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Introduction to Approximation Algorithms

1 Approximation algorithms and performance ratios

To date, thousands of natural optimization problems have been shown to be NP-hard [8, 18]. To deal
with these problems, two approaches are commonly adopted: (a) approximation algorithms, (b) random-
ized algorithms. Roughly speaking, approximation algorithms aim to find solutions whose costs are as
close to be optimal as possible in polynomial time. Randomized algorithms can be looked at from dif-
ferent angles. We can design algorithms giving optimal solutions in expected polynomial time, or giving
expectedly good solutions.

Many different techniques are used to devise these kinds of algorithms, which can be broadly clas-
sified into: (a) combinatorial algorithms, (b) linear programming based algorithms, (c) semi-definite
programming based algorithms, (d) randomized (and derandomized) algorithms, etc. Within each class,
standard algorithmic designs techniques such as divide and conquer, greedy method, and dynamic pro-
gramming are often adopted with a great deal of ingenuity. Designing algorithms, after all, is as much
an art as it is science.

There is no point approximating anything unless the approximation algorithm runs efficiently, i.e. in
polynomial time. Hence, when we say approximation algorithms we implicitly imply polynomial time
algorithms.

To clearly understand the notion of an approximation algorithm, we first define the so-apHed
proximation ratia Informally, for a minimization problem such as theeRTEX COVER problem, a
polynomial time algorithm4 is said to be an approximation algorithm with approximation réaticand
only if for everyinstance of the probleny gives a solution which iat most times the optimal value for
that instance. This wayj, is always at least. As we do not expect to have an approximation algorithm
with 6 = 1, we would like to get as close td as possible. Conversely, for maximization problems the
algorithm.4 must produce, for each input instance, a solution which is at di@stes the optimal value
for that instance. (In this cage< 1.)

The algorithmA in both cases are said to bepproximation algorithm. Sometimes, for maximiza-
tion problems people use the teapproximation ratioto refer to1/§. This is to ensure that the ratio
is at leastl in both themin and themax case. The terms approximation ratio, approximation factor,
performance guaranteavorst case ratipabsolute worst case ratj@re more or less equivalent, except
for the1/6 confusion we mentioned above.

Let us now be a little bit more formal. Consider an optimization problénin which we try to
minimize a certain objective function. For example, whigis VERTEX COVER the objective function
is the size of a vertex cover. For each instance II, let opT(I) be the optimal value of the objective
function forI. In VERTEX COVER, I is a graphG andoPT(G) depends on the structure 6f Given a
polynomial time algorithm4 which returns some feasible solution fidr let A(/) denote the objective
value returned byl on in put/. Define

RA(I) = (minimization casg (1)




called the performance ratio gf on input/. WhenlI is a maximization problem, we agree that

Ra(l) = OZ(Tg)

Definition 1.1 (Performance ratio). A functionr : Z* — R™ is called gperformance ratimf algorithm
Aif R4(I) > r(n) for all instanced with sizen. In this case, we refer td as anr(n)-approximation
algorithm.

(maximization case (2)

Definition 1.2 (PTAS). Suppose for each > 0, we have g1 + ¢)-approximation algorithmd, for II,
whose running time is polynomial for a fixedthen this family of algorithms is calledmolynomial time
approximation schem@TAS) forIl.

Definition 1.3 (FPTAS). A PTAS is called &ully polynomial time approximation scher(lePTAS) if
the running time of4. is polynomial in both the input size ariéd

For instance, if on each input of sizethe algorithmA, runs in timeO(n'*1/¢) then we have a
PTAS, but not a FPTAS. On the other hand, if the running time @&s'%°<~19%9), then we get an
FPTAS.

The definitions sounded nice and all, but how is it possible that we can come up with an algorithm
giving solution provably close to be optimal when computing the optimal value is alld&ard (let
alone computing an optimal solution)? Let us look at the following algorithm ferMXx COVER,
which asks us to compute a minimum vertex cover of a given graph. Note thatchingis a subset of
edges of= no two of which share an end point.

