
CSE 531: Algorithm Analysis and Design Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2004 Last update: November 21, 2004

Introduction to Approximation Algorithms

1 Approximation algorithms and performance ratios

To date, thousands of natural optimization problems have been shown to be NP-hard [8, 18]. To deal
with these problems, two approaches are commonly adopted: (a) approximation algorithms, (b) random-
ized algorithms. Roughly speaking, approximation algorithms aim to find solutions whose costs are as
close to be optimal as possible in polynomial time. Randomized algorithms can be looked at from dif-
ferent angles. We can design algorithms giving optimal solutions in expected polynomial time, or giving
expectedly good solutions.

Many different techniques are used to devise these kinds of algorithms, which can be broadly clas-
sified into: (a) combinatorial algorithms, (b) linear programming based algorithms, (c) semi-definite
programming based algorithms, (d) randomized (and derandomized) algorithms, etc. Within each class,
standard algorithmic designs techniques such as divide and conquer, greedy method, and dynamic pro-
gramming are often adopted with a great deal of ingenuity. Designing algorithms, after all, is as much
an art as it is science.

There is no point approximating anything unless the approximation algorithm runs efficiently, i.e. in
polynomial time. Hence, when we say approximation algorithms we implicitly imply polynomial time
algorithms.

To clearly understand the notion of an approximation algorithm, we first define the so-calledap-
proximation ratio. Informally, for a minimization problem such as the VERTEX COVER problem, a
polynomial time algorithmA is said to be an approximation algorithm with approximation ratioδ if and
only if for everyinstance of the problem,A gives a solution which isat mostδ times the optimal value for
that instance. This way,δ is always at least1. As we do not expect to have an approximation algorithm
with δ = 1, we would like to getδ as close to1 as possible. Conversely, for maximization problems the
algorithmA must produce, for each input instance, a solution which is at leastδ times the optimal value
for that instance. (In this caseδ ≤ 1.)

The algorithmA in both cases are said to beδ-approximation algorithm. Sometimes, for maximiza-
tion problems people use the termapproximation ratioto refer to1/δ. This is to ensure that the ratio
is at least1 in both themin and themax case. The terms approximation ratio, approximation factor,
performance guarantee, worst case ratio, absolute worst case ratio, are more or less equivalent, except
for the1/δ confusion we mentioned above.

Let us now be a little bit more formal. Consider an optimization problemΠ, in which we try to
minimize a certain objective function. For example, whenΠ is VERTEX COVER the objective function
is the size of a vertex cover. For each instanceI ∈ Π, let OPT(I) be the optimal value of the objective
function forI. In VERTEX COVER, I is a graphG andOPT(G) depends on the structure ofG. Given a
polynomial time algorithmA which returns some feasible solution forΠ, let A(I) denote the objective
value returned byA on in putI. Define

RA(I) :=
A(I)

OPT(I)
(minimization case), (1)

1

called the performance ratio ofA on inputI. WhenΠ is a maximization problem, we agree that

RA(I) :=
OPT(I)
A(I)

(maximization case). (2)

Definition 1.1 (Performance ratio). A functionr : Z+ → R+ is called aperformance ratioof algorithm
A if RA(I) ≥ r(n) for all instancesI with sizen. In this case, we refer toA as anr(n)-approximation
algorithm.

Definition 1.2 (PTAS). Suppose for eachε > 0, we have a(1 + ε)-approximation algorithmAε for Π,
whose running time is polynomial for a fixedε, then this family of algorithms is called apolynomial time
approximation scheme(PTAS) forΠ.

Definition 1.3 (FPTAS). A PTAS is called afully polynomial time approximation scheme(FPTAS) if
the running time ofAε is polynomial in both the input size and1ε .

For instance, if on each input of sizen the algorithmAε runs in timeO(n1+1/ε) then we have a
PTAS, but not a FPTAS. On the other hand, if the running time wasΘ(n100ε−1000), then we get an
FPTAS.

The definitions sounded nice and all, but how is it possible that we can come up with an algorithm
giving solution provably close to be optimal when computing the optimal value is alreadyNP-hard (let
alone computing an optimal solution)? Let us look at the following algorithm for VERTEX COVER,
which asks us to compute a minimum vertex cover of a given graph. Note that amatchingis a subset of
edges ofG no two of which share an end point.

APPROX-VERTEX-COVER(G)
1: Arbitrarily find a maximal matchingM of G.
2: return all vertices inM .

A maximal matching can clearly be computed in polynomial time: pick an arbitrary edgee of G,
remove all edges sharing an end point withe, then repeat the process. Moreover, the set of all vertices
of a maximal matching covers all edges. The crucial point to notice is the following. LetM be any
matching inG. Let OPT(G) denote the size of a minimum vertex cover ofG. Then,OPT(G) ≥M since
each edge ofM has to be covered by at least one vertex. In particular,OPT(G) ≥ M whenM is a
maximal matching returned by the above algorithm. Thus,

APPROX-VERTEX-COVER(G) = 2|M | ≤ 2OPT(G).

We have just proved the following theorem.

Theorem 1.4. APPROX-VERTEX-COVER is a2-approximation algorithm.

