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Abstract. A major component of a parallel machine is its interconnection network (IN), which provides 
concurrent communication between the processing elements. It is common to use a multistage 
interconnection network (MIN) that is constructed using crossbar switches and introduces contention 
not only for destination addresses but also for internal links. Both types of contention are increased 
when nonlocal communication across a MIN becomes concentrated on a certain destination address, 
the hot-spot. This paper considers analytical models of asynchronous, circuit-switched INS in which 
partial paths are held during path building, beginning with a single crossbar and extending recursively 
to MINs. Since a path must be held between source and destination processors before data can be 
transmitted, switching networks are passive resources and queuing networks that include them do not 
therefore have product-form solutions. Using decomposition techniques, the flow-equivalent server 
(PBS) that represents a bank of devices transmitting through a switching network is determined, under 
mild approximating assumptions. In the case of a full crossbar, the FES can be solved directly and the 
result can be applied recursively to model the MIN. Two cases are considered: one in which there is 
uniform routing and the other where there is a hot-spot at one of the output pins. Validation with 
respect to simulation for MINs with up to six stages (64-way switching) indicates a high degree of 
accuracy in the models. 

Categories and Subject Descriptors: C. 1.2 [Processor Architectures]: Multiple Data Stream Architectures 
(Multiprocessors)-interconnection architectures; C.4 [Performance of Systems]: modeling techniques, 
design studies, performance attributes; 1.6.3 [Simulation and Modeling]: Applications; 1.6.3 [Simulation 
and Modeling]: Model Validation and Analysis 

General Terms: Design, Parallelism, Performance 

Additional Key Words and Phrases: Closed queuing network, crossbar switch, delta network, flow- 
equivalent server, Markov process, multistage interconnection network, performance evaluation 

1. Introduction 
The complexity of large-scale parallel computer architectures is such that their 
effective design requires guidance from some form of predictive modeling prior to 
construction, and analytical models based on queuing network analysis provide 
a powerful tool for this purpose. In many parallel machines, for example ALICE 
[8, 121, interconnection networks (INS) are required by direct memory access 
(DMA) processors to provide fast communication between the many processing 
and memory elements. It is normally necessary for any element of one type to be 
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able to communicate with any of the other type, for example, each processor must 
have access to any memory. Typically, the memory elements are not uniformly 
utilized by programs, for example, when a frequently accessed data structure is 
stored entirely in one part of the distributed memory, and the network traffic 
becomes concentrated on certain destination addresses. These are often referred to 
as hot-spots. In principle, the interconnection can be provided by a crossbar switch 
in which the contention for destination addresses is relatively easy to model as a 
degradation of the transmission service rates. However, in practice, large crossbars 
cannot be fabricated cost-effectively and a multistage interconnection network 
(MIN) is normally used, comprising a number of stages of parallel banks of small, 
say 2-way, switches. This provides the required connectivity, but the sharing of 
internal links by different paths across the network introduces extra contention. 
Furthermore, when there is a hot-spot at one of the destination addresses, all paths 
to it (hot paths) become busier than in the uniformly utilized case and other paths 
sharing links with the hot paths are also adversely affected. 

There are two transmission protocols that require entirely different model 
types-circuit switching and packet switching. In the case of circuit switching (or 
unbuffered packet switching), the network is modeled as a passive resource in a 
queuing network; in order to operate a data-transmission server must hold a path 
comprising internal links and crossbars at each stage through to the destination 
addressed by the task at the front of its queue. For packet switching, such paths 
need not be held throughout a message’s transmission, and buffered internal 
crossbars can be modeled as conventional servers since their transmission times 
are nonnegligible because of the intelligence required to provide the buffering. 
However, similar problems arise if the buffers become exhausted and cannot be 
reasonably assumed infinite. We consider the alternative protocol-circuit switch- 
ing-in which the interconnection network is a passive resource, providing no 
direct service in the sense of advancing tasks holding network links towards their 
completion. (A passive resource is one that must be held by a task in order to 
permit some associated active resource to provide service to that task, executing 
units of applied workload at its particular service rate; the most common example 
is computer memory.) 

Assuming infinite buffers, if the departure processes from the output pins of 
each stage can be determined in terms of the stage’s arrival processes, the arrival 
processes to the next stage can be derived by simply permuting the outputs 
according to the interconnection topology. ShuMe-exchange is therefore a partic- 
ularly convenient representation of this topology, since the permutation is then the 
same between every pair of stages [28]. Certain approximations regarding the 
internal arrival processes at successive stages simplify the analysis, providing an 
efficient algorithm, and such an analysis is given in [ 181 and [22]. An analysis of a 
packet-switched crossbar in discrete time is given in [26] and an approximate 
analysis of a buffered MIN with nonuniform routing is given in [9]. Nonuniform 
traffic models in circuit-switched MINs are also analyzed in [3] and [2 11. 

Our approach to this problem relies on the recursive structure of the MINs we 
consider, which is in contrast to analogous research reported by Kelly on telephone 
networks [ 161. In either case, we could in principle consider all routes through the 
network individually and solve the associated Markov process directly to obtain 
the Erlang loss formula-assuming, that is, that partial paths are not held but 
released on a collision, resulting in lost transmissions. Because of the large number 
of routes, such a direct solution is computationally intractable. Kelly’s analysis 
relies on the network behaving as if the steady-state probabilities that each link is 
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blocked were independent, which property is shown to hold asymptotically as link 
capacities and network traffic approach infinity jointly so that the traffic offered 
per link remains constant. In fact, the approximation is very accurate for telephone 
networks because of the large capacity links and large number of nodes. Our 
analysis differs from this in that links have small capacities (namely, one) and also 
that partial paths are held during path building. Moreover, partly as a result of the 
former difference, there is a strong dependence between individual links that do 
not behave remotely as if they were independent, and it is our recursive analysis 
that captures this dependence in a simple way. In this sense, our analysis addresses 
the opposite end of the spectrum of switching networks and their control protocols. 

In the next section, we describe some of the switching networks commonly used 
in multiprocessor systems, together with their operational characteristics, and 
discuss the problems encountered in modeling such networks. Our general ap- 
proach to modeling a queuing subnetwork that represents a collection of DMA 
servers together with a circuit-switched MIN is considered in Section 3. First, we 
apply decomposition techniques to obtain the service rate of a flow-equivalent 
server (FES) by determining the throughput of the short-circuited subnetwork as a 
function of its population, according to the method of [4]. This throughput is 
obtained by defining a simple Markov process, under appropriate assumptions, in 
which some function, P,,, for throughput is assumed to be available if the number 
of active input pins, n, is known, that is, the number of DMA servers currently 
wishing to transmit. In Sections 4 and 5, we derive expressions for p,, in the cases 
that the interconnection network is respectively a full crossbar switch and a delta 
network, which is itself constructed from and analyzed in terms of crossbars. The 
degree of the degradation introduced by these networks on the DMA servers’ 
throughput is illustrated by numerical predictions in Section 7. In these analyses, 
the networks are uniform, which means that all output destination addresses (pins) 
are selected with equal probability by any transaction, but in Section 6 we consider 
the case where the destination address space may have a hot-spot [25], that is, one 
pin that is selected with a higher probability than the rest, which are still all selected 
with the same (reduced) probability. Our conclusions and suggestions for future 
work are laid out in Section 8. 

2. Interconnection Networks for Multiprocessors 

Tightly coupled or shared-memory multiprocessor systems require some kind of 
switch to connect their processing elements (memories included), so allowing them 
to communicate, and being a unique shared resource in the parallel machine, the 
switch is a potential source of contention. The simplest type of switch for this 
purpose is the common bus that connects to every element. However, the bus 
derives its simplicity at the expense of increased complexity in each component 
that it connects. For example, bus request and receive pins are needed by each 
element, together with several others for control and synchronization, and non- 
trivial logic is necessary to implement the bus’s protocol. This increases the overall 
cost of a large-scale multiprocessor and, moreover, each additional processor that 
is added to the bus is faced with more contention and so delivers a diminishing 
increment in performance. 

At the other end of the spectrum, the switch might be a full crossbar that provides 
parallel communication between any number of distinct pairs of processors con- 
nected through it. For example, a crossbar may have two types of links-for 
processors and for memory elements-and a way of dynamically connecting any 
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pair of the two types. This allows parallel access to the shared memory provided 
that there are no memory conflicts, that is, two or more processors attempting to 
access the same memory element. 

An a X b crossbar can switch any of its a input pins to any of its b output pins 
on the appropriate clock-cycle, so that the only contention possible is for the 
destination processors, that is, is internal in the switch for the output pins. We 
therefore have the configuration shown in Figure 1 when a = b = 4. 

Each additional processor that is added to the crossbar requires a new parallel 
link to each of the output pins. Thus, for an N-way crossbar the complexity and 
cost grow as O(N’) and the very large crossbars required for large-scale multipro- 
cessors would become hopelessly complex and expensive. Moreover, large crossbars 
are physically infeasible to construct using contemporary electronic devices. 

However, we can interconnect a matrix of small crossbars to form a MIN that 
provides the same connectivity (any input pin can be dynamically connected to 
any output pin if there is a free path), but introduces contention for internal links 
(path conflicts) in addition to memory conflicts. The cost of an N-way MIN grows 
almost linearly, O(Nlog N), compared with O(N2) for the equivalent crossbar. 
There are several types of MIN, many with similar structure and properties, but 
here we will consider a subclass of banyan networks. A banyan network is a MIN 
with a unique path from each input pin to each output pin. This criterion implies 
that the network has a tree-like fan-in and fan-out structure; a formal definition of 
banyan networks in terms of graph theory may be found in [ lo]. A banyan network 
comprising J stages of crossbars in which outputs of one stage connect directly to 
the inputs of the next stage, is called a J-level banyan. There are two main types of 
J-level banyans: regular banyans and irregular banyans. Irregular banyans connect 
any N inputs to A4 outputs through J stages of crossbars where the i th stage employs 
Ci Iii X mi crossbars. Since no crossbar pin is left unconnected, the number of 
outputs from one stage have to be the same as the number of inputs to the next 
stage, that is, Cimi = ci+l nj+, for 1 5 i c J. This is satisfied by 

i-l J 

ci = n mj n nk for 1 I i 5 J. 
j=l k=i+ 1 

Hence, the number of inputs N = nl x cl = ~1~ X n2 X . . . X nJ and the number 
ofoutputsM=cJxmJ=m]xm~x *** X mJ. Regular banyans are constructed 
from a single type of basic crossbar switch and examples of specific structures 
include CC banyans and SW banyans. The CC in CC banyan is an acronym for 
cylindrical cross-hatch since the network can be laid out as a cross-hatch pattern 
on a cylindrical surface. In this paper, we consider SW banyans which can be built 
by recursively extending the crossbar as defined in the next section. 