APPROXVERTEX-COVER(G)

1: Arbitrarily find a maximal matching/ of G.
2: return all vertices inM.

A maximal matching can clearly be computed in polynomial time: pick an arbitrary edde=,
remove all edges sharing an end point witlthen repeat the process. Moreover, the set of all vertices
of a maximal matching covers all edges. The crucial point to notice is the following M. bk any
matching inG. Let oPT(G) denote the size of a minimum vertex coveraf Then,opPT(G) > M since
each edge of\/ has to be covered by at least one vertex. In partic@am(G) > M when M is a
maximal matching returned by the above algorithm. Thus,

APPROXVERTEX-COVER(G) = 2|M| < 20PT(G).
We have just proved the following theorem.

Theorem 1.4. APPROXVERTEX-COVER is a 2-approximation algorithm.

2 Combinatorial Algorithms

The approximation algorithm APROXVERTEX-COVER is a perfect introduction to the combinatorial
methods of designing approximation algorithms. It is difficult to get a hold of exactly what we mean by
“combinatorial methods.” Basically, algorithms which make use of discrete structures and ideas (mostly
graph theoretic) are often referred to as combinatorial algorithms.

One of the best examples of combinatorial approximation algorithms is a greedy algorithm approxi-
mating T CoVER. An instance of the ST COVER problem consists of a universe #ét= {1,...,n}
and a familyS = {Si,...,S,,} of subsets o/. We want to find a sub-family of with as few sets as
possible, such that the union of the sub-family/igi.e. coverd)).

An obvious greedy algorithm for this problem is as follows.

GREEDY-SET-COVER(U, S)



1.C=0

2: while U # () do
3 Pick S € S which covers the most number of elementg/in
4: U—~U-S
5 C=CU{S}
6: end while
7: return C

Theorem 2.1. Letd = max{|S| : S € S}, thenGREEDY-SET-COVER is an H -approximation algo-
rithm, whereH,; = (1+ § + --- + 1) is thedth harmonic number.

Proof. Suppose GEEDY-SET-COVER returns a cover of sizé. Forl < i < k, let X; be the set of
newly covered elements &éf after theith iteration. Note thaf; U --- U X, = U. Letz; = |X;|, then
x; is the maximum number of un-covered elements which can be covered by any set after thgh
step.

For each element € X;, assign tou a coste(u) = 1/z;. Then, the cost of the solution returned by
GREEDY-SET-COVERIiSk = ) ;;c(u). Let7 C S be any optimal solution. Then,

k=Y cu) <> ) eu), 3)

uelU TeT ueT

because each elementléfis covered by at least orie € 7.
Consider any sef € S. Fori € [k], leta; = |S N X;|, then itis easy to see that > a; + - - - + ax.
Consequently,

k
a; a;
§ C(U):E ;:SE mSHWSHd'

u€eSsS i=1
Inequality (3) now implies

O]

Exercise 1. The WEIGHTED SET COVER problem is similar to the Sr CovER problem, except that
every set has a weight defined by a weight function S — Z*. The objective is to find a set cover
with minimum weight.

1. State the decision version of BMGHTED SET COVER and show that it iSNP-complete.

2. Consider the following greedy algorithm:

GREEDY-WEIGHTED-SET-COVER(U, S, w)
1:C=10
: while U # 0 do
Pick S € S with the least cost per un-covered element, i.e. gicduch thatv(S)/|S N U|
is minimized.
U—~U-S5
C=CuU{s}
end while
return C

w N
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3. LetX; be the set of newly covered elementd bhfter theith step. Letr; = |X;|, andw; be the
weight of theith set picked by the algorithm. Assign a cegt) = w;/x; to each element € X;,
forall i < k. Show that, for any s&f € S,

ZC(U) < H|S|7 Vi = 1,...,]43.
uesS

4. Show that @EEDY-WEIGHTED-SET-COVER has approximation ratiél, too.

What is amazing is thatl; ~ Ind is basically the best approximation ratio we can hope for, as was
shown by Feige [13].