2 Combinatorial Algorithms

The approximation algorithm APPROX-VERTEX-COVER is a perfect introduction to the combinatorial
methods of designing approximation algorithms. It is difficult to get a hold of exactly what we mean by
“combinatorial methods.” Basically, algorithms which make use of discrete structures and ideas (mostly
graph theoretic) are often referred to as combinatorial algorithms.

One of the best examples of combinatorial approximation algorithms is a greedy algorithm approxi-
mating SET COVER. An instance of the SET COVER problem consists of a universe setU = {1, . . . , n}
and a familyS = {S1, . . . , Sm} of subsets ofU . We want to find a sub-family ofS with as few sets as
possible, such that the union of the sub-family isU (i.e. coversU).

An obvious greedy algorithm for this problem is as follows.

GREEDY-SET-COVER(U,S)

2

1: C = ∅
2: while U 6= ∅ do
3: PickS ∈ S which covers the most number of elements inU
4: U ← U − S
5: C = C ∪ {S}
6: end while
7: return C

Theorem 2.1. Let d = max{|S| : S ∈ S}, thenGREEDY-SET-COVER is anHd-approximation algo-
rithm, whereHd = (1 + 1

2 + · · ·+ 1
d) is thedth harmonic number.

Proof. Suppose GREEDY-SET-COVER returns a cover of sizek. For 1 ≤ i ≤ k, let Xi be the set of
newly covered elements ofU after theith iteration. Note thatX1 ∪ · · · ∪Xk = U . Let xi = |Xi|, then
xi is the maximum number of un-covered elements which can be covered by any set after the(i − 1)th
step.

For each elementu ∈ Xi, assign tou a costc(u) = 1/xi. Then, the cost of the solution returned by
GREEDY-SET-COVER is k =

∑
u∈U c(u). Let T ⊆ S be any optimal solution. Then,

k =
∑
u∈U

c(u) ≤
∑
T∈T

∑
u∈T

c(u), (3)

because each element ofU is covered by at least oneT ∈ T .
Consider any setS ∈ S. For i ∈ [k], let ai = |S ∩Xi|, then it is easy to see thatxi ≥ ai + · · ·+ ak.

Consequently, ∑
u∈S

c(u) =
k∑

i=1

ai

xi
≤

k∑
i=1

ai

ai + · · ·+ ak
≤ H|S| ≤ Hd.

Inequality (3) now implies
k ≤

∑
T∈T

∑
u∈T

c(u) ≤ |T | ·Hd.

Exercise 1. The WEIGHTED SET COVER problem is similar to the SET COVER problem, except that
every set has a weight defined by a weight functionw : S → Z+. The objective is to find a set cover
with minimum weight.

1. State the decision version of WEIGHTED SET COVER and show that it isNP-complete.

2. Consider the following greedy algorithm:

GREEDY-WEIGHTED-SET-COVER(U,S, w)
1: C = ∅
2: while U 6= ∅ do
3: PickS ∈ S with the least cost per un-covered element, i.e. pickS such thatw(S)/|S ∩ U |

is minimized.
4: U ← U − S
5: C = C ∪ {S}
6: end while
7: return C

3

3. LetXi be the set of newly covered elements ofU after theith step. Letxi = |Xi|, andwi be the
weight of theith set picked by the algorithm. Assign a costc(u) = wi/xi to each elementu ∈ Xi,
for all i ≤ k. Show that, for any setS ∈ S,∑

u∈S

c(u) ≤ H|S|, ∀i = 1, . . . , k.

4. Show that GREEDY-WEIGHTED-SET-COVER has approximation ratioHd, too.

What is amazing is thatHd ≈ ln d is basically the best approximation ratio we can hope for, as was
shown by Feige [13].

Exercise 2 (Bin Packing).Suppose we are given a set ofn objects, where the sizesi of the ith object
satisfies0 < si < 1. We wish to pack all the objects into the minimum number of unit-size bins. Each
bin can hold any subset of the objects whose total size does not exceed1.

1. Prove that the problem of determining the minimum number of bins required isNP-hard. (Hint:
use SUBSET SUM).

Thefirst fit heuristic takes each object in turn and places it into the first bin that can accommodate
it. Let S =

∑n
i=1 si.

2. Show that the optimal number of bins required is at leastdSe.

3. Show that the first-fit heristic leaves at most one bin less than half full.

4. Show that the number of bins used by the first-fit heuristic is never more thand2Se.

5. Prove that the first-fit heuristic has approximation ratio2.

6. Give an efficient implementation of the first-fit heuristic, and analyze its running time.

3 Linear and integer linear programming

A linear programconsists of a linear objective function which we are trying to maximize or minimize
subject to a set of linear equalities and inequalities. For instance, the following is a linear program:

min x1 − x2 + 4x3

subject to 3x1 − x2 = 3
− x2 + 2x4 ≥ 4

x1 + x3 ≤ −3
x1, x2 ≥ 0

Linear programs can be solved in polynomial time, where the outcome is either an optimal solution or
an indication that the problem is eitherunboundedor infeasible.

An integer (linear) programis similar to a linear program with an additional requirement that vari-
ables are integers. The INTEGER PROGRAMMING problem is the problem of determining if a given
integer program has a feasible solution. This problem is known to beNP-hard. Hence, we cannot hope
to solve general integer programs efficiently. However, integer programs can often be used to formulate
a lot of discrete optimization problems.