2.1 DELTA NETWORKS. A well-known example of a regular banyan network is 
the delta network defined in [23]. The definition of delta networks includes the 
additional property that routing in the network is digit-controlled, that is, the 
choice of which output pin to select at a particular crossbar in the network can be 
determined by a single digit in the destination address of the packet. A rectangular 
delta network is constructed from b-way crossbars with the same number of input 
pins as output pins and is often called a delta-b network. There are a number of 
different ways of connecting the outputs of one stage of crossbars to the inputs of 
the next so as to obtain the desired connectivity. The corresponding permutation 
functions define the network’s topology. All these topologies are equivalent in that 
one can be obtained from another by permuting the switches in each stage of the 
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FIG. 1. The 4-way crossbar switch. 

network and so all have the same performance characteristics, such as equilibrium 
throughput. For our recursive analysis we adopt the partial shufle variant of the 
cube-topology [23], which may be defined recursively as follows for networks with 
2-way crossbars (the definition can be generalized easily to networks constructed 
from b-way crossbars with b > 2): 

(i) A one-stage network, II r, is the single 2-way crossbar. 
(ii) An s-stage network, II,, (s > 0) has 2” inputs and outputs, that is, 2’-’ switches 

in each stage, and is constructed by connecting a head stage of 2’-’ switches 
to the right of 2 tail networks of (s - 1) stages according to the partial shulIle 
topology shown in Figure 2. The ith switch in stage s takes its top input and 
bottom input from the ith pin of the upper subnetwork and the ith pin of the 
lower subnetwork, respectively. This property of the topology is particularly 
useful in obtaining the recurrence formulas in Sections 5 and 6. 

2.2 OPERATIONAL CHARACTERISTICS OF SWITCHING NETWORKS. MINs have 
three main operational characteristics: control, timing, and switching protocol. 
Typically, MINs have decentralized control with implicit digit-controlled routing 
as in delta networks. However, timing characteristics depend on the type of parallel 
machine that uses the MIN. For SIMD machines, the MIN is normally used in 
synchronous mode whereas in MIMD machines the MIN is used in asynchronous 
mode. As mentioned in the Introduction, there are two main types of switching 
protocols-circuit switching and packet switching-as well as hybrid protocols. In 
circuit switching, a complete path has to be established across the network before 
data can be transferred from the input buffer to the destination buffer. In the 
process of setting up this path, there may be a required link already in use which 
causes the path to be blocked. The partial path already established may then be 
held until the link becomes free or may be released, whereupon the source processor 
may have to retry after some time. In a packet-switched MIN, there are buffers at 
each crossbar switch and packets of data are transferred from one buffer to the 
next in a single hop fashion. This protocol incurs higher transfer delays than circuit 
switching but introduces greater potential for parallelism and higher throughput. 
Hybrid protocols can also be used in buffered MINs in which packets can bypass 
many buffers by forming circuits across any number of stages when possible. 

In the ALICE machine [ 131, the interconnection is provided by a 64-way delta- 
4 network. This network operates in asynchronous mode with a circuit-switching 
protocol in which partial paths are held. Similar protocols have been proposed for 
a new generation of INS constructed from optical crossbar switches [ 151, which can 
be fabricated with larger dimensions than electronic crossbars and so deliver higher 
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FIG. 2. The partial shufIle topology. 

throughput. At present, switching times in optical switches are nonnegligible in 
contrast to the corresponding electronic devices and so it is preferable to hold a 
partial path rather than release the links when a request is blocked. 

2.3 TERMINOLOGY. In order to associate various features of the delta network 
with more familiar terms, used, for example, in describing graphs and trees, we 
use certain words synonymously: the full crossbar switch is sometimes referred to 
as a node and connections between switches in adjacent stages are called links. 
A sequence of connected nodes and links between the network input pins and 
output pins is called a path, and any contiguous portion of a path which begins at 
an input pin is called a partial path. The decode tree of a network output pin 
comprises all paths to that pin, although in this paper we only need to consider the 
nodes in those paths. Likewise, the decode tree of a network input pin is composed 
of all paths originating from that pin. The pins in any stage of the network are 
numbered consecutively, starting at zero for the top pin, as shown in Figure 2. 
In addition to this numbering, each output pin belongs to a class such that 
class 0 contains the pin numbered 0 and class k contains all pins numbered 2!+’ 
to 2k - 1 inclusively (k > 0), as shown in Figure 3. These classes will be used to 
distinguish different degrees of hot-spot contention in Section 6. 

In the analysis of nonuniform routing within delta networks, the top pin is taken 
to be the hot-spot, that is, the top pin address is chosen by an arriving customer 
with some probability p and all other addresses are chosen with the same probability 
(1 - p)/( w - 1) in the case of w-way connection. The top pin will be referred to as 
the hot pin and the other pins as cool pins. 

3. Representation of Interconnection Networks in Queuing Models 

The interconnection network is a passive resource in that paths in it need to be 
held by active resources (DMA processors) for them to provide their service. This 
is an example of service blocking and is typically found in circuit-switched net- 
works. There are several types of blocking that can occur in queuing networks and 
approximate solutions for such networks can be found in [l]. However, such 
methods become impractical when there are large numbers of servers and, in the 
following sections, we describe how aggregation techniques can be applied to a 
queuing network with an IN. 
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FIG. 3. Pin classes in an S-way network. 

3.1 FLOW-EQUIVALENT SERVER FOR THE INTERCONNECTION NETWORK. In a 
locally balanced queuing network, it is a standard result that any subnetwork can 
be replaced by a FES with service rate equal to the throughput of the short-circuited 
subnetwork when its population is equal to the FES queue length [4]. We apply 
the same method to subnetworks that comprise a bank of DMA servers together 
with some interconnection network, the remainder of the enclosing network 
satisfying the conditions for local balance. Under appropriate assumptions, the 
behavior of the short-circuited subnetwork can be represented by a stationary 
Markov process, and for each valid population we find its throughput and hence 
FES-rate by solving the balance equations of this process. The interconnection 
network is represented by a function that determines the effective service rate of 
the bank of DMA devices when they compete for network paths, and the appro- 
priate functions for full crossbar and delta networks are derived in Sections 4.1 
and 5.1, respectively; in the form of a recurrence relation that exploits the recursive 
structure of the network in the latter case. In Section 3.3, by considering the 
limiting case in which there is no degradation, that is, every active input pin of a 
network is always connected to a destination, the well-known expression for the 
throughput of a multiple server is obtained, and later we also derive a simple 
formula in the case that the interconnection network is a crossbar (Section 4.2). 

3.2 UNDERLYING MARKOV PROCESS. The flow-equivalent server for b parallel 
DMA channels connected through an interconnection network is defined by the 
short-circuited network shown in Figure 4 for populations N > 1. When N = 1, 
the customer experiences no contention for links and so the throughput is the same 
as the DMA service rate. The shaded box represents the switching network that 
limits the number of active outputs, m, to some value between 1 and the number 
of active inputs, n, according to its internal connection topology. 

The switching network may be a full crossbar or a delta network with circuit 
switching and partial paths held. In the steady state, when there are n active inputs 
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FIG. 4. The short-circuited subnetwork 
defining the FES rate. 

to the network we assume that they are uniformly distributed over the network 
input pins. We also make the simplifying assumption that path set up and release 
times are negligible compared to service durations, that is, the path across the 
network or partial path to the first blockage will be established instantly. In practice, 
this is a reasonable assumption in networks where message lengths (and so DMA 
transfer times) are large when compared to crossbar switching times. For example, 
in the ALICE machine, the crossbar can switch in 85 ns whereas the mean transfer 
time is 14.4 ps. 

The state space, !&, for this closed system is defined by a, = ((n, m) 12 nj = N, 
#(n) 1 m 2 1 ), where the population is N > 1, n = (n, , . . . , ylb) is a vector of queue 
lengths at the source servers (ni 2 0, 1 5 i 5 b), m is a corresponding number of 
active output pins, and #(n) is the number of nonzero components of n; we use n 
to denote #(n) where there is no confusion. Now let the random variable Ni(t) 
denote the number of tasks at server i (1 5 i 5 b), and M(t) the number of active 
outputs at time t 2 0. X(t) = ((N(t), M(t)) ] t 2 01 has finite state space 9, and is 
a nonnull recurrent Markov process, with generators defined by appropriate state 
transition probabilities, under the assumption that all servers have negative expo- 
nentially distributed service times; this assumption can be relaxed for various 
queuing disciplines in standard ways, for example, [2]. 

We could now try to obtain the balance equations for the state space probabilities 
of X(t) in the steady state by considering every possible state transition that may 
occur on a service completion. This results in a large number of equations and the 
approach is impractical even in the simple case of a full crossbar. Moreover, in a 
similar analysis of a delta network, the state space a, must be extended to represent 
every path and partial path established, vastly increasing computational complexity. 

We therefore consider a simpler process, Y(t), in which the switching network is 
represented by an expression v, for the expected number of active outputs when 
there are y1 active inputs in the steady state and we assume (approximately) that 
this relationship holds at all times. Thus, in the case of a direct connection (no 
switching network) every “input” will always be connected to an “output” and we 
have v, = n, which does always hold exactly. We also use P,, = v,,~ to denote the 
effective service rate function of a bank of servers, each with rate P, connected 
through such a network when n servers have nonempty queues. Thus, it is no 
longer necessary to include the number of active outputs in the state of the 
process Y(t j, since we can approximate this by v, when there are n active 
inputs. When the population of the short-circuited subnetwork is N, the state space 
is Qz = (n ] C ni = N) and we denote the stationary probability of n E Q2 by r(n). 
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3.3 UNDERLYING BIRTH AND DEATH PROCESS. We now aggregate all states n 
with the same number of nonzero components and consider the integer-valued, 
stationary Markov process Z(t ), which describes the number of active inputs to 
the switching network at time t and has state space & = (n 1 1 5 n 5 min(b, N)j 
with stationary probability pn for iz E fij, that is, p,, is the steady-state probability 
that n input pins are active. The aggregate state ~1, therefore, represents the subset 
of states 5’” = (n 1 #(n) = yt, C rti = Nj of the process Y(t), where the sets S,, form a 
partition of &. 

For a given n, each state in S,, has the same steady-state probability with respect 
to the process Y(t ), that is, each arrangement of customers in any n nonempty 
queues is equally likely. This follows because the generators of the Markov process 
Y(t) depend only on II and not directly on the component values ni. The balance 
equations for Z(t) then follow by expressing r(n) in terms of p,, for each n E QZ 
[ 11, 241. Of course, a stronger result holds in a simple Markovian queuing network 
(with no switching network) when the visitation rate to service rate ratio is the 
same for all servers, namely, that all states are equi-probable (cf. the multiple server 
result discussed below). 

