerpretation holds for all potential occur- 
rences of 0 ° in this paper. For simplicity, we assume that the 
exponent vector v does not contain more than two nonzero ele- 
ments, thus restricting the discussion to the single-coordinate 
monomials  i~ k and the double-coordinate monomials i~ki~ ~ . 

Note that (9) makes it unnecessary to consider the case v = 0 
in which all elements of  u(0)  are equal to 1. 

Second, we consider the piecewise monomial basis vectors 
u(v ,  d), v C N K, d = 1, . . . ,  C, with the vector elements 
defined by 

K 

[u(v, d)]i = llsa(d) H i~k' 
k = l  

for i E f t  (13) 

where again 0 ° is taken as 1. Here, we require v to have at 
most one nonzero element, so that the elements of these vectors 
are either single-coordinate piecewise monomials llsn(a)i~ k or 
piecewise constants l lsa(a).  

We specify the complete basis in terms of  the integer param- 
eters D1, D2,  E2,  and/°1, where E2 >_ D2,  as comprising the 
single-coordinate monomial vectors up to degree D1 

u ( aem) ,  for oz = /°1 + 1, . . . ,  D1; m = 1, . . . ,  K 

the double-coordinate monomial vectors up to degree D2 + E2 

u( em for a = 1, . . . ,  D2; /3 = 1, . . . ,  E2; 

rn, n = l ,  . . . , K ;  rn # n 

the piecewise constant vectors 

u(0 ,  d), for d = 1, . . . ,  C 

and the piecewise single-coordinate monomial vectors up to de- 
gree P1 

u ( a e m ,  d), f o r a = l , . . . , P 1 ;  m = l , . . . , K ;  

d = l , . . . ,  C. 

The basis is symmetric with respect to the different traffic 
classes, or in other words if a basis vector of  a particular family 
is included for an exponent vector v, then a basis vector of  the 
same family is included for every permutation of  the exponent 
vector v. Note that we do not need ordinary single-coordinate 
monomials of  degrees 1, . . . ,  P1 because for those degrees the 
piecewise single-coordinate monomials replace them. Also, 
the piecewise monomials u(v ,  d) are included for every link 
occupation level d = 1, . . . ,  C, and the piecewise constant 
vectors are always included in the basis. The total number of  
different basis vectors is now 

J =  D 1 K  + D 2 ( 2 E z - D 2 )  ½ K ( K - 1 ) +  P 1 K C + C .  (14) 

The association of  the indices j = 1, . . . ,  J with particular 
basis vectors can be chosen arbitrarily. 

In Section VI, we discuss ways to reduce the total number 
of  basis vectors by combining a number of  piecewise monomial 

dl 
vectors of  type (13) into a single basis vector as ~-,a=do U(v, d); 
in the construction of  normal equations, such basis vector com- 
binations share the essential properties of  the vectors (13), and 
thus we omit the details. 
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It is relatively straightforward to extend the treatment for 
more general monomial basis vectors u(v) and u(u, d) with 
less restrictions on the exponent vectors v E NK; however, 
working with products of more than two state-space coordinates 
would lead to a considerable increase in the amount of compu- 
tational work required. 

IV. STRUCTURE OF THE N O R M A L  EQUATIONS 

Observe that the columns of the matrix QU are exactly the 
vectors Quj, j = 1, . . . ,  J, and consequently the elements of 
the right-hand side vector of the normal equations are given by 

[UTQT(91 - r ) ] j  = E [QU]i,j [91 - r]i 

= E [ Q u j ] i  (ff - -  r i )  

for j = l , . . . ,  J (15) 

and the elements of the matrix UTQTQU are 

T T [ UTQTQU] hj = uh Q Quj 

---- Z [ Q U h ] i  [Quj]i 
iCf2 

for h, j = 1, . . . ,  J. (16) 

In order to further deconstruct the matrix structures, let us take 
advantage of the sparsity of Q as defined by (5), so as to express 
an element of Quj  as 

[QuA  = 

kCRi 
/~k ( [ U j ] i + e k  --  [U j ] i )  

K 

-- E ]Zkik ( [Uj ] i - - ek  - -  [U j ] i )  • 
k = l  

(17) 

When the basis vectors uj ,  j = 1, . . . ,  J are piecewise mono- 
mials in state space coordinates, it follows that the elements (17) 
of Quj are piecewise polynomials in state space coordinates, 
and we can derive piecewise polynomial expressions for the el- 
ements (15) and (16) of the normal equations, This is the reason 
for the use of monomial basis vectors specifically. 