Let us see how we can formulate VERTEX COVER as an integer program. Suppose we are given a
graphG = (V,E) with n vertices andn edges. For eachi ∈ V = {1, . . . , n}, let xi ∈ {0, 1} be a

4

variable which is1 if i belongs to the vertex cover, and0 otherwise; then, the problem is equivalent to
solving the following (linear)integer program:

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.

(4)

The objective function basically counts the number of vertices in the vertex cover. Each inequality
xi +xj ≥ 1, ij ∈ E requires each edge to have at least one of its end points in the vertex cover. Actually,
the formulation above is somewhat too strict. Suppose we relax it a little bit:

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ≥ 0, xi ∈ Z ∀i ∈ V.

Then, this would still be equivalent to solving the vertex cover problem, since in an optimal solution to
the integer program above, none of thexi can be more than1 (why?).

The next problem is a generalized version of the VC problem.

WEIGHTED VERTEX COVER

Given a graphG = (V,E), |V | = n, |E| = m, a weight functionw : V → R. Find a vertex
coverC ⊆ V for which

∑
i∈C w(i) is minimized.

Note that whenw ≡ 1, the weighted version is the same as the non-weighted version. An equivalent
linear integer program can be written as

min w1x1 + w2x2 + · · ·+ wnxn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.

Note that if the weights were all non-negative, then we only have to require the variables to be non-
negative integers, just like in the case of normal vertex cover. An integer program (IP) as above is also
referred to as a01-integer program.

The next two problems are more general versions of the VERTEX COVER and the WEIGHTED VER-
TEX COVER problems. Recall that we use[n] to denote the set{1, . . . , n}, for all positive integern, and
[0] naturally denotes∅.

SET COVER

Given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m}. Find a sub-collection
C = {Si | i ∈ J} with as few members as possible (i.e.|J | as small as possible) such that⋃

i∈J Si = [m].

Similar to VERTEX COVER, we use a01-variablexj to indicate the inclusion ofSj in the cover. For each
i ∈ {1, . . . ,m}, we need at least one of theSj containingi to be picked. The integer program is then

min x1 + · · ·+ xn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

WEIGHTED SET COVER

Given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m}, and a weight function
w : S → R. Find a coverC = {Sj | j ∈ J} with minimum total weight.

5

Trivially, we have
min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

TRAVELING SALESMAN (TSP)
A salesman must visitn cities each exactly once and return to the originating city. Given the
time to go from cityi to city j is tij , find a tour which takes the shortest time.

This problem is slightly more difficult to formulate then the ones we have seen. Letxij be the01 variable
indicating if the salesman does go from cityi to city j. Obviously, we want the salesman to go intoi
exactly once and to go out ofj exactly once for each cityi, j. This condition alone, however, does
not ensure connectivity as we might form a few disjoint cycles. We also need constraints to ensure the
connectivity of our tour. This could be done by checking for each non-empty setS ⊂ [n] if there was at
least one edge leavingS. In summary, we have the following equivalent linear integer program:

min
∑

i6=j tijxij

subject to
∑

j:j 6=i xij = 1, ∀i ∈ [n],∑
i:i6=j xij = 1, ∀j ∈ [n],∑
i∈S,j /∈S xij ≥ 1, ∀S ⊂ [n], S 6= ∅

xij ∈ {0, 1}, ∀i, j ∈ [n], i 6= j.

Exercise 3 (ASSIGNMENTPROBLEM). Formulate the following problem as an IP problem:

There aren processors andn tasks. Each processor might be more suitable to perform a
particular kind of task. Hence, there is a costwij associated if processori was to do taskj.
Find a one-to-one assignment of processors to tasks which minimizes the total cost.

Exercise 4 (KNAPSACK). Formulate the following problem as an IP problem:

Given n items with valuesv1, . . . , vn, and weightsw1, . . . , wn, correspondingly. Find a
subsetS of items with total weight at most a givenW , such that the total value ofS is as
large as possible.

Exercise 5 (INDEPENDENTSET). Formulate the following problem as an IP problem:

Given a graphG = (V,E), a weight functionw : V → R+, find an independent set of
maximum total weight; namely, a subsetP ⊆ V of vertices such that no pair of vertices in
P are adjacent and the sum

∑
i∈P w(i) is maximized.

Exercise 6. Given anm× n matrixA whose entries are either0 or 1, andw ∈ Zn, c ≥ ~0. As usual, we
use~0 to denote the all-0 vector, whose dimension is implicit in the (in)equality involved, and~1 to denote
the all-1 vector. The (weighted) SET COVER problem has the form

min
{

wT x | Ax ≥ ~1, x ∈ {0, 1}n
}

, (5)

while the INDEPENDENTSET problem in the previous exercise has the form

max
{

wT x | Ax ≤ ~1, x ∈ {0, 1}n
}

, (6)

(That is, if you do it correctly.)
In this problem, we shall see that the converse is also true:

6

(i) Given an integer program of the form (5), whereA is any 01-matrix, formulate a (weighted) SET

COVER instance which is equivalent to the program.