We use the following elementary combinatorial results in several places in this 
paper: 

(i) The number of ways of arranging y1 balls in m boxes is 

n+m-’ cm-, ) 

where the combinatorial function, C, is defined by 

“Cm = n! (1) m!(n - m)! . 

(ii) The number of ways of arranging n balls in m nonempty boxes, that is so that 
there is at least one ball in each of the m boxes, is the same as the number of 
ways of arranging n - m balls in m boxes (m having already been accounted 
for), that is, 

-‘Cm-l. (2) 

(iii) (n/m)“-’ C,-, = “C, for integers n 2 m > 0. (3) 

Thus, we deduce from (ii) that for n I m, 2 c, “‘Ck”-’ Ck-, = m+n-l C,,,-, since 
if n balls are arranged in m boxes, they must occupy k nonempty boxes for some 
k, 1 I k 5 m, and there are “‘Ck ways of selecting k boxes from m. This result 
follows formally from Lemma 4.1, which with its corollary we will find useful a 
number of times in this paper. 

We can model the original network (Section 3.2) by Z(t) provided we assume 
that: 

-the effective service rate function is known, 
-all arrangements of customers on n nonempty queues are equally likely, which 

has been shown to hold exactly when the IN is a crossbar as discussed above. 

By analyzing process Z(t) in the steady state, we can obtain the following 
theorem: 

THEOREM 3.1. Consider a b-way IN with known efictive service rate func- 
tion CL,, in a cyclic network comprising a parallel bank of DMA servers with 
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population N. Under the assumption that all arrangements of customers on n 
nonempty queues are equally likely, the throughput is given by: 

b 

UN) = C ~ln~n, 

where 

p = PIIJI IIS Kb -j)(N-j)I 
n pLn(n - 1)!2 

and 

-1 = PI 
i ~1 II&’ Nb -j)(N - j)l 

n=l pLn(n - 1)!2 

(5) 

(6) 

PROOF. State transitions of the process Z(t) can only occur on completion of 
service by a task which then recycles to join one of the b queues. Thus there are 
only two possible types of state transitions: n + n + 1 and n + 1 -+ n (1 5 n < b) 
since transitions n + n’ of the process Y(t) with #(II) = #(II’) do not cause a 
change of state in Z(t ). For the first type of transition to be possible, the com- 
pleting task must depart from a queue in which there is at least one other task 
(length > I), and must then join one of the (b - n) empty queues. Let qi,j be the 
probability that the state changes from i to j on a service completion. Since states 
(of Y(t)) with the same number of nonempty queues are equi-probable, the 
transition n + n + 1 occurs with probability qn,n+l given by: 

4 
(b-n) 

n,n+l - - ~ Pr(queue length at a given active input > 1 when n are active) 
b 

_ (b - n) # arrangements of N - 1 tasks in n nonempty queues 
b # arrangements of Ntasks in n nonempty queues ’ 

which by (2) becomes: 

(b-n)“‘-2Cn-, (b-n)(N-n) =--= 
b “-‘C,-, b (N-1)’ (7) 

Conversely, for the second type of transition, the completing task must leave 
from a queue in which there are no other tasks and must then join one of the 
n nonempty queues. The transition n + 1 + n, therefore, has probability q,,+],, 
given by: 

4 
n # arrangements of N - 1 tasks in n nonempty queues 

‘+‘JI = b # arrangements of N tasks in n + 1 nonempty queues 

n N-2Cn-, n2 =-~= 
N-l b G b(N - 1) 

Now from (7) and (8), given that the effective service rate function 

(8) 

of the 
switching network is pLn, we have the following balance equations for the process 
Z(t) with 1 5 n < b: 

pa,@ - n)(N - n> = pn+lpn+ln2. (9) 

Solving this for pn gives (5), with normalizing constant given by (6). Equation (4) 
follows from this distribution and the effective service rate function. 0 
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When the effective service rate function p,, is a simple expression, it is not 
necessary to compute the distribution p,, directly to obtain the throughput T(N) 
by Theorem 3.1. In such cases an expression for throughput may be obtained by 
the following theorem: 

THEOREM 3.2. For a b-way IN with effective service rate function P,,, in a closed 
system of a parallel bank of DMA servers with population N, the throughput is 
given by: 

T(N) = b +y- 1 H(1), (10) 

where 

N(z) = i @ 
n=1 n 

(11) 

and t, is given by the following recurrence formula and boundary condition, 
respectively: 

(b - n)(N - n)t, = n*t,+, lsn<b (12) 

and 

;“=I. (13) 
n=l l&l 

PROOF. Substituting t, = pnp,, in the balance eq. (9) and the normalizing 
condition for p,, we obtain the recurrence formula ( 12) and the boundary condition 
( 13). We can solve this by defining the generating function 

G(z) = i tnz” t, = 0 for n > 6. 
n=l 

G(z) has first derivative 
m 

G’(z) = C nt,,zn--l 
??=I 

and we define 

H(z) = - S = G(u) du ou * 
We now have T(N) = G( 1) and we can rewrite the recurrence formula (12) as 

Nb z -(N+b)t,+nt,+t,+,- 
0 

(n + l)t,+, = 0. 

Multiplying by z” and summing yields 

NbH(z) - (N + b)G(z) + zG’(z) + z-‘(G(z) - t,z) - G’(z) + t, = 0, 

which simplifies to 

(1 - z)G’(z) + (N + b - z-‘)G(z) - NbH(z) = 0. 

Thus, setting z = 1, we obtain (lo), the required expression for the throughput 
T(N). 0 
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In Theorem 3.2, H( 1) is derived from the boundary condition (13) which 
depends on the specific form of pLn given by the characteristics of the switching 
network. In the simplest exact case where we have direct connection (no switch- 
ing network), I.C, = np and the boundary condition (13) becomes Cnb=i t,/np = 1, 
that is, H(1) = p, giving the well-known “multiple server” formula for T(N) = 
biV/(b + N - 1)~ derived by a number of authors, for example, [ 121. There is a 
similarity between the expression for T(N) when there is a direct connection and 
the expression for p,, when there is a full crossbar (given in the next section). In 
fact, the two expressions can be unified by the substitution, N = n. As we see 
shortly, this is to be expected because both expressions can be derived by purely 
probabilistic arguments that use the fact that each arrangement of tasks over a 
fixed number of nonempty queues occurs with equal probability in the steady 
state. 

3.4 THE EXACT RESULT FOR FULL CROSSBARS. Rather than assume that the 
output pin service rate is always the mean value CL,, and solving the simple process 
Z(t ), we may be a little more precise and consider the process X’ (t ), defined by 
x’(t) = (#(N(t)), M(t)L instead of X(t ). The state space of X’(t) is then S’ = 
((n, m) ) 1 I m 5 n 5 b) and for full crossbars, we may solve for the throughput 
of the short-circuited subnetwork considered in the previous sections by solving 
for the equilibrium state space probabilities of S’ directly for any population N. 

We define the steady-state probability distribution of the stationary Markov 
process X’(t), P(n, m) for (n, m) E S’, by 

p(n, m) = lim Pr(#(N(t)) = n, M(t) = m) 
1-m 

where P(n, m) is the corresponding equilibrium probability for the state (n, m) of 
the process X(t ). 

Now, the number of arrangements of N tasks over II given nonempty queues is 
N-lCn--I (by (2)) and we know that given (n, m) E S’, each state (n, m) E 0, with 
#(n) = n has the same steady-state probability, 

P(n, m> 
N-‘C”-,bCn 

for a b-way crossbar since all transition probabilities depend only on n and m 
(recall the argument in the previous section). 

In this way, we can obtain the following equations for the stationary probabilities, 
P(n, m), of the Markov process X’(t), for (n, m) E S’: 

P(n, m)mb(N- 1) 

=(b-n+ l)(n- l)(N-n+ 1) 
. {P(n- l,m+ l)O,(n- l,m+ l)+P(n- l,m)&(n- 1,m) 
+P(n- l,m- l)&(n- l,m- l)+P(n- l,m-2)&(n- l,m-2)] 
+n2(n+ l)(P(n+ l,m+ l)&(n+ l,m+ l)+P(n+ l,m)&(n+ 1,m)) 
+n(n(N-n)+(n- l)(b-n+ 1)) 
. (P(n,m+ l)‘P,(n,m+ l)+P(n,m)(P2(n,m)+P(n,m- l)(o,(n,m- l)], 

for appropriately delined parameters 8, 4, 9 given in [ 1 I] and [24]. Notice that in 
general, after a service completion, the state (n, m) can transit to a state (n ‘, m ’ ) 
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with m’ = m - 1 (recycling task joins a nonempty queue and all queues are 
blocked or transmitting already through the m - 1 servers), m, m + 1 or m + 2 
(another task becomes unblocked by the service completion, the next task in the 
completing task’s queue enters service at a different free server, and the recycling 
customer enters an empty queue and is not blocked). The state space S’ is only of 
order b2 and so it is quite feasible to compute performance measures for full 
crossbars by solving the above equations directly. Moreover, as we shall see in later 
sections, once computed, these results may be used as base cases in the recursion 
that yields the corresponding performance measures for delta networks. 

In the case of a 2-way crossbar switch, b = 2, with N > 1, the values of these 
parameters are e2(1, 1) = f&(1, 1) = +, @,(2, 2) = 1, $2(2, 1) = 1, (P,(2, 2) = 3, 
‘P2( 1, 1) = 1, (02(2, 1) = i, P2(2, 2) = $, P3(2, 1) = f, and the (dependent) equations 
become: 

(N - l)P(l, 1) = 2P(2, 2) + P(2, I), 
(2N - l)P(2, 1) = (N - l)P(l, 1) + 2(2N - 3)P(2, 2), 

2(2N - l)P(2, 2) = (N - l)P(l, 1) + (2N - 3)P(2, 1). 

These equations have normalized solution: 

P(l, 1) = &, P(2, 1) = 2;;; ;), P(2,2) =!&+, (14) 

giving a throughput 

T(N) = l.P(l, 1) + l.P(2, 1) + 2.P(2, 2) = &. (15) 

Thus, throughput is always less than $, and approaches this value as N + to. 
This is as expected for a full 2-way crossbar with both of its inputs active (see 
Section 4.1 for example). For finite N, there is always a nonzero probability that 
an input is inactive, giving lower throughput. 

4. FESfor DA4A Servers with Full Crossbar 

4.1 EFFECTIVE SERVICE RATE FUNCTION FOR CROSSBARS. For an a x b crossbar, 
where outputs are randomly selected and inputs are equally utilized, given n active 
inputs, the probability that m outputs are active, pb(m I n), is easily determined by 
ball-in-box arguments since by symmetry every valid arrangement of the n and m 
(active) input and output pins over b pins is equally likely in the steady state. From 
this follows the mean number of active outputs, conditional on y1 active inputs, 
and hence conditional throughput, pL,. 