Let us now derive explicit forms for the elements of the 
vectors Qu(u)  and Qu(u, d), where u is restricted to the 
simple forms considered. Of particular interest in the sequel are 
the numbers of terms in the resulting polynomial expressions. 
To begin with, for single-coordinate monomial basis vectors 
u (aem) ,  a > 0, the element differences in (17) can be 
expanded as 

[U(O~em)]i-4-ek - - [ U ( O ~ e m ) ] i  

= ( i . ~  + l k = ~ ) "  - ~~ 
o~--J_ 

=lk=m Z ( 0 )  (:t:1)c~-°i° 
0=0 

(18) 

where the upper signs correspond to each other, and the lower 
signs to each other; substituted in (17), this gives 

[Qu(aem)]i  

-= E Aklk=m E ( ~ )  "° gm 
kcRi 0=0 

K (x--1 

+ z (o)( 
k = l  0=0 

= lmcRi An - ~,~ai~,,~ 

+ lmeRiA,~ 0 0 - 1  
0=1 

(19) 

The elements of Qu(aem)  are seen to consist of exactly a 
single-coordinate monomial terms and at most one constant 
term. 

For double-coordinate monomial basis vectors u(ae ,~ + 
/3e,~), where m ~ n and a , /3  > 0, similar manipulations yield 

[Qu(aem +/3en)]i 

: XracRi/~mi~n ÷ ]nCRi/~niT~n -- (~mOZ ÷ l~n/3)i~,,i~ 

+ lmeR~A.~ 0 +# '~  0 1 (--1)a-O+l .0 "3 
0=1 

3 - 1  

÷ E l  (lnERi)%z(~O)÷l~n(o~____l)(--1)~--O+l) ic~miOt" 

(20) 

This is a sum of at most two single-coordinate monomial terms 
and a +/3  - 1 double-coordinate monomial terms. 

For piecewise constant basis vectors u(0, d), d = 1, . . . ,  C, 
differences of adjacent elements can be expanded as 

[ U ( 0 ,  d)]i-4-ek --  [ u ( O ,  d ) ] i  - -  liS=ekCf~(d) --  l iEf~(d ) 

---- XiTb=dq=b k - -  ] iWb=d  (21) 

and consequently, the elements of Qu(0,  d) are given by 

[Qu(O, d)h = 

[ lkERi'~k~ K 

-Z k- Z. ik, 
"~ kfiRi k = l  

/zkik, 

0, 

i f i T b  = d -  bk 
for some k 

if iTb = d 

i f i T b  = d + bk 
for some k 

otherwise. 

(22) 
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For a fixed i E f2, the vectors u(O, d), d = 1, . . . ,  C, together 
contain at most 3 / (  + 1 terms in the state space coordinates; of 
these, at most K + 1 are constant terms, and at most 2 / (  are 
single-coordinate monomial terms. 

Finally, for single-coordinate piecewise monomial basis vec- 
tors u(aem),d, a > 0, d = 1, . . . ,  C, we get 

[Qu(aem,  d)]i 

lkcRi/~k ~m, 

O~ "0 
lmcRi ,~,a + E Am 0 ~ra 

0=1  

i f i T b  = d -  bk 
for k # m, 

i f i T b  = d -  bin, 

K 

E • -a _ . i a + l  - g tuz~  t~m ~ i f i T b  = d, 
l = l  
17~m 

o~ (,.,~ ) 
E P m  0 (-1)'~-0i0+1~ i f i T b = d + b m '  
0 = 0  " • 

#kikia~ if iTb = d + bk 
f o r k # m ,  

0 otherwise. 
(23) 

For a fixed i E f~, the vectors u ( a e m ,  d), d = 1, . . . ,  C, to- 
gether contain at most 3 K  + 1 + 2a  terms in state space coordi- 
nates; of  these, at mos:: 2 I (  - 2 are double-coordinate monomial 
terms, at most 2 a + / ( + 2  are single-coordinate monomial terms, 
and at most one is a constant term. 

Generally, nonpiecewise monomial basis vectors are trans- 
formed by the infinitesimal generator matrix Q into polynomials 
where both the polynomial degree and the number of  different 
coordinates in individual monomial terms stay unchanged. On 
the other hand, piecewise monomial basis vectors are trans- 
formed into piecewise polynomials that are nonzero in as much 
as 2 / (  + 1 state sets f,!(c), c = 0, . . . ,  C, and both the polyno- 
mial degree and the maximum number of  different coordinates 
in individual monomM terms are increased by one. Because of  
these properties, the considered set of  basis vectors is the largest 
family of  monomial and piecewise monomial basis vectors that, 
when multiplied by the matrix Q, results in piecewise mono- 
mials with no more ~han two different coordinates. This is es- 
sential in keeping the computational complexity of  the devel- 
oped approximation algorithm manageable. 

We arrive now at the key observation that allows arranging the 
vector elements (15) and the matrix elements (16) in a practi- 
cally computable form. Under the assumption that the decisions 
Ri of  the policy being evaluated are identical for each i E f~(c), 
all coefficients of  the polynomial expressions for Qu j ,  where 
u j  is a monomial or piecewise monomial basis vector, stay un- 
changed over each state set f~ (c). Denoting by R(~) the common 

decision Ri in states i E f~(c), we can express the elements of  
Quj in the generic polynomial form 

K 

[Quj]i = E ~ j ( v )  H i~k' fo r i  C fl(c), 
12EEcj k:l 

c : 0 ,  . . . ,  C (24) 

where Ecj C N K, c = 0, . . . ,  C, are finite sets of exponent 
K .vk 

vectors, and ¢cj(v) is the coefficient of  the monomial I-Ik=l zk 
within the set of  states 9(c) .  Let T~i denote the number of  ex- 
ponent vectors in the set Ecj,  or in other words the number of 
terms in the polynomial (24) for specific c and j .  For the kinds 
of basis vectors under consideration, the exponent vectors E~j 
and the coefficients ¢¢j (v) for c = 0, . . . ,  C and j : 1, . . . ,  J 
follow directly from (19), (20), (22), and (23), and in developing 
these equations, we gave simple upper bounds for the numbers 
of  terms. 