Exercise 2 (Bin Packing). Suppose we are given a setiobbjects, where the sizg of the ith object
satisfied) < s; < 1. We wish to pack all the objects into the minimum number of unit-size bins. Each
bin can hold any subset of the objects whose total size does not ekceed

1. Prove that the problem of determining the minimum number of bins requitS@ihard. (Hint:
use YIBSET SUM).

Thefirst fit heuristic takes each object in turn and places it into the first bin that can accommodate
it. LetS = Z?:l Si.

Show that the optimal number of bins required is at 1€&3t
Show that the first-fit heristic leaves at most one bin less than half full.
Show that the number of bins used by the first-fit heuristic is never morg 21$gn

Prove that the first-fit heuristic has approximation ratio

o o~ W N

Give an efficient implementation of the first-fit heuristic, and analyze its running time.

3 Linear and integer linear programming

A linear programconsists of a linear objective function which we are trying to maximize or minimize
subject to a set of linear equalities and inequalities. For instance, the following is a linear program:

min Ty — Ty + 4dxs
subjectto 3z — a9 = 3
— T2 + 2z4 > 4
1 +  x3 < -3
r1,22 = 0

Linear programs can be solved in polynomial time, where the outcome is either an optimal solution or
an indication that the problem is eithaénboundear infeasible

An integer (linear) progranis similar to a linear program with an additional requirement that vari-
ables are integers. ThelTEGER PROGRAMMING problem is the problem of determining if a given
integer program has a feasible solution. This problem is known Il Behard. Hence, we cannot hope
to solve general integer programs efficiently. However, integer programs can often be used to formulate
a lot of discrete optimization problems.

Let us see how we can formulateeE¥TEX COVER as an integer program. Suppose we are given a
graphG = (V, E) with n vertices andh edges. Foreache V = {1,...,n}, leta; € {0,1} be a



variable which isl if ¢ belongs to the vertex cover, afdbtherwise; then, the problem is equivalent to
solving the following (linearjnteger program

min T1+ X9+ -+ Ty
subjectto z; +x; > 1, Vij € FE, (4)
x; € {0, 1}, Vi e V.

The objective function basically counts the number of vertices in the vertex cover. Each inequality
x;+x; > 1,ij € Erequires each edge to have at least one of its end points in the vertex cover. Actually,
the formulation above is somewhat too strict. Suppose we relax it a little bit:

min r+xo+---+xy
subjectto z; +z; > 1, Vije€FE,
xiZO,miEZ Vi eV.

Then, this would still be equivalent to solving the vertex cover problem, since in an optimal solution to
the integer program above, none of thhecan be more thaih (why?).
The next problem is a generalized version of the VC problem.

WEIGHTED VERTEX COVER
GivenagraptG = (V, E), |V| = n, |E| = m, aweight functionv : V' — R. Find a vertex
coverC C V for which ), w(i) is minimized.

Note that whenv = 1, the weighted version is the same as the non-weighted version. An equivalent
linear integer program can be written as

min W1T1 + WaZ2 + + - + WpTn
subjectto z; +z; > 1, Vij € E,
x; € {0,1}, Vi e V.

Note that if the weights were all non-negative, then we only have to require the variables to be non-
negative integers, just like in the case of normal vertex cover. An integer program (IP) as above is also
referred to as al-integer program.

The next two problems are more general versions of tarx CoVvER and the WEIGHTED VER-
TEX COVER problems. Recall that we u$e] to denote the sdtl, ..., n}, for all positive integer, and
[0] naturally denote§.