We require the following lemma, which has appeared in [ 171. 

LEMMA~.~. Fornr l,O<hlX-n+ 1, 

i: “-1Ck-,‘Tk+&, = “+X-ICX-h 
k=L 

PROOF. For n = 1, the left-hand side, lhs = xCh = xCx-, = rhs, the right-hand 
side if 0 ZG h 5 X. Now assume inductively that the result is true for 1 I n 5 N. 
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Then, 
N+1 

c Nck-,Xck+,,-, = ; (“‘c,-, + N-Lck-,)Xck+&, + xcN+/, + xc,, 
k=l k=2 

= E, (“‘ck-lxck+h + N-‘Ck-,xCk+t,-,) 

(we have replaced the dummy summation variable, k, by k + 1 in the first sum, 
and extended each summation domain to include the two loose terms). 

Therefore, using the inductive hypothesis twice, for 0 5 h + 1 % X - N + 1 and 
O<hsX-N+ l,thatis,forOshzzX-N, 

lhs = N+X-’ CX+-, + N+X-l Cx-h = N+XCX-h = rhs. 

COROLLARY4.2. Fornr 1,X? l,OshsX-n, 

0 

i “-‘C,-,xC,+,.(k + h) = X.X+“-2C~-/,-,. 
k=l 

PROOF. Since xCk+,.(k + h) = x.x-1 Ck+&l, 

lhs = X. ; “-I&, x-’ ck+,,-, = rhs 
k=l 

by the lemma. Cl 

Now let the random variables M, N denote the numbers of active outputs and 
inputs, respectively. Then, 

pb(m 1 n) = Pr(M = m 1 N = n) = 
bC “-lcm-, 

b+“-,c,_, ’ 

Then by Lemma 4.1, C~&[“~b) pb(m 1 n) = 1 (rearranging as above when b < n), 
and by Corollary 4.2 with h = 0, the expected number of active outputs when there 
are n active inputs is given by: 

2 pb(m 1 n).m = b. 
bn 

=(b+n- 1)’ 

which, in the terminology of the previous section, gives a degraded service rate 
function 

4.2 THROUGHPUT FUNCTION FOR A CROSSBAR. Now that we have a simple 
expression for pn in the case for a full crossbar, we can use Theorem 3.2 to obtain 
a simple expression for the throughput T(N). 

COROLLARY 4.3. For closed system with population N, consisting of b parallel 
DMA servers transmitting across a b x a crossbar network, the throughput is given 
by: 

abNp 
T(N)=(a+b- l)N+(a- l)(b- 1)’ 
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PROOF. For a b x a crossbar network, we obtain the following conditional 
throughput function from ( 16) 

an 
PL, = a+n-1 Y 

from which the boundary condition ( 13) becomes 

G(1) + (a - l)H(l) = up. 

Substituting 7’(N) = G( 1) and using (10) from Theorem 3.2 we obtain 

bN 
b+N-1 

+ (a - 1) H(1) = up 

from which the result follows by substituting H( 1) in (10). 0 

In the case of a 2 x 2 crossbar for example, substituting b = 2 and (16) in (5) 
and simplifying gives 

4 
“=3N+ 1 

and 
3(N - 1) 

‘== 3N+l ’ 

which are the marginal probabilities of (14) the solution obtained by solving 
the balance equations of the process X’(t) directly (see Section 3.4). Also using the 
probabilities we derived in Section 3.4, 

which agrees with the above corollary. Hence, our simpler analysis of INS using 
process Z(t) and effective service rate function P,, is exact with respect to the more 
precise analysis in Section 3.4 for a 2 x 2 crossbar. 

In the case of a multistage delta network, the expression for pn is given by a 
recurrence formula as derived in the following section, and so a compact expression 
for throughput would appear impossible to derive. We have obtained our numerical 
predictions (see Section 7) of throughput T(N) in this case from the degraded rates 
pn by directly computing the set of probabilities p,, (using (5) and (6)), and hence 
T(N) from (4) in Theorem 3.1. 

5. Conditional Throughput Function for a Uniform Delta Network 

We analyze delta networks by considering the behavior of the uppermost rightmost 
crossbars in each of the subnetworks involved in the recursive definition. This 
analysis is based upon applications of Little’s result [20], and so initially requires 
no assumptions about the distributions of task service times, only that the crossbar 
is in stochastic equilibrium. In order to obtain a recursive solution, however, we 
make certain approximating assumptions to determine the blocking probability of 
an arriving task and the probability that it “sees” the other input pin of the crossbar 
already held by another task. We see that these assumptions are very mild, especially 
in the case of a saturated delta network. 

First, we define some terms, noting that a crossbar connected to servers with 
appropriate service-time distributions can always be described by a station- 
ary stochastic process (i.e., one with a steady-state or equilibrium state space 
distribution). 
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5.1 DEFINITIONS FOR A 2-BY-~ CROSSBAR. Let the state of a 2 x 2 crossbar be 
the binary 4-tuple (lo, I,, UO, U,) describing the states (active or inactive) of its 
upper (lo) and lower (II) input pins and output pins (UO, U,), similarly. In the 
steady state, we define the following: 

-A pin’s mean holding time (MHT) is the expected elapsed time between the pin 
becoming active and the departure of the task holding it after its service 
completion (i.e., the pin next becoming inactive, even if instantaneousIy). 

-An active output pin’s mean residual holding time (MRHT) is the expected 
elapsed time between an arrival at the crossbar and the pin next becoming 
inactive (possibly instantaneously). 

-The equilibrium state probabilities are denoted by 

di0 i, uo w ) i0, i,, uo, uI E (0, 1). 

We make the following abbreviations for the marginal probabilities over an 
(n + 1)-dimensional state space (here n = 3): 

“(X0 -0. xm) = 7T(xo * * * x, * . . * *) for OSmcn 

(where there are n - m *‘s on the right-hand side). 
-The blockingprobability, bi, for input pin i (i = 0, 1) is the steady-state probability 

that, at the instant a task arrives on that pin, the output pin it requires is already 
held by a task currently holding the other input pin. 

-The crossbar is said to possess the arriving observer property (AOP) if the steady- 
state probability that an input pin is active at the instant a task arrives on the 
other input pin is equal to the equilibrium (marginal) probability that the former 
input pin is active. 

5.2 A 2-BY-~ CROSSBAR IN EQUILIBRIUM. 

LEMMA 5.1. For a 2 x 2 crossbar with output pins that 

(a) are selected with the same probability by incoming traffic 
(6) have the same MHT, m, and MRHT, d, 

the probability that either output pin is active is 

m TO Tl 

’ = T m + hod + m + ’ 

where ?ro, ?rl are the utilizations of the upper and lower inputs, respectively. 

PROOF. Let the arrival rates (i.e., reciprocals of the mean inter-arrival times) on 
the upper and lower input pins be X, and XI, respectively. Three applications of 
Little’s result then yields: 

(i) For an output pin, p = [(X0 + &)/2]m, since the probability that the pin is 
active is the same as its mean queue length; 

(ii) For the upper input pin, r( 1) = Xo(m + hod) similarly; 
(iii) For the lower input pin, ?r(* 1) = X,(m + b,d) similarly. 

Since a( 1) = x0 and r(* 1) = 7rI, the result follows by eliminating X, and X,. Cl 
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COROLLARY 5.2 

(a) Assuming the crossbar has the AOP and that m = d 

879 

TO =I 

p = 2 + ?Tl + 2 + 7ro’ 

(b) For a crossbar with r = 7ro = ?rl, for example, one in which the input pro- 
cesses are the same for each input pin, which has the AOP and m = d, 

(c) Iffurther the crossbar is saturated, that is, 7r = 1, 

p = f. 

PROOF. Since output pins are selected with equal probability, bi = +T,-~ 
(i = 0, 1) by the AOP. q 

LEMMA 5.3. The steady-state probabilities for a single crossbar with output pins 
selected with equal probability may be written in terms of marginal probabilities as 
follows: 

(a) ~(0 1 0 1) = ~(0 1 1 0) = $<0 1) 
(b) ~(1 o o I) = a(1 o I o) = +(I o) 
(c) ~(1 10 1) = ~(1 1 10) = d’/(2m’ + d’)?r(l 1) 
(d) a(1 1 1 1)=(2m’ - d’)/(2m’ + d’)a(l 1) 

where m ‘, d ’ are, respectively, the MHT and MRHT of each output pin, conditional 
on both the crossbar’s input pins being active. 

PROOF. Cases (a) and (b) follow by symmetry. For the other cases, we apply 
Little’s result in the steady state at times when both inputs are active, that is, the 
total queue length is 2. Let the throughput of each output pin be 7 (the same for 
each by hypothesis), and the steady-state probability that it is active, conditional 
on both inputs being active, be p’. 

Then Little’s result applied to an output pin gives p’ = 7rn ’ and to the whole 
switch 2 = 2T(m’ + id’ ). Thus, p’ = 2m’/(2m’ + d’) and since 1 - p’ = 
r( 1 1 0 l)/a( 1 1) the result (c) follows. Result (d) follows from 

pl ?r(l 1 1 0) + 7r(l 1 1 1) = 

41 1) 
q 

COROLLARY 5.4. If the MHT = MRHT, 

a(1 10 1) = 7r(l 1 10) = ?r(l 1 1 1) = f7r(l l), 

and the throughput of the crossbar is + when both its inputs are active. 

5.3 EXACT ANALYSIS OF THE DELTA-~ NETWORK. The steady-state probability 
that a given output pin in any stage of a delta network is active satisfies a recurrence 
relation derived by considering a single crossbar, using Lemma 5.1, and the 
network’s recursive structure. 

Let m,, d, be the MHT and MRHT, respectively, for output pins at stage s in a 
uniform delta network with J stages (1 5 s 5 J). Thus, mJ = dJ = CL-’ if the servers 
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connected to the last stage are exponential with parameter p. Let b, be the blocking 
probability for an arrival on any input pin at stage s. Then, we have the following: 

PROPOSITION 5.5. The equilibrium probability x, that an output pin (of any 
crossbar) in stage s of a J-stage delta network is active satisfies 

where a, = dS/m, and a0 is the equilibrium probability that an input pin in stage I 
is active. 

PROOF. Any crossbar in stage s (1 5 s 5 J) satisfies the conditions of Lemma 
5.1 since its output pins are stochastically identical and clearly a steady state exists 
since the Markov process representing the state of every pin in the network is 
ergodic. 0 

5.4 SIMPLIFYING ASSUMPTIONS. In the sequel, apart from the next section, we 
make two simplifying assumptions that, for all pins in the network: 

(i) MHT = MRHT, that is, that m, = d, 
(ii) the AOP holds so that b, = iaSP1 

Under these intuitively reasonable assumptions, the recurrence in Proposition 
5.5 becomes solvable in closed form for the saturated, uniform case. In general, 
these assumptions are both approximations in that they do not hold at every stage 
of the network. This is easily seen in assumption (i) which requires all pin holding 
time distributions to be exponential, although this property does hold in the final 
stage of a network connected to exponential servers. 