From the definition (3) of  the state-specific cost rates, we see 
that for the assumed kinds of  policies ri is also constant within 
any set of  states f~(c) 9 i; we denote the common values by 
r(c), c = 0, . . . ,  C. Now by substituting (24), we can rearrange 
(15) as 

[uTQT(gl -- r ) ] j  

: Z [ O - j l  (g - 
iEql 

C K 

c:O i 6 9 ( c )  VrEcj k = l  

C 

c=O vrE~i 

(25) 

and (16) as 

[ UTQTQU] hj 

: E [QUh]i [Quj]i 
iCgt 

C K 

c=O i E ~ ( c )  YEECh k : l  

C 

:EE E 

K 

Vt rEcj k=l 

. + 

c = 0  VrEch V'rEcj 

(26) 

where S(c, u) is defined as the sum of monomials 

K 

E II : z k , f o r  c 0 ,  l ,  . . . , C ,  1 / 6  N K .  

i 6 Q ( c )  k : l  

(27) 
c T Observe that (25) is a linear combination of  at most ~ c = 0  cJ 

monomial sums S(c, v), and (26) is a linear combination of at 
most ~ - 0  T~hT~j monomial sums S(c, v). Provided that the 
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link capacity C and the numbers of  t e r m s  Tcj s are not prohibi- 
tively large, (25) and (26) thus express the elements of the matrix 
UTQTQU and the vector UTQT(gl -- r) as practically com- 
putable functions of  the monomial sums S(c, v), c = 0, . . . ,  C, 
v C N K. In Section V, we proceed to consider the practical com- 
putation of S(c, v). 

It should be noted that we can accommodate state-dependent 
call arrival rates Ak and holding times 1//~k, as long as these too 
are constant over each state set f~(c). With these extensions, it 
still holds that the polynomial expressions (24) of [Quj]i,  j = 
1, . . . ,  J ,  stay unchanged over i C f~(c) for any c = 0, . . . ,  C, 
and our general treatment applies with minimal modifications. 
Moreover, if the arrival rates Ak are defined by 

Ak(i) = Ak(O) + ~kik, f o r i E f ~  and k = l, . . . ,  K 
(28) 

where Ak(0) and ~k, k = 1, . . . ,  K ,  are arbitrary constants 
that may depend on the state set f~(c) containing i, then the 
number of  terms in the polynomial expressions (24) of  [Quj]i 
increase somewhat, but the degrees of the considered polyno- 
mials stay unchanged, thus only increasing the computational 
complexity of  the developed approximation method by a small 
constant factor. In particular, the latter extension allows using a 
finite-source arrival model for some subset of  the traffic classes. 

V. COMPUTING SUMS OF MONOMIALS 

While the monomial sums S(c, v) defined in (27) could be 
computed by the convolution algorithm [19], [20], [1], we de- 
velop more efficient recursion formulas for these specific forms 
of sums. The derivation is a novel extension of Buzen' s ideas in 
his treatment [22] of the convolution algorithm. 

Before we treat the general monomial sums (27), let us con- 
sider simpler sums of the form 

s ( c , k ) =  E 1, f o r c = 0 , . . . , C ;  k = l , . . . , K  
i 6 N  k 

i T b ( k ) = c  

(29) 

= (bi b2 • - • bk) T is a truncated vector of  traffic where b (k) 
class trunk requirements. Observe that S(c, O) = s(c, K),  and 
moreover, since this equals the number of  states in the set ~2(c), 
the total number of system states is given by 

c 
N = Z s(c, K). (30) 

c=O 

When c > 0 and k > 1, we find a recursive formulation for 
s(c, k) by the following algebraic manipulations: 

s(c, k) : E 1= Z 1+ E 
i E N  k ieN k i~N k 

i T b ( k ) = c  iTb(k)  = c  iTb(k)=c  
i,~.=O i ~ > 0  

= E 1+ Z 1 
iEN k - 1  jEN k 

iTb(k--1)=c j T b ( k ) = c - - b k  

(31) = s(c, k - 1) + s ( c -  bk, k). 

The change of  variable from i to j is based on the identity i = 
j + ek. To initiate the recursion, we set 

s(0, k) : 1, for k = 1, . . . ,  K,  (32) 

s (c ,k )=O,  f o r c < 0 ;  k = I , . . . , K ,  (33) 

and 

s(c, 1) = l b l l C  , for c > 0 (34) 

where bllc stands for the condition that c is divisible by bl. 
Equations (32)-(34) follow directly from the definition (29) of 
s(c, k). It is easy to see that the work of computing s(c, k) 
for all c = 0 , . . . , C  and k = 1 , . . . , K  consists of  less 
than C(K - 1) additions. As we have use only for the values 
S(c, 0) = s(c, K), the values s(c, k) with k < K can be dis- 
carded as soon as they are no longer needed. By performing the 
recursive computation of s(c, k) with k as the outer and c as the 
inner loop index, at any particular stage storage is needed for no 
more than C numbers. 