SET COVER

Given a collectiors = {S1,...,S,} of subsets ofm| = {1, ..., m}. Find a sub-collection

C = {S; | i € J} with as few members as possible (i|d] as small as possible) such that

Uies Si = [m].
Similar to VERTEX COVER, we use d1-variablex; to indicate the inclusion of; in the cover. For each
i €{1l,...,m}, we need at least one of tl$¢ containing: to be picked. The integer program is then

min T+ + 2
subjectto > a;>1, Vi€ [m],
j:S;2i

zj € {0,1}, Vj € [n].
WEIGHTED SET COVER
Given acollectior§ = {51, ..., S, } of subsets ofm| = {1, ..., m}, and a weight function

w: S — R. Find a coveC = {S; | j € J} with minimum total weight.
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Trivially, we have

min W11 + -+ WpTn
subjectto Y z; > 1, Vi€ [m],
j:SjBi

zj € {0,1}, Vj € [n].

TRAVELING SALESMAN (TSP)
A salesman must visit cities each exactly once and return to the originating city. Given the
time to go from city; to city j is ¢;;, find a tour which takes the shortest time.

This problem is slightly more difficult to formulate then the ones we have seew, L le¢ the01 variable
indicating if the salesman does go from cityo city j. Obviously, we want the salesman to go into
exactly once and to go out gfexactly once for each city, j. This condition alone, however, does

not ensure connectivity as we might form a few disjoint cycles. We also need constraints to ensure the
connectivity of our tour. This could be done by checking for each non-empty sein| if there was at

least one edge leaving In summary, we have the following equivalent linear integer program:

min > iz tij®ij
subjectto Y. =1, Vi€ n],
D ity Tig = 1, v € [n,
ZieS,j¢S‘rij >1, V§C [n],S 75@
zi; € {0,1}, Vi, j € [n],i # j.

Exercise 3 ASSIGNMENTPROBLEM). Formulate the following problem as an IP problem:

There aren processors and tasks. Each processor might be more suitable to perform a
particular kind of task. Hence, there is a cag} associated if processowas to do task.
Find a one-to-one assignment of processors to tasks which minimizes the total cost.

Exercise 4 KNAPSACK). Formulate the following problem as an IP problem:

Givenn items with valuesy, ..., v,, and weightsw, ..., w,, correspondingly. Find a
subsetS of items with total weight at most a givai, such that the total value &f is as
large as possible.

Exercise 5 (NDEPENDENTSET). Formulate the following problem as an IP problem:

Given a graphG = (V, E), a weight functionw : V' — R, find an independent set of
maximum total weight; namely, a subgetC V' of vertices such that no pair of vertices in
P are adjacent and the sum, » w(7) is maximized.

Exercise 6. Given anm x n matrix A whose entries are eith@ror 1, andw € Z", ¢ > 0. As usual, we
use0 to denote the all vector, whose dimension is implicit in the (in)equality involved, artd denote
the all-1 vector. The (weighted) 8r COVER problem has the form

min {wT:U | Az > 1,z € {0, 1}"} ) (5)
while the INDEPENDENTSET problem in the previous exercise has the form
max{wa | Az < 1,z € {0, 1}"}7 (6)

(That is, if you do it correctly.)
In this problem, we shall see that the converse is also true:
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(i) Given an integer program of the form (5), whetds any 01-matrix, formulate a (weighted)es
CovEeRr instance which is equivalent to the program.

(ii) Given an integer program of the form (6), whetds any 01-matrix, formulate anNDEPENDENT
SET instance which is equivalent to the program.

In both questions, show the “equivalence.” For example(ijnyou must show that the minimum
weighted set cover of the constructed set family corresponds to an optimal solution of the integer program
and vice versa.

Exercise 7 BIN PACKING). Formulate the following problem as an IP problem:

Given a set of: items{1, ..., n}, and their “size”s(i) € (0, 1]. Find a way to partition the
set of items in to a minimum numbes of “bins” By, ..., B,,, such that

D s(i) <1, Ve m].

iEBj

4 Relaxation and rounding

In generalrelaxationrefers to the action of relaxing the integer requirement of a linear IP to turn it into
an LP. For example, the LP corresponding to the IP (4) BRVEX COVER is

min r1+To2+ -+ Ty
subjectto z; +z; > 1, Vije E, 7
0<x; < 1, VieV.