If we assume the servers connected to the final stage of the network are 
exponential, then all holding time distributions are mixtures of Erlang distributions 
with the same parameter. Thus, if arrivals at any crossbar’s input pin are random 
with respect to the holding times of the other input pin, 

since the mean residual service time for an Erlang-k distribution with parameter p 
is (k + 1)/2~. In fact arrivals are not random and the MRHT is much closer to the 
bound given by our approximation. This is because the service completion that 
caused the arrival may have also just unblocked another task and so the new arrival 
may be blocked at a pin that has just become active with significantly nonzero 
probability. In this case, we have d, = m,, but we may also have d, > m, if an 
arrival at one pin tends to occur more frequently during long intervals of activity 
of the other pin. Since the pin-holding time distribution seen by an arrival is not 
known, it is difficult to determine whether d, < m, or d, > m,. However, the 
assumption that d, = m, certainly appears very reasonable. 

The more critical assumption is that the AOP holds. Intuitively, it should not 
hold exactly, but it should provide a good approximation. In the next section, we 
prove these two conjectures for a two-stage network with exponential servers. This 
suggests that the AOP cannot hold everywhere in an arbitrary sized delta network 
which includes two-stage subnetworks, but this would appear difficult to establish 
for arbitrary holding time distributions, and not an important issue in view of the 
other approximating assumption. 
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In Section 5.5, we compare the approximate method with the exact solution for 
a two-stage saturated, uniform network and show that the AOP does not hold by 
deriving explicitly the steady-state probability that an input pin is active at the 
instant a task arrives on the other input pin of a crossbar in the final stage. The 
approximating assumptions do turn out to be very mild and yield extremely 
accurate results when compared with both the exact solution in the two-stage case 
and with simulations of larger networks. 

5.5 ANALYSIS OF ARRIVING OBSERVER. In this section, we consider a two- 
stage delta-2 network connected to four exponential servers. In the steady state, 
the probability that a crossbar’s input pin is active at the instant a task arrives on 
the other input pin can be determined by first finding the proportion of time in 
the long term that the system spends in states, s’ say, that can provide an arrival 
to the upper (say) input pin, via a transition into an input state, s, say. By the Key 
Renewal Theorem, see [5] for example, the unnormalized equilibrium probability 
that the system is in state s immediately after the arrival instant is the expected 
number of transitions into state s in unit time, which can be determined from the 
equilibrium probabilities of the states s’ and the transition rates from s’ to s. This 
is the approach taken by [27], which considers the distribution of similar input 
(and output) states in product-form queuing networks. 

5.5.1 Notation. LetS=(b(b,=O, l;O<j13}bethesetofbinaryquadruples 
describing the (marginal) states of the output pins (numbered j from the top) 
in the first stage of the network. An active pin is denoted by 1 and an inactive 
one by 0. 

Let A = (s E S ] so = 1) be the set of states that can exist immediately after an 
arrival at the top input pin of the second stage. 

For s E A, let B(s) = (s’ E S ] 3 a one-step transition s’ + sJ. 
Let T(s’, s) denote the server at which a service completion can cause the 

transition s’ + s. 
Since we are considering a renewal process, the expected number of transitions 

into state s E A in unit time is 

+)s = c dS’IPs,s, 
X’EB(S) 

where we assume without loss of generality that the servers have rate 1 and 

---f(x) is the equilibrium probability for state x E S, that is, the proportion of time 
in the long term that the system spends in state x, 

-psrs is the probability that a transition from state s’ enters state s, conditional on 
that transition being the result of a service completion at server T(s’, s). 

5.5.2 State Seen by an Arriving Observer. The steady-state probability that an 
arrival at the top input pin of the second stage finds the other input pin of the 
same (top) crossbar active is therefore a*/@, where 

a*= c as and a= c as. 
SEA SEA 
s,=l 

By calculating ap, individually for every s E A, we can indeed determine a*/@ but 
the method is extremely laborious and we can do better by considering departures 
rather than arrivals and exploiting the symmetry of the model as follows. 
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@* is the long-term arrival rate on input pin 0 of the upper crossbar in the second 
stage when the other input pin of that crossbar is active. By symmetry, this is a 
half of the total long-term rate of arrivals to the crossbar that result in a state with 
both input pins active. In the steady state, this is the same as half the departure 
rate (i.e., throughput) from the crossbar’s output pins in states with both its input 
pins active. Thus, by Corollary 5.4, we have 

14 
a* = - - 7r(l * 1 *>. 

23 

Similarly, a0 P + - a* is the total long-term rate of arrivals to the same crossbar 
that result in only the top input pin being active. In the steady state, this is equal 
to the departure rate from the state with the upper input pin active and the lower 
one inactive. Thus, we have 

Q0 = *(l * 0 *> = 7r(l * 0 1) for a saturated network. 

The ratio @*/a can therefore be computed using the following equilibrium 
marginal probabilities (which use the symmetry of this network): 

p P ?r(l 0 1 0) = a(0 1 0 l), 
p’ a 7r(l 0 0 1) = 7r(O 1 1 O), 

q P ?r(l 1 1 0) = 7r(l 1 0 1) = a(1 0 1 1) = 7r(O 1 1 I), 
r A 7r(l 1 1 1) = 1 - 2p - 2p’ - 4q. 

This gives 

a* (2/3)~(1 * 1 *) -= 
a (2/3)~(1 * 1 *) + ~(1 * 0 1) 

2(P + 2q + y) 
=2p+3p1+7q+2r* 

Now, if the AOP held, we would have a*/+ = 7~(* * 1 *) = p + p’ + 3q + r, which 
we cannot establish since there are no more independent identities. In fact, exact 
analysis of the Markov process (see [24]) yields +*/a = 1454/2179 = 0.667279 to 
six decimal places. 

If we assume that MHT = MRHT for the first stage as well as the second, as in 
the approximate analysis for delta networks, this ratio is 2/3. We might therefore 
expect that our approximation will be very good, and this is borne out in Section 
7. In fact for the two-stage case, the exact throughput is 17432/87 19 = 1.9993 12 
to six decimal places compared with the approximate result of 2. 

5.6 RECURSIVE ANALYSIS OF THE DELTA NETWORK. In this section, we derive 
the throughput of a delta network with uniform routing, conditional on the number 
of active inputs to the network. For an s-stage delta-2 network (s 2 I), we define 
the set V, = ((no, . . . , n2s-, ) 1 ni E (0, 11, 0 5 i < 2” ) and the following random 
variables: 

(i) N E Vs, which represents the state of the input pins to the network (N; = 0 
means that input pin i is inactive and Nj = 1 means that it is active, that is, 
the DMA server connected to it is wishing to transmit). 

(ii) Z E V,, which represents the state of each network output pin. 

We also define the function # for which #(V) is the number of nonzero components 
in the vector V and the analogous function #, for which #,(V) is the number of 
nonzero components in thefirst halfof the vector V. 
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We require the following probability distribution: QS(i 1 n) = Pr(#,(N) = i 1 #(N) 
= n) which is the probability that i active inputs are in the upper part of the s-stage 
network (i.e., the first 2’-’ pins) given that there are n active inputs altogether. By 
symmetry, when there are n active inputs to the network, they are uniformly 
distributed over the 2” input pins. Since all arrangements of the n active inputs are 
equally likely: 

Qs<i I n) = 
kCikCn-i 

2kCn 
where k = 2’-‘. (17) 

We also define the following probability distribution: 

T,(n) = Pr(ZO = 1 1 #(N) = n), 

which represents the probability that the topmost output pin of the s-stage network 
is active given that there are n active inputs to the network. This distribution can 
be defined by using the recursive structure of the delta network with the partial 
shuffle topology (Section 2). 

Consider the rightmost, topmost switch in an s-stage network. This takes its 
inputs from two separate (s - I)-stage subnetworks (Figure 5). When we condition 
on the number of active inputs to each subnetwork (their sum being #I(N) = n), 
the output pin utilization of either network can be found. Hence, we can determine 
the utilization of both the inputs to the rightmost, topmost crossbar by using the 
result obtained for the next smaller networks in the recursion. The distribution 
of the state of the top output pin then follows by considering a single crossbar 
and the results of the previous section. This gives the recurrence formula in the 
following theorem: 

THEOREM 5.6. Under the assumptions that every crossbar in the network has 
the AOP and outputs with MRHT = MHT, the output pin utilization of an s-stage 
delta-2 network conditional on the number of active inputs being n is given by the 
following: 

Fors> 1, 

min(n,2s-‘) 

T,(n) = C i=mnx(O n-2”-,) Qs(i I nW(~s-lG), K-lb - 9) 

T,(O) = 0, T,(l) = U(0, 11, T,(2) = U(1, 1) 

(18) 

(19) 

where 

TO Xl 
U(7ro,a,)=- ___ 

2 + n-1 + 2 + Ro’ 

PROOF. For an s-stage delta network (s > l), we define the following random 
variables (see Figure 5): 

Z E (0, 1) the state of output pin 0 of an s-stage network, 
IO E (0, 1, 2, . . . ,2’-’ ) the number of active inputs to the upper 

(s - I)-stage subnetwork, 
Z,E{O,1,2 )...) 2’-’ 1 the number of active inputs to the lower 

(s - 1)-stage subnetwork, 
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FIG. 5. Recursive structure of an s-stage delta network. 

Pr(Z= l,ZO+ZI=n)= i Pr(Z= l,ZO=i,Z,=n-i) 
i=O 

= i: Pr(Zo = i, II = n - i)Pr(Z= 1 1 IO = i, II = n - i), 
i=o 

Pr(Z=l IZo+ZI=n)= i Pr(Zo=i,ZI=n-iIZo+ZI=n)Pr(Z=l IZo=i,ZI=n-i). 
i=o 

The recurrence (18) follows from the following substitutions: 

T,(n) = Pr(Z = 1 I Z. + I, = n), 
Qs(i I n) = Pr(Zo = i, II = n - i I IO + I, = n), 

U(T,-,(i), T,-,(n - i)) = Pr(Z = 1 I IO = i, I, = n - i), 

where U(ro, a,) (the crossbar output pin utilization when the crossbar inputs have 
utilizations r. and rl) is p in Corollary 5.2. 0 

COROLLARY 5.7. The expected number of active output pins (m) conditional on 
n active inputs to a J-stage network is given by: 

E(m 1 n) = 2JTJ(n). (20) 

From the theorem and its corollary, the required conditional throughput function P,, 
= pE(m I n) can be used to solve the birth and death process defined in Section 3.3. 