Let us now proceed to express S(c, v) with v # 0 recur- 
sively. To begin with, fix an exponent vector v E N g such that 
v # 0, and a c > 0. Let m be an index such that u,~ > 0; there 
clearly is one since v # 0. By reducing on the value of im, we 
can rewrite S(c, v) as 

K K 

IEN K k = Z  iCN K k : l  
i T b : c  iTb--c 

i m > O  

K 

iENK" k=l  
iT b c__b~ z k # n l  

/ Jm '0 "vk 

-- E 0 I I ' k  
ICN K 0 ~ 0  k=l  

E .0 .vk : Zrn Z k 

0 ~ 0  iENK k=l  
iTb~c_bm k ~  

= Z s ( c  - br , + (0 - (35)  
0=0 

On each reduction by this recursion formula, the first argument 
of  S is decreased, and no element of  the exponent vector is in- 
creased. To provide the ground cases of the recursion, we get 
from the definition (27) of  S(c, v) that 

S(c, v) - 0, for c ~ 0; v E N K (36) 

along with 

S(c, O) = s(c, K), for c = 0, . . . ,  C. (37) 

To compute the monomial sum S(c, v) for some fixed argu- 
ments c and v, we need most of  the sums S(c ' ,  v ') where d < c 
and u 1' _< ul, • • •, u~ _< UK. In principle this makes the recur- 

K sive computation inefficient when ~ k = l  uk is not small; for- 
tunately, in the proposed link-cost approximation procedures, 
we have use for all the recursively referenced sums in any case, 
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so that the amount of work in computing the necessary mono- 
mial sums is of the order O(nCu . . . .  ), where n is the number 
of monomial sums needed and u . . . .  is the largest individual ex- 
ponent in all the monomials to be summed. 

V I .  C O M P U T A T I O N A L  C O N S I D E R A T I O N S  

The treatment of Section IV can be developed into a prac- 
tical algorithm by using appropriate data structures as follows. 
The nonzero elements of the matrix QU are represented sym- 
bolically as polynomials in state space coordinates, as in (24), 
storing for each term the coefficient ¢~j (v) along with the ex- 
ponent vectors u E Ecj. Note that we have chosen such basic 
vectors that a single term can have no more than two nonzero 
exponents uk, k = 1, . . . ,  K ;  thus it is prudent to store only 
the nonzero elements uk and their indices k for each exponent 
vector u. A row of QU is represented sparsely by storing only 
the nonzero elements, and their column indices. This row repre- 
sentation is identical for all the rows corresponding to a single 
state set f~(c), and so it suffices to store the row representation 
only once for each c = 0, . . . ,  C. Accordingly, the complete 
matrix QU is represeated by a total of ~ c  0 Z J - - I  T~j term 
data structures. Denoting the maximum number of  terms on a 
row of QU by 

J 

'.F = max E T~j (38) 
c : 0 ,  ..., C 

j = l  

the storage requirement is at worst proportional to (C + 1)T 
when the type of  basis is fixed. 

By gathering the observations we made about the numbers of 
terms in (19), (20). (22), and (23), and multiplying these by the 
numbers of basis vectors of each type, we can bound T by 

1 K(K-1)(D2+E2+I) T <_ DIK(DI+I)+D2(2E2-D2)  

~ ( 3 K + l ) + P I K ( 3 K + 1 + 2 / 9 1 ) .  (39) 

In estimating the complexity of the approximation algorithm, 
we regard the parameters D1, D2, E2, P1 of the basis as fixed 
and only the link model parameters as varying; thus, we state 
simply that T is of  the order O(KZ). 

Before constructing the normal equations, the necessary 
monomial sums Sic. ~,) should be precomputed by the recur- 
sion formulas of Section V. As can be seen from (25) and (26), 
we need values of  if(c, u) for all c = 0, . . . ,  C and for such 
exponent vectors u that either t~ C E¢j for some c and j ,  or 
1, = n + m with n (- E¢h and m C E, cj for some c, h and 
j .  Since any exponent vector in the sets Ecj , c = O, . . . ,  C, 
j = 1, . . . ,  J ,  can have no more than two nonzero elements, 
and these two nonzerD elements can be at arbitrary positions 
in the exponent vectors, and the actual values of these nonzero 
elements are boundec by the type of basis, it follows that 
there are O(K 2) different exponent vectors in the sets Ecj and 
these exponent vectors can be combined into O ( K  4) different 
sums. Consequently, all the necessary monomial sums can be 
computed in O(KaC) operations. 

Once all the necessary monomial sums S(c, u) are available, 
the vector on the right-hand side of the normal equations can be 
computed by the following algorithm based on (25). 