(ii) Given an integer program of the form (6), whereA is any 01-matrix, formulate an INDEPENDENT

SET instance which is equivalent to the program.

In both questions, show the “equivalence.” For example, in(i) you must show that the minimum
weighted set cover of the constructed set family corresponds to an optimal solution of the integer program
and vice versa.

Exercise 7 (BIN PACKING). Formulate the following problem as an IP problem:

Given a set ofn items{1, . . . , n}, and their “size”s(i) ∈ (0, 1]. Find a way to partition the
set of items in to a minimum numberm of “bins” B1, . . . , Bm, such that∑

i∈Bj

s(i) ≤ 1, ∀j ∈ [m].

4 Relaxation and rounding

In general,relaxationrefers to the action of relaxing the integer requirement of a linear IP to turn it into
an LP. For example, the LP corresponding to the IP (4) of VERTEX COVER is

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
0 ≤ xi ≤ 1, ∀i ∈ V.

(7)

Obviously if the LP version is infeasible, then the IP version is also infeasible. This is the first good
reason to do relaxation. Now, supposex∗ is an optimal solution to the LP problem. We know thatx∗ can
be found in polynomial time. We shall construct a feasible solutionxA to the IP problem as follows. Let

xA
i =

{
1 if x∗i ≥ 1/2
0 if x∗i < 1/2.

You should check thatxA is definitely feasible for the IP. This technique of constructing a feasible
solution for the IP from the LP is calledrounding. We have just seen the second advantage of doing
relaxation. The third is that an optimal value for the LP provides a lower bound for the optimal value
of the IP (why?). Using this fact, one can derive the approximation ratio of the feasible solutionxA.
Let OPT(IP) be the optimal value for the IP instance,OPT(LP) be the optimal value for the LP, and
Cost(xA) be the cost of the feasible solutionxA for the IP, then we have

OPT(IP) ≥ OPT(LP)
= x∗1 + · · ·+ x∗n

≥ 1
2
xA

1 + · · ·+ 1
2
xA

n

=
1
2
Cost(xA).

In other words, the cost of the approximationxA is at most twice the optimal. We thus have a2-
approximation algorithm to solve the VERTEX COVER problem. Since it is impossible, unless P= NP,
to have an exact polynomial time algorithm to solve VERTEX COVER, an algorithm giving a feasible so-
lution within twice the optimal is quite satisfactory. The exact same technique works for the WEIGHTED

7

VERTEX COVER problem, when the weights are non-negative. Thus, we also have a2-approximation
algorithm for the WEIGHTED VERTEX COVER problem. (Note, again, that when we say “approximation
algorithm,” it automatically means a polynomial-time approximation algorithm. There would be no point
approximating a solution if it takes exponentially long.)

Theorem 4.1. There is an approximation algorithm to solve theWEIGHTED VERTEX COVER problem
with approximation ratio2.

Obviously, one would like to reduce the ratio2 to be as close to1 as possible.
To this end, let us attempt to use the relaxation and rounding idea to find approximation algorithms

for the WEIGHTED VERTEX COVER problem. In fact, we shall deal with the following much more
general problem called the GENERAL COVER problem:

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, i ∈ [m].
xj ∈ {0, 1}, ∀j ∈ [n],

(8)

whereaij , bi, cj are all non-negative integers. Since we can remove an inequality ifbi = 0, we can
assume thatbi > 0,∀i ∈ [n]. Moreover, ifcj = 0 then we can setxj = 1 and remove the column
corresponding toj without effecting the objective function as well as feasible solutions. Thus, we can
also assume thatcj > 0,∀j ∈ [n]. Lastly, for each rowi there should be at least one positiveaij , which
is our last natural assumption.

The relaxed LP version for (8) is

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, i ∈ [m].
0 ≤ xj ≤ 1, ∀j ∈ [n],

(9)

Let x∗ be an optimal solution to the LP version. How would we roundx∗ to getxA, as in the VERTEX

COVER case? Firstly, the rounding must ensure thatxA is feasible, namely they must satisfy each of the
inequalitiesai1x1+ · · ·+ainxn ≥ bi. Secondly, we do not want to do “over-rounding,” such as assigning
everything to1, which would give a feasible solution but it does not give a very good approximation.
Consider an inequality such as

3x∗1 + 4x∗2 + x∗3 + 2x∗4 ≥ 4, (10)

which x∗ satisfies. If we were to round some of thex∗i up to 1, and the rest down to0, we must
pick the ones whose coefficients sum up to4 or more; for instance, we could roundx∗2 up to 1 and
the rest to0, or x∗1 and x∗3 to 1 and the rest to0. The difficulty with this idea is that there might
be an exponential number of ways to do this, and we also have to do this consistently throughout all
inequalitiesai1x1 + · · · + ainxn ≥ bi. We cannot roundx∗1 to 0 in one inequality, and to1 in another
inequality. Fortunately, some information about whichx∗j to round is contained in the actual values of
thex∗j . Consider inequality (10) again. The sum of all coefficients of thex∗j is 10. If all x∗j were at most
1/10, then the left hand side is at most1. Hence, there must be onex∗j which is≥ 1/10. If x∗2 ≥ 1/10,
and we round it up to1, then we’d be fine. However, ifx∗3 andx∗4 are the only ones which are≥ 1/10,
then rounding them up to1 is not sufficient. Fortunately, that cannot happen, since ifx∗1, x

∗
2 < 1/10 and

x∗3, x
∗
4 ≥ 1/10, then

3x∗1 + 4x∗2 + x∗3 + 2x∗4 <
3
10

+
4
10

+ 1 + 2 < 4.