5.7 SATURATED DELTA NETWORK. The delta network becomes saturated when 
the queue lengths at each of its inputs grows very large. This occurs as the number 
of customers in the closed system of DMA servers and delta network approaches 
infinity. 

COROLLARY 5.8. For a saturated delta-2 network, ps, the probability that the 
top pin in stage s is active is given by the following: 

p3 = .-c 
s+2 (21) 
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and the expected number of active outputs in a J-stage network is given by: 
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(22) 

PROOF. Since all input pins to the network are active the recurrence of Section 
5.1 simplifies considerably in the absence of splitting probabilities QS(i 1 n) since 
Qs(2’-’ 12”) = 1 (from (17)). 

Consider an s-stage delta network with all 2” inputs active. The (s - 1)-stage 
subnetworks are also saturated (see Figure 5) and so the recurrence (18) in Theorem 
5.6 simplifies to give the following: 

2Psi 1 
ps = 2 +ps-, 

where pS = T,(2”). 

This recurrence has solution (21), and (22) follows from Corollary 5.7. Cl 

For a 2-stage, saturated delta-2 network with /* = 1, we find p2 = t using (21). 
Thus, the throughput of the saturated network is 2. This compares with a figure of 
4.4/(4 + 4 - 1) = 2*” given by eq. (16) for a full crossbar network. 

Although the recurrence (18) has only been simplified under these rather re- 
stricted conditions, these are of course the conditions of greatest interest, namely, 
high loading. In the following section, we derive similar recurrence formulas for 
the case when the output pins are nonuniformly selected, which allows us to 
investigate the effect of hot-spots on performance. 

6. Conditional Throughput Function for Nonuniform Delta Network 

So far we have assumed that all outputs from the MIN are equally utilized, but the 
use of memory elements, say, on the output side may not be uniform for all 
elements. For example, if a shared lock or a frequently accessed part of a data 
structure were residing in a particular memory element, then requests to that 
memory address would be more frequent than to other destination addresses. We 
can characterize this by assigning a routing probability to each memory for all 
requests. Furthermore, each processing element (and so input pin) may have a 
different memory access pattern, that is, it may have a favored set of memories 
that it frequently accesses. However, in this section, we only consider the simplest 
case in which there is a single hot-spot, namely, the top output pin, and all other 
memories are equally utilized. With more computational effort, more general hot- 
spot contention can be modeled by a direct extension of the approach presented 
here. 

The basis of the analysis of a nonuniform delta network is the same as that of a 
uniform one, namely, using Theorem 3.1 to determine the throughput function 
for the FES given some effective service rate function pCLn. Hence, we derive a 
recursive formula to determine pL, for the case where there is a hot-spot at the top 
output pin. This entails the use of reachability properties for any task at an arbitrary 
switch in the network attempting to reach a particular output pin. We first show 
that paths to output pins of the same class (defined in Section 2.3) have the same 
steady-state probability of being blocked to an arrival, that is, have the same degree 
of contention. We can then obtain recurrence formulas for the throughput of each 
output pin class in much the same way as we did for the uniform case in Theorem 
5.6. This result is parameterized in terms of unknown pin mean holding-time 
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ratios, and these are finally determined iteratively using the fact that in the network, 
an output pin’s throughput must be proportional to its selection probability (which 
is the same for all but the top pin). 

6.1 PIN CLASS REACHABILITY AND BLOCKING PROBABILITY. Before analyzing 
hot-spot contention in delta networks, we first prove some reachability properties 
for tasks in a network in terms of pin classes, that is, to what classes of network 
output pins can a task connect from a given class of pin within the network. We 
then consider the probability that a path to an output pin of a given class is 
blocked. 

LEMMA 6.1. For any s-stage delta-2 network with a partial shufle topology, only 
class k + 1 (1 5 k < s) output pins are reachable from class k (and only from class 
k) output pins in the (s - 1)-stage subnetworks, and only the class 0 and class 1 
pins are reachable from the class 0 (and only from class 0) pins in the subnetworks. 

PROOF. The class 0 pins of the (s - I)-stage subnetworks connect to the top 
switch in stage s, so only class 0 and class 1 pins of the s-stage network are reachable 
from the class 0 (and only from class 0) pins of the subnetworks. 

Now consider the Zk-’ class k pins labeled i in the range 2k-’ 5 i I 2k - ,I 
(1 I k < s) in the (s - 1)-stage subnetworks. Since switch i in stage s takes its 
inputs from output pin i in stage s - 1 and has outputs labeled 2i and 2i + 1, only 
pinj in the range 2(2k-‘) ~j I 2(2k - 1) - 1, that is, 2k 5j I 2k+’ - 1 is reachable 
from (and only from) subnetwork pin of class k. In other words, only class k + 1 
pins in stage s are reachable from class k (and only from class k) pins in the 
subnetworks, where 1 5 k < s. 0 

PROPOSITION 6.2. For any s-stage subnetwork (0 < s 5 J) in the recursive 
definition of a J-stage delta-2 network with a partial shufle topology, only network 
output pins up to and including class J - s are reachable from the class 0 (and only 
from class 0) output pins of the subnetworks. Likewise, only network output pins of 
class J - s + k (0 < k 5 s) are reachable from class k (and only from class k) 
output pins of the subnetworks. 

PROOF. The proof is by induction on t = J - s for s = J, J - 1, . . . , 1. For the 
base case (t = 0), the proposition is trivially true. 

For the case t > 0, let us assume the proposition holds for J - s = t - 1. By 
Lemma 6.1, only stage s output pins of class 0 and 1 can be reached from class 0 
(and only from class 0) pins in the (s - 1)-stage subnetworks, so only network 
output pins up to and including class t are reachable from class 0 (and only from 
class 0) pins of the subnetworks (by the inductive hypothesis). 

Also by Lemma 6.1, only stage s output pins of class j + 1 can be reached from 
class j (and only from class j ) pins ( 1 5 j < s) in the (s - I)-stage subnetworks, so 
only network output pins of class t + j are reachable from class j (and only from 
class j ) pins of the subnetworks (by the inductive hypothesis). 

Hence, the proposition holds for J - s = t and this completes the proof. 0 

For each interstage link, there is an associated steady-state probability that an 
arriving task wishing to use that link will be blocked: this is called the link blocking 
probability. Each path contains a set of links across the network and has a similar 
blocking probability. Two paths have the same blocking probability if all links 
between corresponding stages have the same blocking probability. Now suppose 
that when a task arrives at a particular switching node it selects either output pin 
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with equal probability because the routing probabilities to all possible destination 
addresses from this node are the same; then the link blocking probability for both 
output links will be identical. By applying this observation to appropriate nodes in 
the network, we can show that paths to certain output pins have the same blocking 
probability despite the presence of a hot-spot at the top destination address. This 
is formalized by the following proposition. 

PROPOSITION 6.3. For an s-stage delta-2 network with a partial shufle topology 
in which all output pins but the topmost one are uniformly utilized, the path blocking 
probability is the same for all paths to pins of the same class (i.e., paths to 2k class 
k + 1 pins (0 5 k < s) have the same blocking probability). 

PROOF. The base case of our inductive proof (s = 1) holds trivially because 
there is only one pin of class 0 and one of class 1. For the multistage case (s > l), 
let us assume that the result holds for an (s - 1)-stage delta network. Now since 
both upper and lower subnetworks are identical by symmetry and customers are 
uniformly distributed over the network input pins, the path blocking probabilities 
for partial paths to a pin of class k (1 5 k 5 s - 1) in both subnetworks are the 
same (by the inductive hypothesis). By Lemma 6.1, we know that pins of class 
k > 0 in the subnetworks connect only to pins of class k + 1 in stage s. Since 
the hot-spot is not reachable from these stage s pins, their link-blocking prob- 
abilities are the same. Hence, path-blocking probabilities are the same for all 
pathstopinsofclassk+l(l~k~s-lor2Ik+lss). 

Finally, we note that when k = 0, the proposition is satisfied vacuously, which 
completes the proof. Cl 

When there is a single hot-spot at the top output pin of a delta network, paths 
to output pins of the same class experience the same degree of contention. If 
different classes of network output pins are reachable from a given switch in the 
network, then paths from the upper switch output may have different blocking 
probabilities to paths from the lower switch output. Consequently, when the upper 
and lower switch outputs become active, the mean time taken for them to become 
inactive, their mean holding time, which we will also call their release time, will 
be different. Hence, modeling the presence of a hot-spot differs from the uniform 
routing case in two important aspects: the different routing probabilities and the 
different release times for outputs of a given switch. 

6.2 HOT-SPOT TRAFFIC MODEL. The hot-spot traffic model is characterized by 
the hot-spot routing probability p that is the probability that a new arrival selects 
the top network output pin as its destination. 

Each of the other network outputs are chosen with probability (1 - ,0)/(2”’ - 1) 
in a J-stage network. 

In our analysis of hot-spots, we only need to consider the nodes in the decode 
tree of the top network input pin because all input pins are identical. Firstly, 
consider an arrival to the topmost switching node in stage s of a J-stage network. 
We can determine the probability that the task selects the upper switch output pin 
by summing the routing probabilities to the network pins that are reachable from 
the upper pin. It has been shown in Proposition 6.2 that, from the upper output, 
network pin number 0 is reachable as are all pins up to and including class t, and 
from the lower output, only pins of class t + 1 are reachable, where t = J - s. Since 
there are Zk-’ pins of class k, the switch routing probability w(s) for the top switch 
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in stage s is given by: 

w(s) = 
p + c;=, 2k-‘q p + (2’ - l)q 
p + CL:‘, 2k-‘q = p + (2’ - 1)q’ (23) 

where q = (1 - ~)/(2~ - 1). 
The expression for w(s) is applicable to the top row of switches across the 

network. For the other switches in the decode tree of the top network input, the 
switch output pins are of identical class and so, by Proposition 6.2, only network 
output pins of identical class are reachable. Hence, the routing probabilities to 
the switch outputs are the same and so the value of p is a half. 

6.3 NONUNIFORM 2-BY-~ CROSSBAR. Since all network inputs are treated iden- 
tically, we only need to consider a single representative pin (say the topmost input). 
We base our recursive analysis, to determine the conditional throughput function, 
on the decode tree of the top input pin. Hence, we require knowledge of the 
properties of the crossbars in this decode tree only. In particular, the topmost 
switches in each stage of this decode tree will be nonuniform whereas other switches 
will be uniform because their output pins have the same class; the hot-spot is not 
reachable from these switches. As with the uniform routing case, we wish to 
determine the probability that a particular switch output is active given the 
utilization of the inputs to the switch. However, in this case, not only do we have 
to consider the nonuniform routing, but also the fact that when the upper and 
lower switch outputs become active, their release times are different. In fact, in our 
analysis of the crossbar, we only need to know the ratio of the release times for the 
upper and lower outputs. 