Algorithm 1. 
Compute the vector a= UTQT(gl -- r). 

Initialize the J-vector a with zeros. 

Initialize the J-vector z by zj = 9- r(c), 

j =  1 , . . . , J .  
Loop for c = 0 ,  . . . ,  C 

Loop for j over such indices 1,..., J 

that Ecj # 
Loop for v in Ecj 

Add zi¢¢j(u)S(c , v) to aj. 
End loop 

End loop 

End loop. 

Since a sparse row representation is used for QU, the number 
of indices j such that E~j = ~ does not affect the operation 
count of Algorithm 1, and the total number of  operations is 

C 3 hence proportional to Y'~c=0 ~ j = l  Tcj, which is of the order 
O(CT) : O(K2C). 

Similarly, the matrix on the left-hand side of the normal equa- 
tions is constructed by the following algorithm based on (26). 

Algorithm 2. 
Compute the matrix A = UTQTQU. 

Initialize the J by J matrix J with 

zeros. 

Loop for c = 0~ ..., C 

Loop for h over such indices i, ..., J 

that Ech 7 k 
Loop for j over such indices i~ ..., J 

that Eci # 
Loop for v in Ech 

Loop for v I in Ecj 

Add <ch(U)(¢i(v')S(c , v + v') to Ahi. 

End loop 

End loop 

End loop 

End loop 

End loop. 

The total number of  operations in Algorithm 2 is propor- 
• C J J tlonal to ~'~c=0 ~-~h=l ~ j = l  TchTcj, and is thus of  the order 

O ( C T  2) = O(K4C) .  Note that in practice Algorithm 2 should 
take advantage of the symmetry of  the matrix UTQTQU so as 
to halve the constant factor of the computational complexity. 

Once the normal equations have been constructed, they can be 
solved via Cholesky factorization in O(J 3) operations, as dis- 
cussed in [23]. Since linear dependency of  the vectors Q u  can 
be hard to avoid in some cases, it is useful to apply the variant 
of  Cholesky factorization with pivoting and an appropriate ter- 
mination test; on the subject of  the termination test Higham [24] 
gives more up-to-date advice than is found in [23]. In terms of  
the link parameters, the solution of  the normal equations re- 
quires on the order of  O(K 6 + K 3 C  3) operations; thus, we 
find that the solution stage actually dominates the complexity of  
the complete approximation algorithm for the discussed types of 
bases. 
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When C is considerably larger than K, the term K 3 C  3 dom- 
inates the complexity of the algorithm, and may grow prohib- 
itively large for moderate values of K and C. Noting that the 
term K 3 C 3 arises as the cube of the number of piecewise single- 
coordinate monomial basis vectors, we reduce the computa- 
tional complexity of the approximation by replacing in the basis 
the piecewise single-coordinate basis vectors u(ae,~, d), d = 
1, . . . ,  C - e, by the combinations 

C - e  

u(o~e .... 1, C - e) = E u(o~e .... d), 
d=0  

f o r a =  1 , . . . , P 1 ;  m = l , . . . , K  (40) 

where e E N is a new basis parameter. The piecewise single-co- 
ordinate monomial basis vectors u(ae,~, d), d = C - e + 
1,  . . . ,  C are kept separate. In numerical experiments, good re- 
suits were achieved by setting e as the largest e such that the cost 
rate r(c_¢+1) on link occupation level C - e + I is nonzero; in 
other words, we allow different piecewise terms in the relative 
value vector only on the topmost e link occupation levels where 
elements of the vector g l  - r in the Howard equations (6) have 
values different from zero. For the complete sharing policy, this 
means that e = b m a  x = maxk=l,...,K bk. Then the total number 
of basis vectors reduces to 

1 K(K-1)+P1K(e+I)+C (41) J = D1K+D2(2Ez-D2) 
and the approximation can be computed in O(K ~ + K4C q- 
K3e 3) operations. 

We note that the complexity of the approximation algorithm 
can be decreased considerably by dropping all double-coordi- 
nate and piecewise single-coordinate monomial basis vectors, 
that is, by setting D2 ~ E2 = P1 = 0; however, it was ob- 
served in numerical experiments that on some link models no 
satisfactory fit could be found in less extensive bases. 

VII. EXTENSION FOR MORE GENERAL LINK-CONTROL 
POLICIES 

The proposed approximation is applicable also when the link- 
control policy R is of a form not allowing easy evaluation of 
the average cost rate 9, as long as the assumption holds that 
the set Ri of accepted traffic classes in state i depends only on 
the number iTb of trunks occupied. We discuss the necessary 
modifications to the algorithm discussed above. 

Let us rearrange the Howard equations (6) in the form 

( - 1  Q U )  ( 9 )  = - r .  (42) 

Considering this as an overdetermined linear system of N equa- 
tions in J + 1 variables, the parameters that minimize the Eu- 
clidean norm of the residual vector can be determined from the 
normal equations 

N -1TQU "~ 1 T 

_UTQT1 UTQTQU] ( g )  : ( _UTQ T ) r .  (43) 

Compared to the earlier form of normal equations (11), here the 
left-hand side matrix is basically the same as earlier, but with 
a row and a column augmented, and also the right-hand side 
vector is of similar structure as the right-hand side of (11). 