Thus,the sum of the coefficients of thex∗j which are at least1/(ai1 + · · · + ain) has to be at leastbi.
This is an informal proof. I will leave the rigorous proof as an exercise.

8

The analysis above leads to the following rounding strategy. Let

f = max
i=1..n

 n∑
j=1

aij

 ,

and set

xA
j =

{
1 if x∗j ≥ 1

f

0 if x∗j < 1
f ,

then we have an approximation ratio off . You should map this rounding back to the rounding of the
VERTEX COVER problem to see the analogy.

Theorem 4.2. The rounding strategy above gives an approximation algorithm with approximation ratio
at most

f = max
i=1..n

 n∑
j=1

aij


for the GENERAL COVER problem; namely for every instance of theGENERAL COVER problem, the
relaxation and rounding algorithm yields a solution of cost at mostf times the optimal.

Proof. We first show thatxA is indeed feasible for IP-GC (the integer program for the GENERAL COVER

problem). SupposexA is not feasible, then there is some rowi for which

ai1x
A
1 + · · ·+ ainxA

n < bi.

This is the same as ∑
j:x∗j≥1/f

aij ≤ bi − 1.

If
∑

j:x∗j <1/f

aij > 0, then

n∑
j=1

aijx
∗
j =

∑
j:x∗j≥1/f

aijx
∗
j +

∑
j:x∗j <1/f

aijx
∗
j <

∑
j:x∗j≥1/f

aij + 1 ≤ bi,

which is a contradiction. On the other hand, when
∑

j:x∗j <1/f

aij = 0, we get

n∑
j=1

aijx
∗
j =

∑
j:x∗j≥1/f

aijx
∗
j +

∑
j:x∗j <1/f

aijx
∗
j =

∑
j:x∗j≥1/f

aij ≤ bi − 1,

which again is a contradiction to the feasibility ofx∗.
For the performance ratio, notice that

cost(xA) =
n∑

j=1

cjx
A
j ≤

n∑
j=1

cj(fx∗j) = f OPT(LP-GC)≤ f OPT(IP-GC).

Exercise 8. Describe the ratiof for the WEIGHTED SET COVER problem in terms ofm, n and the set
collectionS.

9

5 Randomized algorithms

A conjunctive normal form(CNF) formula is a boolean formula onn variablesX = {x1, . . . , xn}
consisting ofm clausesC1, . . . , Cm. Each clause is a subset ofliterals, which are variables and negations
of variables. A clause can be viewed as the sum (or theOR) of the literals. A clause is satisfied by a truth
assignmenta : X → {TRUE, FALSE} if one of the literals in the clause isTRUE.

Consider integersk ≥ 2. A k-CNF formulais a CNF formula in which each clause is of size at most
k. An Ek-CNF formulais a CNF formula in which each clause is of size exactlyk.

Given a CNF formulaϕ, the MAX -SAT problem is to find a truth assignment satisfying the maximum
number of clauses inϕ. If ϕ is of the form X-CNF, for X∈ {k, Ek}, then we get the corresponding
MAX -XSAT problems.

Exercise 9.Show that the problem of deciding if a2-CNF formula is satisfiable is in P, but MAX -2SAT
is NP-Hard (i.e. its decision version isNP-complete).

Exercise 10.State the decision version of MAX -E3SAT and show that it isNP-complete.

Theorem 5.1. There exists an8/7-approximation algorithm forMAX -E3SAT.

Proof. Letϕ be an E3-CNF formula withm clausesC1, . . . , Cm. LetSϕ be the random variable counting
the number of satisfied clauses ofϕ by randomly settingxi independently to beTRUE with probability
1/2. Since the probability that a clauseCj is satisfied is7/8, by linearity of expectation E[Sϕ] = 7m/8.
This number clearly is within a factor7/8 of the optimal value. Hence, this simple randomized algorithm
achieves (expected) approximation ratio8/7. We can derandomize this algorithm by a method known as
conditional expectation. The basic idea is as follows.

Consider a fixedk ∈ [n]. Leta1, . . . , ak ∈ {TRUE, FALSE} bek boolean values. Letϕ′ be a formula
obtained by settingxi = ai, i ≤ j, and discarding allc clauses that are already satisfied. Then, it is easy
to see that

E[Sϕ | xi = ai, 1 ≤ i ≤ k] = E[Sϕ′] + c.

Hence, givena1, . . . , ak we can easily compute E[Sϕ | xi = ai, 1 ≤ i ≤ k] in polynomial time.
Now, for k ≥ 1, notice that

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1]

=
1
2

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1, xi = TRUE] +
1
2

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1, xi = FALSE]

The larger of the two expectations on the right hand side is at least E[Sϕ | xi = ai, 1 ≤ i ≤ k−1]. Hence,
we can setxi to beTRUE or FALSE one by one, following the path that leads to the larger expectation, to
eventually get a truth assignment which satisfies as many clauses as E[Sϕ] = 7m/8.