Obviously if the LP version is infeasible, then the IP version is also infeasible. This is the first good
reason to do relaxation. Now, suppases an optimal solution to the LP problem. We know thétcan
be found in polynomial time. We shall construct a feasible solutitrio the IP problem as follows. Let

1 ifar>1/2
0 ifzf<1/2.

*

o =

EIE

You should check thai# is definitely feasible for the IP. This technique of constructing a feasible
solution for the IP from the LP is calle@bunding We have just seen the second advantage of doing
relaxation. The third is that an optimal value for the LP provides a lower bound for the optimal value
of the IP (why?). Using this fact, one can derive the approximation ratio of the feasible salttion

Let oPT(IP) be the optimal value for the IP instancepT(LP) be the optimal value for the LP, and
Cost(z*) be the cost of the feasible solutiart for the IP, then we have

OPT(IP) > OPT(LP)
= x]+- 4,
L a

> =
Z Qazl—i— +

%Cost(x‘A).

)

N =

In other words, the cost of the approximatiort is at most twice the optimal. We thus have2a
approximation algorithm to solve theB®TEX COVER problem. Since it is impossible, unless=PNP,
to have an exact polynomial time algorithm to solveRf Ex COVER, an algorithm giving a feasible so-
lution within twice the optimal is quite satisfactory. The exact same technique works forgherWeD
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VERTEX COVER problem, when the weights are non-negative. Thus, we also hasaparoximation
algorithm for the WEIGHTED VERTEX COVER problem. (Note, again, that when we say “approximation
algorithm,” it automatically means a polynomial-time approximation algorithm. There would be no point
approximating a solution if it takes exponentially long.)

Theorem 4.1. There is an approximation algorithm to solve tAé&EIGHTED VERTEX COVER problem
with approximation ratic.

Obviously, one would like to reduce the rafido be as close td as possible.

To this end, let us attempt to use the relaxation and rounding idea to find approximation algorithms
for the WEIGHTED VERTEX COVER problem. In fact, we shall deal with the following much more
general problem called theE®ERAL COVER problem:

min cixy + ... 4+ cprp
subjectto apz1 + ... + apmxn, > b, i€ [m]. (8)
zj €{0,1}, Vj € [n],

wherea;;, b;, c; are all non-negative integers. Since we can remove an inequality=f 0, we can
assume thab; > 0,Vi € [n]. Moreover, ifc; = 0 then we can set; = 1 and remove the column
corresponding tg without effecting the objective function as well as feasible solutions. Thus, we can
also assume that > 0,V; € [n]. Lastly, for each row there should be at least one positivg, which
is our last natural assumption.

The relaxed LP version for (8) is

min cixy + ... 4+ cpxy
SUbjeCt to ajpzr + ... + apxTn > by, 1 E [m} (9)
0<z; <1, VjE[TL],

Let 2* be an optimal solution to the LP version. How would we rourido getz*, as in the \ERTEX
CoVER case? Firstly, the rounding must ensure tivais feasible, namely they must satisfy each of the
inequalitiesz;1 21+ - - +asnxy > b;. Secondly, we do not want to do “over-rounding,” such as assigning
everything tol, which would give a feasible solution but it does not give a very good approximation.
Consider an inequality such as

3] + das + x5 + 2z > 4, (10)

which z* satisfies. If we were to round some of th¢ up to 1, and the rest down t0, we must
pick the ones whose coefficients sum upitor more; for instance, we could round up to1 and
the rest to0, or 27 andzj to 1 and the rest td). The difficulty with this idea is that there might
be an exponential number of ways to do this, and we also have to do this consistently throughout all
inequalitiesa;;z1 + - - - + aimx, > b;. We cannot round to 0 in one inequality, and ta in another
inequality. Fortunately, some information about whichto round is contained in the actual values of
thez?. Consider inequality (10) again. The sum of all coefficients ofithes 10. If all 27 were at most
1/10, then the left hand side is at mdstHence, there must be ong which is> 1/10. If z3 > 1/10,
and we round it up td, then we'd be fine. However, if; andz} are the only ones which are 1/10,
then rounding them up tbis not sufficient. Fortunately, that cannot happen, sinag,ift5 < 1/10 and
xy, x3 > 1/10, then