The normal equations (43) are constructed largely as dis- 
cussed in Section VI for the earlier form of normal equations, 

but with the following additional considerations. First, the 
number of states N in the top left corner of the matrix of (43) is 
given by (30), and can be computed in O(C) operations from 
the monomial sums S(c, 0), c = O, . . . ,  C, which must be 
precomputed for the matrix construction in any case. Second, 
the element 1Tr on the right-hand side of (43) can be computed 
by 

c 

iEfl c=0 
(44) 

in O(C) operations. It remains to consider the computation of 
the vectors uTQT(--1)  and UTQT(--r).  These are both of the 
form UTQTy with an N-vector y that is constant within each 
state class f~(c); but this means that they can be computed by 
Algorithm 1 of Section VI in O(K2C) operations simply by 
initializing z differently in the second step of the algorithm. All 
these extra steps are cheap in comparison to the construction 
of the matrix UTQTQU, and neither does the one extra free 
parameter noticeably increase the complexity of the solution of 
the normal equations; thus we conclude that the average cost 
rate g can be treated as a free parameter without changing the 
total complexity estimates provided in the previous section. 

In principle this extension can be used for estimating the av- 
erage cost rates of link-control policies that do not have product 
form stationary probabilities; however, in practice the average 
cost rate estimates are often considerably more inaccurate than 
the produced link shadow price estimates. 

VIII. NUMERICAL RESULTS 

Numerical results are presented for three variants of the 
proposed approximation method on three different links. For 
comparison, the link shadow prices were also evaluated by the 
method of Krishnan and Htibner [5], and by the class-oriented 
transformation method of Dziong et al. [12]. The approxima- 
tion methods were compared by two criteria corresponding to 
different uses of the methods. 

We remark that the method of Krishnan and Htibner can be 
seen as computing a relative value vector that is a combination 
of the piecewise constant basis vectors u(0, d), d = 1, . . . ,  C, 
discussed in the present paper; furthermore, it is possible to in- 
terpret the method as a projection method applied to the Howard 
equations (6) with a weighted inner product. No such interpre- 
tation is possible for the method of Dziong et al. which uses 
K different one-dimensional link models to compute the link 
shadow prices separately for each traffic class. 

The parameters of the link models on which the numerical 
tests were run are shown in Tables I and II. The links in Table I 
have on the order of 30 000 states, to keep it feasible to compute 
the exact link shadow prices for comparison. The link model pa- 
rameters are quite varied, except for the call holding times #~-1 
which are proportional to the traffic class trunk requirements. 
Note that on link L5 all traffic classes are weighted equally, 
whereas on link L6 the traffic class weights are proportional to 
bk/l~k, making the optimization criterion equivalent to maxi- 
mizing the average number of occupied trunks. We remark that 
in the gain scheduled routing approach of [25] equal weighting 
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TABLE I 
PROPERTIES OF THE THREE SMALLER LINK MODELS L3,  L5 AND L6 IN THE 

NUMERICAL TESTS: LINK CAPACITY, NUMBER OF TRAFFIC CLASSES, TRAFFIC 
CLASS TRUNK REQUIREMENTS, ARRIVAL RATES, HOLDING TIMES, WEIGHTS, 

AND THE RATIO OF TOTAL OFFERED TRAFFIC TO LINK CAPACITY 

L3 L5 L6 
C 100 70 60 
K 3 5 6 
bk 1,2,3 1 , 2 , 5 , 8 , 1 5  1,2,5,7,11,14 

I 1 1 1 1 i 1 )~k 20,20,5 12,3,~, g, y-~ 9,4,~,g, TS,T~ 

] ~ 1  1,2,3 1 , 2 , 5 , 8 , 1 5  1,2,5,7,11,14 

W k 1,2,2  1 , 1 , 1 , 1 , 1  1,4,25,49,121,196 

offered 1.45 0.97 1.33 

TABLE II 
PARAMETERS OF A LIhK OF 600 TRUNKS, TESTED UNDER THREE DIFFERENT 
SETS OF ARRIVAL RATES AS CASES L10H, L10M, AND L10L: TRAFFIC CLASS 

TRUNK REQUIREMENTS, HOLDING TIMES, WEIGHTS, AND THE DIFFERENT 
SETS OF ARRIVAL RATES 

bk 

Wk 
LIOH:Ak 
LIOM:Ak 
LIOL:Ak 

2, 2, 4, 4, 6, 6, 8, 8, 10, 10 
1, 2, 1.25, 1.25, 1.67, 1.67, 2.5, 2.5, 5, 5 
2, 1.4, 5, 2.5, 10, 4, 20, 7, 5, 16 
15, 15, 12, 12, 10, 10, 6, 6, 4, 4 
15, 15~ 10, 10, 7, 7, 3, 3, 1.8, 1.8 
16, 16, 12, 12, 7, 7, 2.4, 2.4, 1.1, 1.1 

is of  particular importance. The link parameters in Table II are 
from [15]; here, the number of link states is approximately 1.9. 
1014 , making direct evaluation of  the relative values impossible. 
The only difference between the parameters in the cases L10H, 
L10M, and L10L is the amount of  offered traffic, which equals, 
respectively, 1.7, 1.0, and 0.88 times the link capacity. 