6 An FPTAS for SUBSET SUM

An instance of the SUBSET SUM problem consists of a setX of n positive integers and a targett. The
objective is to find a subset ofX whose sum is at mostt and is as close tot as possible. In this section
we give a fully polynomial time approximation scheme for this problem.

Let X = {x1, . . . , xn}. Suppose we have a setSi holding all sums of subsets of{x1, . . . , xi}, then
Si+1 = Si ∪ (Si + xi+1), whereS + x is the set of all sums of elements ofS andx, for any setS and
numberx. This idea can be used to give an exact algorithm for the SUBSETSUM problem. Unfortunately,
the algorithm runs in exponential worst case time. The listsSi keeps growing exponentially longer,
roughly doubled after each step.

10

The idea of our approximation scheme is to trim downSi so that it does not grow too large. Suppose
Si is sorted in increasign order. Given a parameterδ > 0, we can scanSi from left to right. Supposeb is
the current element being examined anda is the previous element, thenb is removed fromSi whenever
a(1 + δ) ≥ b (which is at leasta). Basically, whenδ is small enoughb can be “represented” bya since
they are close enough to each other. LetTRIM(S, δ) be a procedure which trims a setS with parameterδ,
thenTRIM can certainly be implemented in polynomial time. We are now ready to describe our FPTAS
for SUBSET SUM.

FPTAS-SUBSET-SUM(X, t, ε)
1: n← |X|
2: S0 ← 〈0〉
3: for i = 1 to n do
4: Si ← Si−1 ∪ (Si−1 + xi)
5: Si ← TRIM(Si, ε/2n)
6: Remove fromSi elements> t
7: end for
8: return a∗ – the largest element inSn

Theorem 6.1. FPTAS-SUBSET-SUM is a fully polynomial time approximation scheme forSUBSET

SUM.

Proof. Let Pi be the set of all sums of subsets of{x1, . . . , xi}. Then, it is easy to see that for anyb ∈ Pi

whereb ≤ t, there is ana ∈ Si such that

b ≤
(
1 +

ε

2n

)i
a.

In particular, ift∗ is the optimal sum then

t∗ ≤
(
1 +

ε

2n

)n
a∗ ≤ (1 + ε)a∗.

It remains to show that the algorithm actually runs in polynomial time inn and1/ε. Since theith loop
of the algorithm takes time polynomial in the size ofSi, it is sufficient to show that|Si| is a polynomial
in n and1/ε. Note that if1 < a < b are both inSi (after trimming), thenb/a > (1 + ε/2n). Hence, the
number of elements inSi is at most

2 + log1+ε/2n t = 2 +
ln t

ln(1 + ε/2n)

≤ 2 +
2n(1 + ε/2n) ln t

ε

= 2 + 2n
1
ε

ln t + 2n ln t,

which is clearly a polynomial inn and1/ε. (We used the fact thatlnx ≥ x/(1 + x).)

7 Inapproximability

Suppose we have designed anr-approximation algorithm for some problem. How do we know thatr is
really the best we can do? Is there a better approximation algorithm? One way to show thatr is the best
approximation ratio is to show that it isNP-hard to approximate the problem to within any ratio smaller
thanr. We give several results of this favor in this section.

11

Theorem 7.1. It is NP-hard to approximate TSP to within any constant ratio.

Proof. Suppose there is anr-approximation algorithmA for TSP wherer is some constant. We shall
show that there is a polynomial time algorithm that decides if a graphG = (V,E) has a Hamiltonian
cycle. Letn = |V | and construct a complete graphG′ = (V,E′) from G and a weight functionw :
E′ → Z+ defined by

w(u, v) =

{
1 if (u, v) ∈ E

rn + 1 if (u, v) /∈ E.

RunA on the instanceG′. We claim thatA returns a TSP tour of size at mostrn if and only if G has a
Hamiltonian cycle.

Note that an optimal TSP tour ofG′ must have size at leastn. SupposeA returns a TSP tour of size
at mostrn. Then, this tour cannot use any edge(u, v) /∈ E. Thus, this tour corresponds to a Hamiltonian
cycle inG. Conversely, supposeG has a Hamiltonian cycle, then the optimal solution forG′ is of cost
n. Consequently, the solutionA returns must have cost at mostrn.

Historical Notes

Texts on Linear Programming are numerous, of which I recommend [7] and [34]. For Integer Program-
ming, [39] and [34] are suggested. Recent books on approximation algorithms include [5,23,32,37]. For
linear algebra, see [24,35]. See [1,33] for randomized algorithms, derandomization and the probabilistic
methods.

The notion of anapproximation algorithmdated back to the seminal works of Garey, Graham, and
Ullman [17] and Johnson [25]. Interestingly enough, approximation algorithms were designed in the
works of Graham [19], Vizing [38], and Erdös [11] before the notion ofNP-completeness came to life.

The greedy approximation algorithm for SET COVER is due to Johnson [25], Lovász [30], and
Chvátal [6]. Feige [13] showed that approximating SET COVER to an asymptotically better ratio than
lnn is NP-hard.