6.3.1 Definitions. The following definitions for the nonuniform crossbar are 
analogous or extensions to those for the uniform crossbar considered in Section 
5.1. 

-The equilibrium probabilities 7ro, 7rl are abbreviations of r( l), 7r(* l), respectively 
(as in Section 5.1). 

-The release time ratio Y is the ratio of the MHT of the lower output and the 
MHT of the upper output. 

-The blocking probability b;j for input pin i and output pin j (i, j E (0, 11) is 
the steady-state probability that, at the instant a task arrives on input pin i, the 
output pin it requires (pin j ) is already held by a task currently holding the other 
input pin. 

6.3.2 A Nonuniform Crossbar in Equilibrium. 

LEMMA 6.4. For a nonuniform 2 x 2 crossbar with output pins 0 and 1 that 
have 

-selection probability p and (1 - p) 
--MHT m and rm, where r is the release time ratio 
--MRHT do and d, 

the probability that the upper output is active is given by: 

’ = pm p(m + boodo) + (?- p)(rm + bold,) 

XI 
+ p(m + blodo) + (1 - p)(rm + blldl) 1 
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and the probability that the lower output is active is given by: 
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q = (1 - p)rP 
P ’ 

where ri is the utilization of input pin i (i = 0, 1). 

PROOF. Let the arrival rate on input pin i be Xi (i = 0, 1). Four applications of 
Little’s result then yield 

(i) For input pin 0: ~0 = X0 [p(m + boodo) + (1 - p)(rm + bold,)] 
(ii) For input pin 1: 7r1 = XI [p(m + b,odo) + (1 - p>(rm + blldl)] 

(iii) For output pin 0: p = p(Xo + x,)m 
(iv) For output pin 1: q = (1 - p)(Xo + X,)rm 

The result follows by eliminating X0 and XI. 0 

COROLLARY 6.5. Assuming that the nonuniform crossbar has the AOP and that 
the MRHT = MHTfor both output pins, 

P = P(P + (1 - p)r) GTi,j + 
[ 

GTioj 1 and q = (1 - p)rp 
P ’ 

where G(xi) = (1 - ri)(p’ + (1 - p)‘r*) + 2p(l - p)r. 

PROOF. Conditional on only the lower input being active, let P(t) be the 
probability that the task is holding the upper output and let P( 1) be the probability 
that it is holding the lower output. Applying Little’s result to the crossbar at times 
when only its lower input is active is equivalent to using Lemma 6.4 with x0 = 0 
and ?rI = 1 (so that blo = bll = 0). This gives: 

P 

” = p + (1 - p)r 
(1 - p)r and q’=-- 

P + (1 - p>r’ 

where p’ and q’ are the utilizations of the upper and lower output pins when only 
the lower input pin is active. Also we have: 

, _ 40 1 1 0) 
p - a(0 1) 

and 
*(O 1 0 1) 

q’ = ?r(O 1) 

and so 

P(T)=p’= p and P(J) = q’ = (1 - p>r 
P + (1 - p)r P + (1 - p>r’ 

Given that the AOP holds and that one input pin is active (by symmetry), a new 
arrival on the other input sees the active input connected to the upper output with 
probability P(t) and to the lower output with probability P(J). Thus, we have the 
following blocking probabilities: 

boo = mP(t> and bo, = ~f’(Jl, 
ho = TOP(~) and b,l = TOP(J). 

The result follows by substituting these blocking probabilities and do = m, dI = r m 
in Lemma 6.4. 0 

Let Uk(ro, 7rl, p, r) be the utilization of output pin k of a crossbar with input 
utilizations ?ro and 7rI ; upper pin routing probability p; and release time ratio r. 
Thus Uo(ro, 7rI, p, r) = p and U, (rO, aI, p, r) = q in Corollary 6.5. 
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6.4 RECURSIVE ANALYSIS OF A DELTA NETWORK WITH A HOT-SPOT. In this 
subsection, we derive the throughput of a delta network with nonuniform routing, 
conditional on the number of active inputs to the network. Although the approach 
presented here is applicable to full nonuniform routing in which all output pins 
are selected with different probabilities, for simplicity, we only consider the problem 
of a single hot-spot that is selected by a newly arriving customer with probability 
p, and all other output pins are uniformly utilized. 

Suppose the top pin is the hot-spot and so p > l/b for a b-way MIN. Then, all 
nodes in the decode tree of the top output pin will be busier than in the uniformly 
utilized case, so we refer to it as the hot decode tree. The degree of overlap with 
another output pin’s decode tree will determine the extent of the extra contention 
caused by the hot-spot. For example, customers destined for pin number one, 
adjacent to the hot pin, suffer the greatest contention because pin one’s decode 
tree nodes are identical to the hot-pin’s decode tree nodes. However, the customers 
destinated for the bottom output pin suffer less hot-spot contention because its 
decode tree nodes only overlap the hot decode tree at the leaves, that is, the input 
pins of the first stage. Consequently, in equilibrium, a greater proportion of the 
customers will build up for pin number one than for the bottom pin. It is easy to 
see, by an argument analogous to the one used to prove Proposition 6.3, that 
certain output pins have the same build up of customers and that these pins can 
be grouped together to form the classes defined earlier in Section 2.3. 

Given the N and Z defined in Section 5.1, we now define the following probability 
distributions: 

T:‘)(n) = Pr(Zo = 1 1 #(Iv) = n) 

and for k > 0, 

r:‘)(n) = Pr(Z+ = 1 1 #(N) = n). 

r:“(n) is the probability that an output pin of class k is active in an s-stage 
network with it active inputs and typically we use pin number 2k-’ as the 
representative pin for all class k pins. 

In this recursive analysis, we consider the decode tree of the top input pin of the 
network. For the base case (s = 1) of the recursion, the interconnection is a 2-way 
crossbar with switch-routing probability for the top switch output given by o (1). 
For the s-stage case (s > l), the upper and lower (s - I)-stage subnetworks are 
separate so that we can determine utilizations of the inputs to the rightmost 
crossbars by using the result obtained for the smaller network in the recursion. 
This gives the recurrence formulas in the following theorem. 

THEOREM 6.6. Suppose there are nJ active inputs to a J-stage delta network with 
a partial shuffle topology. Assuming that every crossbar in the network has the AOP 
and outputs with MRHT = MHT, the utilization of a class k output pin in stage s 
is given by: 

For 1 < s 5 J, k E (0, 11, 1 % n 5 nJ, 
min(n.Zs-‘) 

Tik)(n) = 2 i=mar(0n-25-,) Qdi I n)~kGTdih T%(n - 0, 4.9, r(s, nJ)>. (24) 

Tik)(n) = T:!;“(i), Ti!;“(n - i) 1 
’ 2’ 

1 (25) 



Representation of MIN in Queuing Models 891 

andfor k E (0, 11, we have: 

Tik)(0) = 0, 
Tlk’(l) = Uk(O, 1, w(l), r(l, nJ)>, (26) 
FW> = VkCl, 1, u(l), 41, ~JN, 

where W(S) is the switch-routing probability and r(s, nJ) is the release-time ratio for 
the top switch in stage s. 

PROOF. The proof is analogous to that of Theorem 5.6. In addition, it uses 
Lemma 6.1 for (24) and (25), that is, a pin of class k in stage s is reachable from a 
pin of class k - 1 only. Cl 

COROLLARY 6.7. The expected number of active output pins (m) conditional on 
nJ active inputs to a J-stage network is given by: 

E(m 1 nJ) = T$“(nJ) + (2-’ - l)Ty)(~). (27) 

From the theorem and its corolla&with nJ = 1,2, . . . ,2 J, the required conditional 
throughput function P,, = ~E(rn 1 n) can be used to solve the birth and death 
process defined in Section 3.3. This gives T(N), the throughput of the closed 
system for a given population N. However, the release time ratios r(s, nJ) are 
unknown in Theorem 6.6. It now remains to obtain these ratios and this is the 
subject of the next section. 

6.5 FIXED-POINT EQUATION FOR RELEASE TIME RATIOS. First we define the 
following notation: 

-Suppose there are nJ active inputs to a J-stage delta network, so that the release- 
time ratios r(s, nJ) can be abbreviated to r, for the topmost crossbar in stage s 
(s= 1,2,..., J), where r, > 0. 

-Let t describe the utilizations of the network output pins, that is, tk is the 
utilization of a class k pin (k = 0, 1, . . . , J). From Theorem 6.6, we have tk = 
Tik’(n,). 

-Let p (0 zz p < 1) be the hot-spot routing probability that describes the network 
traffic and pk be the routing probability to a class k output pin, so that 

1-p 
PO = P and Pk=y- 1 k= 1,2 ,..., J. 

-Let w(s), which we abbreviate to os, be the corresponding top switch-routing 
probability function, where 0 5 os < 1 (s = 1, 2, . . . , J). 

-Let r = (ri, r2, . . . , rJ), t = (to, tl, . . . , tJ), p = (PO, PI, . . . , pJ) and W = 
(u1,@2,...,aJ). 

We now derive a fixed-point equation for the pair (w, r) using the functions A, 
B, and C, defined below. Each function takes a pair of vectors and returns a pair 
of vectors in which the second component (r) is the same in both pairs. However, 
in function A, the r influences the value of the first vector in the result. 

-First, from Theorem 6.6, the utilization vector is a function of the switch-routing 
probabilities and the release-time ratios. Suppose F is this function and define 
(t, r) = A(o, r) = (F(w, r), r). 

-Now t induces a set of network-routing probabilities since the proportion of the 
total throughput flowing out of a pin in equilibrium must be equal to its selection 
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tk 

Pk = to + C$, 2’3, = [G(f)lk, say. 

Now let (p, r) = B(t, r) = (G(t), r). 
-The switch-routing probability is a function of the network-routing probability, 

and given by a more general form of (23): 

PO + c$:; zk-‘,& 
ws = 

,,,, + c;z;+’ zk-‘pk 
say. 

Now let (w, r) = C(p, r) = (H(p), r). 

Thus, we have the following fixed-point equation: (w, r) = C(B(A( w, r))). 
Although for all (w, r), C(B(A (w, r))) = (w ’ , r) for some w ’ , the choice of r 
determines w ’ and hence the fixed-point pair. 

We require fixed-points (w, r) of the above equation. Typically, w is given by 
the traffic pattern and a guess is required for r. From the analysis, we know that 
rJ = 1 because complete paths suffer no further contention and DMA transfer 
rates are the same regardless of the output pin. The proof of uniqueness of r with 
respect to the fixed-point equation is not given here, but we conjecture that r 
is unique because in the 2-stage network different release-time ratios in the first 
stage crossbar give output pin utilizations that induce different switch-routing 
probabilities. This means that both cannot satisfy the fixed-point equation. 