We compare the following approximation methods: Method 
K H  is the approximation proposed by Krishnan and Htibner, 
and method C O T  is the class-oriented transformation method 
of  Dziong et al. Method A is the least-squares approximation 
with few basis vectors of  all the considered types, and where 
the piecewise single-coordinate basis vectors are combined with 
e = bmax, as discussed in Section VI; the parameters speci- 
fying the basis are £)1 = 2, D2 = E2 = 1, andP1  = 1. 
Method B is otherwise the same as method A, but there are more 
basis vectors; the parameters specifying the basis are D1 = 3, 
D2 = 1, E2 --- 2, ]:~1 - 2, and again e = bm~×. Method C 
is the least-squares approximation with no combined piecewise 
single-coordinate basis vectors, but otherwise only a few of  the 
basis vectors of  the ditferent types; the parameters specifying 
the basis are D1 = 9, 1)2 = E2 = 1, P1 = 2, and e = C. Note 
that the bases used in methods B and C are strict supersets of  the 
basis of  method A, The:teas both contain basis vectors not in the 
other one. In all our tesls the link shadow prices were evaluated 
for the complete sharing policy. 

As the first evaluation criterion, the link shadow prices were 
compared to the exact link shadow prices solved from the com- 
plete Howard equations, and the accuracy was measured by the 
scaled average error 

% = 1 (45) 

i+e k E~2 i+e k E~ 

TABLE III 
SCALED AVERAGE ERRORS IN LINK SHADOW PRICES 

L3 L5 L6 
KH 0.325 1.208 1.106 
COT 0.126 4.033 0.068 
A 0.006 0.303 0.015 
B 0.006 0.225 0.010 
C 0.001 0.285 0.012 

where/3k(i) = [Ua]i+e~ - [Ua]i is the estimated link shadow 
price of  traffic class k in state i, and pk (i) is the exact link 
shadow price. The reason for the scaling by the traffic class 
weights wk is, that in network level policy improvement the 
meaningful range of  pk(i) is the interval [0, wk]: if pk(i) ex- 
ceeds Wk then calls of  class k are denied in state i regardless 
of how much larger than wk the link shadow price is. Thus ac- 
curacy in all the traffic classes is assessed as equally important. 
By directly measuring the accuracy of the estimated link shadow 
prices we intend to assess the suitability of  the method for com- 
puting route shadow prices as sums of  link shadow prices over 
the links of  a route. 

The scaled average errors could only be computed for the 
smaller links L3, L5 and L6, and are shown in Table IIL It is clear 
that by this measure the methods of  Krishnan and Htibner and 
Dziong et al. are inferior to the least-squares fitting methods. 
The errors in the results of the least-squares fitting methods are 
very small except on link L5; based on a number of  tests re- 
ported in [26] and not repeated here, it appears that the scaled 
average error is consistently worse on links where the traffic 
class weights are specified as wk = 1 for all k = 1, . . . ,  K.  On 
links L5 and L6, it appears that the extension of basis from A 
to B is more beneficial than from A to C, while on link L3 the 
situation is the opposite; generally method B does better when 
K is larger and method C does better w h e n / (  is small. 

As the second evaluation criterion, each set of  link shadow 
price estimates was used as the basis of a single policy iter- 
ation step, creating an improved policy that accepts calls of 
class k in state i exactly when the link shadow price estimate 
:ilk (i) is less than Wk ; then the average cost rate of  the resulting 
single-link connection admission control policy was computed. 
For the smaller links L3, L5, and L6, the average cost rate was 
computed from the Howard equations, and for the larger links 
the average cost rate was evaluated by a simulation of 106 steps. 
The results are shown in Table IV, which also includes the av- 
erage cost rates of  the following policies: the complete sharing 
policy, the policy produced by the first policy iteration based 
on the exact relative values of  the complete sharing policy, and 
the policies produced by the methods of  Marbach et al. [27], 
[15]. Unfortunately, there appear to be some problems with the 
single-link results in [15] and [27]; the numbers presented here 
have been computed from the blocking percentages reported in 
[27]. 