The most popular method of solving a linear program is called thesimplex method, whose idea is
to move along edges of the feasible polyhedron from vertex to vertex. This idea dates back to Fourier
(1826), and mechanized algebraically by George Dantzig in 1947 (published in 1951 [9]), who also ac-
knowledged fruitful conversation with von Neumann. This worst-case exponential algorithm has proved
to work very well for most practical problems. Even now, when we know of many other polynomial time
algorithms [27, 28, 41] to solve LPs, the simplex method is still among the best when it comes to prac-
tice. The worst-case complexity of the simplex method was determined to be exponential when Klee and
Minty [29] found an example where the method actually visits all vertices of the feasible polyhedron.
The quest for a provably good algorithm continued until Khachian [28] devised theellipsoid method
in 1979. The method performs poorly in practice, however. A breakthrough was made by Karmarkar
in 1984 [27], when he found a method which works in provably polynomial time, and also 50 times
faster than the simplex method in his experiments. Karmarkar’s method was of theinterior point type of
method,

The8/7-approximation algorithm for MAX -E3SAT follows the line of Yannakakis [40], who gave
the first4/3-approximation for MAX -SAT. A 2-approximation for MAX -SAT was given in the seminal
early work of Johnson [25]. Johnson’s algorithm can also be interpreted as a derandomized algorithm,
mostly the same as the one we presented. Later, Karloff and Zwick [26] gave an8/7-approximation
algorithm for MAX -3SAT based on semidefinite programming. This approximation ratio is optimal as
shown by H̊astad [22]. The conditional expectation method was implicit in Erdős and Selfridge [12].

Until 1990, few inapproximability results were known. To prove a typical inapproximability result
such as MAX -CLIQUE is not approximable to within some ratior (unless P=NP), a natural direction is

12

to find a reduction from some NP-complete problem, say 3SAT, to MAX -CLIQUE which satisfies the
following properties:

• given a 3CNF formulaφ, the reduction constructs in poly-time a graphGφ

• there is some poly-time computablethresholdt such that, ifφ is satisfiable, thenGφ has a clique
of size at leastt, and ifφ is not satisfiable, thenGφ does not have any clique of sizet/r or more.

If M AX -CLIQUE is r-approximable, then one can use thisr-approximation algorithm, along with the
reduction above, to decide if a 3CNF formulaφ is satisfiable. The strategy is to run the algorithm onGφ.
If the answer ist/r or more, thenφ is satisfiable, elseφ is not.

Techniques for proving NP-hardness seem inadequate for this kind ofgap-producingreductions.
Intuitively, the reason is that non-deterministic Turing Machines are sensitive to small changes: the
accepting computations and rejecting computations are not very far from one another (no gap). In 1990,
the landmark work by Feige, Goldwasser, Lovász, Safra, and Szegedy [15] connects probabilistic proof
systems and inapproximability of NP-hard problems. This has become known asthe PCP connection.
A year later, the PCP theorem - a very strong characterization of NP - was proved with the works of
Arora and Safra [4], Arora, Lund, Motwani, Sudan, and Szegedy [3]. A plethora of inapproximability
results using the PCP connection follow, some of them are optimal [2,10,13,16,20–22,31]. The reader is
referred to recent surveys by Feige [14] and Trevisan [36] for good discussions on this point and related
history.

References
[1] N. A LON AND J. H. SPENCER, The probabilistic method, Wiley-Interscience Series in Discrete Mathematics and Opti-

mization, Wiley-Interscience [John Wiley & Sons], New York, second ed., 2000. With an appendix on the life and work
of Paul Erd̋os.

[2] S. ARORA, L. BABAI , J. STERN, AND Z. SWEEDYK, The hardness of approximate optima in lattices, codes, and
systems of linear equations, J. Comput. System Sci., 54 (1997), pp. 317–331. 34th Annual Symposium on Foundations
of Computer Science (Palo Alto, CA, 1993).

[3] S. ARORA, C. LUND, R. MOTWANI , M. SUDAN , AND M. SZEGEDY, Proof verification and the hardness of approxi-
mation problems, J. ACM, 45 (1998), pp. 501–555. Prelim. version in FOCS’92.

[4] S. ARORA AND S. SAFRA, Probabilistic checking of proofs: a new characterization of NP, J. ACM, 45 (1998), pp. 70–
122. Prelim. version in FOCS’92.

[5] G. AUSIELLO, P. CRESCENZI, G. GAMBOSI, V. KANN , A. MARCHETTI-SPACCAMELA, AND M. PROTASI, Complex-
ity and approximation, Springer-Verlag, Berlin, 1999. Combinatorial optimization problems and their approximability
properties, With 1 CD-ROM (Windows and UNIX).

[6] V. CHVÁTAL , A greedy heuristic for the set-covering problem, Math. Oper. Res., 4 (1979), pp. 233–235.

[7] V. CHVÁTAL , Linear programming, A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New
York, 1983.

[8] P. CRESCENZI ANDV. K. (EDS.), A compendium of NP-optimization problems. http://www.nada.kth.se/

[9] G. B. DANTZIG, Maximization of a linear function of variables subject to linear inequalities, in Activity Analysis of
Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons Inc., New York, N. Y., 1951,
pp. 339–347.