3 4
T+ 4z P2 < —+ —+14+2<4.
31’1“‘ $2+$3+ l'4< 10+ 10+ +2<

Thus,the sum of the coefficients of thx? which are at leastl/(a;1 + - - - + ai,) has to be at leash;.
This is an informal proof. | will leave the rigorous proof as an exercise.



The analysis above leads to the following rounding strategy. Let

7j=1
and set
H * 1

then we have an approximation ratio f You should map this rounding back to the rounding of the
VERTEX COVER problem to see the analogy.

Theorem 4.2. The rounding strategy above gives an approximation algorithm with approximation ratio
at most

n
f = Imax E Ajj
i=1l..n -

Jj=1

for the GENERAL COVER problem; namely for every instance of tk&ENERAL COVER problem, the
relaxation and rounding algorithm yields a solution of cost at mjosines the optimal.

Proof. We first show that:* is indeed feasible for IP-GC (the integer program for tteNGRAL COVER
problem). Suppose is not feasible, then there is some réo¥or which

aile +---+ amxﬁ < b;.

E aijgbi—l.

ja;21/f

This is the same as

If Z ajj > 0, then
j:x;<1/f

n
Zaijx; = Z aijx;f + Z aijl';k' < Z ai; + 1 < b,
7=1

jar>1/f <1/ f Gr>1/f

which is a contradiction. On the other hand, whel) ~  a;; = 0, we get

j:x;<1/f
n
* * *
E aijT; = E aijT; + E Aijx; = E a;; < b —1,
Jj=1 Juai>1/f Juai<1/f Juai>1/f

which again is a contradiction to the feasibility of.
For the performance ratio, notice that

n

costz?) =Y "¢zt <> ¢j(fa]) = f OPT(LP-GC) < f oPT(IP-GC)
j=1 j=1

O]

Exercise 8. Describe the ratigf for the WEIGHTED SET COVER problem in terms ofn, n and the set
collectionS.



5 Randomized algorithms

A conjunctive normal form(CNF) formula is a boolean formula om variablesX = {z1,...,z,}
consisting ofn clauses’y, . . ., C,,. Each clause is a subsetlitvérals, which are variables and negations
of variables. A clause can be viewed as the sum (optieof the literals. A clause is satisfied by a truth
assignment : X — {TRUE, FALSE} if one of the literals in the clause TRUE.

Consider integerg > 2. A k-CNF formulais a CNF formula in which each clause is of size at most
k. An Ek-CNF formulais a CNF formula in which each clause is of size exaktly

Given a CNF formula, the Max -SAT problem is to find a truth assignment satisfying the maximum
number of clauses ip. If ¢ is of the form X-CNF, for Xe {k, Ek}, then we get the corresponding
MAX-XSAT problems.

Exercise 9. Show that the problem of deciding i2aCNF formula is satisfiable is in P, but Ak -2SAT
is NP-Hard (i.e. its decision versionI§P-complete).

Exercise 10. State the decision version of Mk -E3SAT and show that it iNP-complete.
Theorem 5.1. There exists aB/7-approximation algorithm foMAX -E3SAT.

Proof. Lety be an B-CNF formula withm clause<”,, . . ., C,. LetS, be the random variable counting
the number of satisfied clausesyby randomly setting:; independently to berRUE with probability
1/2. Since the probability that a clauég is satisfied is7/8, by linearity of expectation 5] = 7m/8.
This number clearly is within a fact@y/8 of the optimal value. Hence, this simple randomized algorithm
achieves (expected) approximation ratjty. We can derandomize this algorithm by a method known as
conditional expectationThe basic idea is as follows.