6.6 ITERATIVE METHOD. Let ry) be the approximation for r, after the ith 
iteration. As an initial guess, we choose the following: r$‘) = 1 for s = 1, 2, . . . , J. 
This guess is exact when nJ = 1 and also for uniform traffic. Furthermore, in all 
approximations to r, we know that rJ = 1. 

The induced switch-routing probabilities before the ith iteration are given by the 
following: 

wci) = first(C(B(A( w, rci’)))) where first((p, q)) = p. 

The difference between the required and the observed switch-routing probabilities 
can be quantified as follows: 

dl” = 
wj’) - us 

as 

Now if dj” is positive, then the utilization of the upper pin is higher than expected 
and so the release-time ratio for the top switch in stage s needs to be increased. 
Thus, we use the following to update the value of r: 

y(,‘+‘) = @[l + Ddp], 

where D (typically between 1 and 4) is a damping factor used to reduce the number 
of iterations. The stopping condition is 1 dj” 1 < E, s = 1, 2, . . . , J for some 
arbitrarily small E. 

I. Validation and Numerical Results 

7.1 VALIDATION OF ANALYTICAL MODEL. The model is validated against a 
simulation model of the closed system of parallel DMA servers (Section 3) con- 
nected to a circuit-switched delta network in which partial paths are held. Once 
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a complete path is established, it is held for a random-time interval that has a 
negative exponential-time interval with unit mean. 

Four types of traffic models are considered: 

-Saturated network with uniform traffic, 
-Saturated network with a hot-spot, 
-Network with small population and uniform traffic, 
-Network with small population and a hot-spot. 

The hot-spot model considered is one in which the hot pin has routing probability 
twice that of a cool pin. 

The throughput results of the validation are tabulated in Tables I, II, III, and IV. 
As can be seen from the first two tables, the analytical model is very accurate (less 
than 1% error) when the network is saturated. The relative errors are noticeably 
higher (up to 2.9%) in the case of the nonsaturated network because of the 
additional assumptions required in modeling the closed system by the birth and 
death process (Section 3.3) that is, that all arrangements of customers on a given 
number of active inputs are equally likely. 

The confidence intervals were estimated from the simulation results by using the 
batch means approach. Each sample run modeled 5000 units of time and five 
samples were taken, giving a total simulation time of 25,000 units. For large 
networks, the whole simulation run took over an hour to complete on a SUN 3 
workstation. Notice that in the saturated, uniform network with two stages, the 
simulator’s 95% confidence limits do include the exact result of 1.9993 (to four 
decimal places), but that the analytical model provides the more accurate estimate. 

7.2 NUMERICAL RESULTS. The graph of throughput against the number of 
customers, N, for a closed system compares three types of 16-way interconnections. 

-The full 16-way crossbar with uniform routing (Section 4) 
-The 4-stage delta-2 network with uniform routing (Section 5) 
-The 4-stage delta-2 network with hot-spot routing probability 0.2 (Section 6) 

As shown in Figure 6, the full crossbar gives the highest throughput and 
approaches its asymptote closely only when N is large (greater than 100). The 
uniform delta-2 network becomes saturated much faster (when N is about 100) 
because tasks face path conflicts on top of memory conflicts. In the presence of a 
hot-spot, this network gives even lower throughput and becomes saturated even 
faster as the hot pin’s decode tree saturates causing more path conflicts. The 
uniform interconnections only show similar throughput when the population is 
very small (less than 5). This indicates that even at low loads the blocking caused 
by path conflicts significantly reduces the throughput of a delta network. 

Figure 7 shows the effect of hot-spot contention in a 16-way, 4-stage delta-2 
network connected to a bank of DMA servers in a closed system with various 
populations, N. The graph of throughput against the routing probability displays 
the classic hot-spot effect for populations N = 8, 16 and the saturated case in which 
all input pins are always active. This phenomenon is caused by the additional 
internal contention placed by the hot-spot on other decode trees. For the saturated 
case, as p increases the throughput reaches its peak when all the output pins are 
uniformly utilized (p = &), drops sharply as more of the traffic is routed to the 
hot-spot, and then follows the curve 1 /p very closely, ultimately giving the through- 
put of a serial link, when p = 1. In fact, we can easily show that the l/p curve 
provides an upper bound for all protocols as follows: 
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TABLE I. SATURATED, UNIFORM DELTA NETWORK 

No. of Analytical 
stages model 

Simulation 
model 

95% Confidence 
interval 

Relative 
error (%) 

2 2.000 1.992 (1.952, 2.032) 0.40 
3 3.200 3.185 (3.143, 3.228) 0.47 
4 5.333 5.375 (5.3 13, 5.437) -0.78 
5 9.143 9.163 (9.101, 9.225) -0.22 
6 16.00 15.97 (15.85, 16.08) 0.19 

TABLE II. SATURATED, NONUNIFORM DELTA NETWORK 

No. of 
stages 

Hot-spot 
probability 

Analytical 
model 

Simulation 
model 

95% Confidence 
interval 

Relative 
error (%) 

2 0.400000 1.896 1.892 (1.866, 1.917) 0.21 
3 0.222222 3.055 3.057 (3.017, 3.097) -0.07 
4 0.117647 5.174 5.193 (5.115, 5.271) -0.37 
5 0.060606 8.996 8.989 (8.898, 9.079) 0.08 
6 0.030769 15.88 15.84 (15.71, 15.97) 0.25 

TABLE III. NONSATURATED, UNIFORM DELTA NETWORK 

No. of 
stages 

Network 
population 

Analytical 
model 

Simulation 
model 

95 % Confidence 
interval 

Relative 
error (%) 

2 4 1.612 1.644 (1.603, 1.685) -1.9 
3 8 2.548 2.543 (2.498, 2.567) 0.20 
4 16 4.283 4.227 (4.172, 4,283) 1.3 
5 32 7.460 7.248 (7.198, 7.299) 2.9 
6 64 13.28 12.98 (12.89, 13.08) 2.3 

TABLEIV. NONSATURATED, NONUNIFORMDELTANETWORK 

No. of Network Hot-spot Analytical Simulation 95% Confidence Relative 
stages population probability model model interval error (%) 

2 4 0.400000 1.564 1.579 (1.559, 1.598) -0.95 
3 8 0.222222 2.479 2.485 (2.440, 2.531) -0.24 
4 16 0.117647 4.206 4.174 (4.104, 4.244) 0.77 
5 32 0.060606 7.385 7.216 (7.139, 7.293) 2.3 
6 64 0.030769 13.21 12.88 (12.77, 12.99) 2.6 

Suppose the routing probability to network output pin i is pi and the probability 
that pin i is active (i.e., pin i’s throughput when P = 1) is tie Now, since pi of the 
total throughput, T(N) is routed to output pin i, we have ti = PiT(N), which 
implies T(N) I l/p; for all i, that is, T(N) 5 l/max(pi). Hence, if p is the hot-spot 
routing probability T(N) 5 l/p. When p is large, the throughput curves tend 
towards the curve l/p, particularly for large N, because the hot output pin is almost 
always active. These curves relate to a circuit-switched network in which partial 
paths are held. When partial paths are released and the server retries immediately, 
throughput increases and so would lie somewhere between the curve l/p and the 
corresponding curve shown in Figure 7; l/p is still an upper bound by the same 
reasoning. In this idealized case, when there is uniform routing (p = &), the 
throughput is 16~ because all output pins are busy, so the throughput would drop 
considerably faster if p increased slightly, thereby giving a more dramatic hot-spot 
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FIG. 6. Comparison of performance of 16-way networks. 
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FIG. 7. Graph of throughput vs. hot-spot routing probability (p = 100). 

effect. Similarly, packet-switched networks would give an even more drastic reduc- 
tion in throughput for a slight increase in traffic to a particular output. 

For all of these protocols, in larger networks and with large N, the hot-spot effect 
is more pronounced because the throughput is greater in the uniformly utilized 
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case and the throughput curve closely follows the l/p curve as p increases past 
about 0.2. However, it may be unlikely that very high hot-spot routing probabilities 
are encountered in practice, especially when there are a large number of output 
pins. 

8. Conclusion 
The work described in this paper extends the flow-equivalent server aggregation 
technique to incorporate passive resources that represent switching networks of 
various types. In this way, the modeling of large-scale parallel computer architec- 
tures is greatly simplified, and we have presented results predicting the throughput 
of circuit-switched networks in which partial paths are held by blocked transactions 
during path building. We can therefore see the degradation in performance suffered 
by a MIN compared with the equivalent full crossbar offering the same connectivity 
(if it were possible to fabricate such a device). We also derived for the first time by 
analytical methods, we believe, results showing the effect of “hot-spots” in asyn- 
chronous circuit-switched networks, where one destination address is more fre- 
quently selected than the others and causes performance to suffer, ultimately giving 
the throughput achieved by a single serial link. Previously, this effect has only been 
shown by simulation, for example, [25]. 

The circuit-switching communication protocol considered is an important one, 
being the simplest to fabricate and the one to be used in a new generation of optical 
switches [ 151, for example. However, there are a number of other protocols that 
should be considered. The simplest of these is infinitely buffered packet-switching 
that has already been studied as we noted in the Introduction, but many hybrids 
are also possible; perhaps the simplest being packet-switching with limited buffering 
and hence blocking. In addition, a model should be developed in which switching 
times are not neglected. 

Certainly, for contemporary electronic crossbars and even quite small message 
lengths, switching time is negligible compared with data transmission time. But for 
the optical devices referred to the converse holds for the present-unless whole 
tiles of data are normally transmitted as single messages. In such a model, the path- 
building process cannot be assumed instantaneous. 

The work presented in this paper includes the modeling of hot-spots parameter- 
ized by the probability that an arriving task selects the destination address of the 
hot-spot. One relatively simple extension to the model presented here is to allow 
full nonuniform routing so that the effect of more than one hot-spot and the effect 
of proximity of hot-spots can be studied quantitatively. A further extension would 
be to model systems in which certain output addresses are favored, depending on 
the input pin on which a task arrives. Here, of course, the arrival process would no 
longer be the same at all inputs. 

Finally, our analysis should also be adapted to represent circuit switching in 
which transactions that are blocked during path-building release their partial paths, 
effectively being “lost” and having to retry after some (randomly distributed) delay. 
As indicated in Section 7, for this protocol, the hot-spot effect on throughput 
appears to be more dramatic than when partial paths are held, especially for fast 
retry rates. Thus, it is important to model this retry protocol and a pilot study that 
uses fixed-point methods may be found in [7]. This analysis would then be close 
to the classical modeling of telephone networks. We would also expect packet- 
switched MINs to show a more pronounced hot-spot effect because when there is 
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no hot-spot they achieve higher throughput. This would then allow comparison of 
the effectiveness of protocols in a given MIN with respect to the extent of hot-spot 
contention. 
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