Measured by the average cost rate, the methods of  Krishnan 
and Htibner and Dziong et al. are more competitive with the 
least-squares fitting methods, but they are inconsistent: each of 
the older methods fails on one of the test links, producing a 
policy worse than the complete sharing policy. In the larger test 
cases, method C could not be used due to computer memory lim- 
itations, but otherwise all the least-squares fitting methods per- 
form equally well, and on the small test links the results are very 
close to those of  the first policy iteration on the exact relative 



778 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 6, DECEMBER 2001 

TABLE IV 
AVERAGE COST RATES OF THE SINGLE-LINK CONNECTION ADMISSION 

CONTROL POLICIES RESULTING FROM THE RELATIVE VALUE ESTIMATES, 
ALONG WITH THE AVERAGE COST RATES OF THE COMPLETE SHARING POLICY 
AND OF THE POLICY PRODUCED BY THE FIRST EXACT POLICY ITERATION, AND 
FINALLY THE RESULTS OF THE METHODS PROPOSED BY MARBACH et al. [15] 

complete sharing 
1st policy iter. 
KH 
COT 
A 
B 

C 
TD(0):MLP 
TD(0):Quadratic 

L3 L5 L6 L10H L10M L10L 

20.82 0.71 30.13 198 24.4 6.93 
15.67 0.23 30.13 - - - 
15.80 0.25 38.74 177 23.2 6.86 

15,67 0.78 30.13 142 16.2  6.50 
15,67 0.21 30.13 144 19.1  5.65 
15,67 0.21 30.13 144 19.1  5.65 
15.67 0.21 30.13 - - - 

- - - 176 23 .4  6.93 
- - - 186 35.3  6.93 

TABLE V 
CPU TIMES (IN SECONDS) REQUIRED TO COMPUTE THE APPROXIMATIONS, AND 
TO SOLVE THE RELATIVE VALUES DIRECTLY FROM THE HOWARD EQUATIONS 

KH 
COT 
A 
B 

C 
direct 

L3 L5 L6 L10H LIOM L10L 

0.01 0.01 0.01 0.36 0.37 0.38 
0.00 0 .00  0.00 0.01 0.01 0.01 
0.38 1.1 1.7 29 28 30 

1.3 7.4 13 260 270 270 

19 36 37 - - - 

28 3O 35 - - - 

values. Of the approximate methods of Marbach et  al.,  the mul- 
tilayer perceptron based method TD(0) : MLP performed simi- 
larly to the method of Krishnan and Huebner, but cannot com- 
pete with the methods of Dziong et al. and ours. The method 
TD(0) : Quadratic which uses a simple quadratic relative value 
approximation performed even worse in this case; however, it 
should be noted that the single-link results of Marbach et al. 
were computed with a discounted cost criterion and are thus not 
fully comparable. 

The CPU times required to compute the reported results 
are shown in Table V, including the time required to directly 
solve the Howard equations on the line labeled "direct." All the 
tests were run on a PC with a 350-MHz AMD K6-2 processor. 
The bulk of the time in the approximation methods was spent 
in computing the coefficients of the normal equations in 
relatively high level Common Lisp code, whereas the exact 
relative values were computed by a sparse matrix iterative 
package implemented in the C language. With the exception 
of method C, the least-squares fitting methods computed the 
values considerably faster than the exact relative values could 
be computed; thus the combination of basis vectors discussed 
in Section VI is quite justified. The methods of Krishnan and 
Hiibner and Dziong et al. were several orders of magnitude 
faster than the proposed methods. 

IX.  CONCLUSION 

We have proposed a practically computable method for esti- 
mating the state-dependent link shadow prices on an individual 
link model for a class of link-control policies that includes the 
complete sharing policy and trunk reservation policies. The 
approximation is based on least-squares fitting of polynomial 

relative values to the Howard equations of the Markov decision 
process associated with the link. The approximation can 
be applied to routing and connection admission control on 
network level, as well as single-link connection admission 
control. Numerical tests on single-link connection admission 
control problems indicate that the results are more accurate 
and consistent than the earlier approximations proposed by 
Krishnan and Hiibner [5], and Dziong et al. [12]. 

Compared to the neurodynamic programming methods of 
Marbach et  al. [27], [15], our approach performed better in 
the single-link numerical test cases. However, their results 
were computed with a discounted cost criterion, and they 
used a simpler relative value representation than we did, even 
though this is not a limitation of their approach. Moreover, the 
methods of Marbach et al. generalize directly to the network 
routing problem whereas our methods need the assumption of 
link independence, and have to be embedded in the routing 
optimization framework of Dziong and Mason [2], [7] in order 
to be used for routing. On the other hand, Marbach et al. report 
very long computation times despite the simpler relative value 
representation. 

There remain several areas of further study to bring our 
method closer to practice. In the absence of analytical results 
on the accuracy of the approximation, more extensive testing on 
different kinds of link models will be needed. In particular, the 
method should be incorporated as a part of a network routing 
and connection admission control optimization procedure in 
order to evaluate its performance in a simulation environment. 

In [8]-[10], the Markov decision-theory-based call admission 
and routing approach is extended to handle issues of queueing, 
pre-emption, and variable bit-rate calls. We expect that our ap- 
proximation approach can be applied to these extended models, 
although partial blocking of service as treated in [ 10] will cause 
additional difficulties. 

A problem with our approach is that the amount of work re- 
quired grows fast with the number of traffic classes K; thus 
when K approaches a dozen or more, it becomes necessary to 
consider new ways to simplify the approximation. For example, 
one could relax the requirement of symmetry of the basis vec- 
tors with respect to all the traffic classes, or simplify the link 
model in some way, perhaps similarly to the approaches in [12], 
[13], [7]. 
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