Consider a fixed € [n]. Letay,...,a; € {TRUE, FALSE} bek boolean values. Let’ be a formula
obtained by setting; = a;, i < j, and discarding alt clauses that are already satisfied. Then, it is easy
to see that

E[S, | zi =a;,1 <i < k| =E[Sy]+c

Hence, givenuy, . .., a; we can easily compute[E, | z; = a;, 1 < i < k| in polynomial time.
Now, for & > 1, notice that

E[Sy |z =a;,1 <i<k—1]

1 1
= 5E[SW\a;i:ai,lgigk—l, mi:TRUE]—i-iE[S@]:Ei:ai,lgigk—l, x; = FALSE]

The larger of the two expectations on the right hand side is at Iéﬁgt\ E; = a;, 1 <i < k—1]. Hence,
we can set:; to beTRUE or FALSE one by one, following the path that leads to the larger expectation, to
eventually get a truth assignment which satisfies as many clauséS ds-E7m /8. O

6 An FPTAS for SUBSET SUM

An instance of the 8BSET SuM problem consists of a séf of n positive integers and a targetThe
objective is to find a subset df whose sum is at mostand is as close tbas possible. In this section
we give a fully polynomial time approximation scheme for this problem.

Let X = {x1,...,x,}. Suppose we have a s&t holding all sums of subsets %, ..., z;}, then
Sit1 = S; U (S; + x;+1), whereS + z is the set of all sums of elements gfandz, for any setS and
numberz. This idea can be used to give an exact algorithm for thesk T Sum problem. Unfortunately,
the algorithm runs in exponential worst case time. The list&eeps growing exponentially longer,
roughly doubled after each step.
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The idea of our approximation scheme is to trim dasyrso that it does not grow too large. Suppose
S, is sorted in increasign order. Given a parameéter 0, we can scarty; from left to right. Supposeé is
the current element being examined anid the previous element, theéris removed fromS; whenever
a(l 4+ §) > b (which is at least:;). Basically, whery is small enouglb can be “represented” by since
they are close enough to each other. trtv (.S, §) be a procedure which trims a setvith parameten,
thenTRIM can certainly be implemented in polynomial time. We are now ready to describe our FPTAS
for SUBSET SUM.

FPTAS-SBSET-SUM( X, t,¢€)
n «— | X|
. So — <0>
:fori=1tondo
Si = Si—1 U (Si—1 + x4)
S; < TRIM(S;,€/2n)
Remove fromS; elements> ¢
end for
return «* —the largest element ifi,,

O NO AR WNR

Theorem 6.1. FPTAS-SUBSET-SuM is a fully polynomial time approximation scheme fSwBSET
SUM.

Proof. Let P, be the set of all sums of subsets{af;, ..., z;}. Then, itis easy to see that for ahy P;
whereb < ¢, there is arw € S; such that

t 1 + " a ]. + €)a

It remains to show that the algorithm actually runs in polynomial time and1/e. Since theith loop

of the algorithm takes time polynomial in the size%f it is sufficient to show thats;| is a polynomial
inn andl/e. Note that ifl < a < b are both inS; (after trimming), therb/a > (1 + ¢/2n). Hence, the
number of elements if; is at most

Int
In(1+¢/2n)
2n(1+¢/2n)Int
n n( 66/ n)In

2+ 10g1+e/2nt = 2+

2

1
= 2+42n—Int+ 2nlint,
€

which is clearly a polynomial im and1/e. (We used the fact thah x > = /(1 + x).) O

7 Inapproximability

Suppose we have designedraapproximation algorithm for some problem. How do we know thast
really the best we can do? Is there a better approximation algorithm? One way to shevstties best
approximation ratio is to show that it NP-hard to approximate the problem to within any ratio smaller
thanr. We give several results of this favor in this section.
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Theorem 7.1. It is NP-hard to approximate TSP to within any constant ratio.