[10] I. D INUR AND S. SAFRA, On the hardness of approximating label-cover, Inform. Process. Lett., 89 (2004), pp. 247–254.

[11] P. ERDŐS, On even subgraphs of graphs, Mat. Lapok, 18 (1967), pp. 283–288.

[12] P. ERDŐS AND J. L. SELFRIDGE, On a combinatorial game, J. Combinatorial Theory Ser. A, 14 (1973), pp. 298–301.

13

[13] U. FEIGE, A threshold ofln n for approximating set cover (preliminary version), in Proceedings of the Twenty-eighth
Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), New York, 1996, ACM, pp. 314–318.

[14] , Approximation thresholds for combinatorial optimization problems, in Proceedings of the International Congress
of Mathematicians, Vol. III (Beijing, 2002), Beijing, 2002, Higher Ed. Press, pp. 649–658.

[15] U. FEIGE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA, AND M. SZEGEDY, Interactive proofs and the hardness of ap-
proximating cliques, J. ACM, 43 (1996), pp. 268–292. Prelim. version in FOCS’91.

[16] U. FEIGE AND J. KILIAN , Zero knowledge and the chromatic number, J. Comput. System Sci., 57 (1998), pp. 187–199.
Complexity 96—The Eleventh Annual IEEE Conference on Computational Complexity (Philadelphia, PA).

[17] M. R. GAREY, R. L. GRAHAM , AND J. D. ULLMAN , Worst case analysis of memory allocation algorithms, in Proceed-
ings of the Fourth Annual ACM Symposium on Theory of Computing (STOC), New York, 1972, ACM, pp. 143–150.

[18] M. R. GAREY AND D. S. JOHNSON, Computers and intractability, W. H. Freeman and Co., San Francisco, Calif., 1979.
A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences.

[19] R. L. GRAHAM , Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45 (1966), pp. 1563–1581.

[20] V. GURUSWAMI, J. HÅSTAD, AND M. SUDAN, Hardness of approximate hypergraph coloring, SIAM J. Comput., 31
(2002), pp. 1663–1686 (electronic).

[21] J. HÅSTAD, Clique is hard to approximate withinn1−ε, Acta Math., 182 (1999), pp. 105–142.

[22] , Some optimal inapproximability results, in STOC ’97 (El Paso, TX), ACM, New York, 1999, pp. 1–10 (electronic).

[23] D. S. HOCHBAUM, ed.,Approximation Algorithms for NP Hard Problems, PWS Publishing Company, Boston, MA,
1997.

[24] R. A. HORN AND C. R. JOHNSON, Matrix analysis, Cambridge University Press, Cambridge, 1985.

[25] D. S. JOHNSON, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974), pp. 256–278.
Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).

[26] H. KARLOFF AND U. ZWICK, A 7/8-approximation algorithm for MAX 3SAT?, in Proceedings of the 38th Annual IEEE
Symposium on Foundations of Computer Science, Miami Beach, FL, USA, IEEE Press, 1997.

[27] N. KARMARKAR , A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), pp. 373–395.

[28] L. G. KHACHIAN , A polynomial algorithm for linear programming, Dokl. Akad. Nauk SSSR, 244 (1979), pp. 1093–
1096. English translation in Soviet Math. Dokl. 20, 191-194, 1979.

[29] V. K LEE AND G. J. MINTY , How good is the simplex algorithm?, in Inequalities, III (Proc. Third Sympos., Univ.
California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York,
1972, pp. 159–175.

[30] L. L OVÁSZ, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975), pp. 383–390.

[31] C. LUND AND M. YANNAKAKIS , On the hardness of approximating minimization problems, J. Assoc. Comput. Mach.,
41 (1994), pp. 960–981.

[32] E. W. MAYR AND H. J. PRÖMEL, eds.,Lectures on proof verification and approximation algorithms, vol. 1367 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998. Papers from the Workshop on Proof Verification and
Approximation Algorithms held at Schloß Dagstuhl, April 21–25, 1997.

[33] R. MOTWANI AND P. RAGHAVAN , Randomized algorithms, Cambridge University Press, Cambridge, 1995.

[34] A. SCHRIJVER, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John
Wiley & Sons Ltd., Chichester, 1986. A Wiley-Interscience Publication.

[35] G. STRANG, Linear algebra and its applications, Academic Press [Harcourt Brace Jovanovich Publishers], New York,
second ed., 1980.

14

[36] L. TREVISAN, Inapproximability of combinatorial optimization problems, Tech. Rep. 65, The Electronic Colloquium in
Computational Complexity, 2004.

[37] V. V. VAZIRANI , Approximation algorithms, Springer-Verlag, Berlin, 2001.

[38] V. G. VIZING, On an estimate of the chromatic class of ap-graph, Diskret. Analiz No., 3 (1964), pp. 25–30.

[39] L. A. WOLSEY, Integer programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley
& Sons Inc., New York, 1998. A Wiley-Interscience Publication.

[40] M. YANNAKAKIS , On the approximation of maximum satisfiability, J. Algorithms, 17 (1994), pp. 475–502. Third Annual
ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992).

[41] Y. Y. Y E, Extensions of the potential reduction algorithm for linear programming, J. Optim. Theory Appl., 72 (1992),
pp. 487–498.

15