Proof. Suppose there is arrapproximation algorithm4 for TSP wherer is some constant. We shall
show that there is a polynomial time algorithm that decides if a gr@ph (V, E)) has a Hamiltonian
cycle. Letn = |V| and construct a complete graphi = (V, E’) from G and a weight functiono :

E’ — 77 defined by
] :
w(u,v) = ff (u,v) € E
rn+1 if (u,v) ¢ E.

Run A on the instanc&’. We claim that4 returns a TSP tour of size at mast if and only if G has a
Hamiltonian cycle.

Note that an optimal TSP tour 6 must have size at least SupposeA returns a TSP tour of size
at mostrn. Then, this tour cannot use any edgev) ¢ E. Thus, this tour corresponds to a Hamiltonian
cycle inG. Conversely, supposé has a Hamiltonian cycle, then the optimal solution 8ris of cost
n. Consequently, the solutioa returns must have cost at most. O

Historical Notes

Texts on Linear Programming are numerous, of which | recommend [7] and [34]. For Integer Program-
ming, [39] and [34] are suggested. Recent books on approximation algorithms include [5,23,32,37]. For
linear algebra, see [24,35]. See [1,33] for randomized algorithms, derandomization and the probabilistic
methods.

The notion of ampproximation algorithndated back to the seminal works of Garey, Graham, and
Ullman [17] and Johnson [25]. Interestingly enough, approximation algorithms were designed in the
works of Graham [19], Vizing [38], and E&d [11] before the notion ANP-completeness came to life.

The greedy approximation algorithm fore® CovEeR is due to Johnson [25], L&sz [30], and
Chvatal [6]. Feige [13] showed that approximating’SCOVER to an asymptotically better ratio than
Inn is NP-hard.

The most popular method of solving a linear program is calledstimplex methodwhose idea is
to move along edges of the feasible polyhedron from vertex to vertex. This idea dates back to Fourier
(1826), and mechanized algebraically by George Dantzig in 1947 (published in 1951 [9]), who also ac-
knowledged fruitful conversation with von Neumann. This worst-case exponential algorithm has proved
to work very well for most practical problems. Even now, when we know of many other polynomial time
algorithms [27, 28, 41] to solve LPs, the simplex method is still among the best when it comes to prac-
tice. The worst-case complexity of the simplex method was determined to be exponential when Klee and
Minty [29] found an example where the method actually visits all vertices of the feasible polyhedron.
The quest for a provably good algorithm continued until Khachian [28] devisedllipsoid method
in 1979. The method performs poorly in practice, however. A breakthrough was made by Karmarkar
in 1984 [27], when he found a method which works in provably polynomial time, and also 50 times
faster than the simplex method in his experiments. Karmarkar's method wasiofetier pointtype of
method,

The 8/7-approximation algorithm for Mx-E3SAT follows the line of Yannakakis [40], who gave
the first4/3-approximation for M\x-SAT. A 2-approximation for Mux-SAT was given in the seminal
early work of Johnson [25]. Johnson’s algorithm can also be interpreted as a derandomized algorithm,
mostly the same as the one we presented. Later, Karloff and Zwick [26] ga8¢7aapproximation
algorithm for Max-3SAT based on semidefinite programming. This approximation ratio is optimal as
shown by Hastad [22]. The conditional expectation method was implicit ind&rand Selfridge [12].

Until 1990, few inapproximability results were known. To prove a typical inapproximability result
such as Mx-CLIQUE is not approximable to within some ratiolunless P=NP), a natural direction is
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to find a reduction from some NP-complete problem, say 3SAT, axMCLIQUE which satisfies the
following properties:

e given a 3CNF formula, the reduction constructs in poly-time a gra@h

e there is some poly-time computaliteesholdt such that, if¢ is satisfiable, thed/; has a clique
of size at least, and if ¢ is not satisfiable, the@',, does not have any clique of sizé- or more.

If M AX-CLIQUE is r-approximable, then one can use thigapproximation algorithm, along with the
reduction above, to decide if a 3CNF formulas satisfiable. The strategy is to run the algorithmgn
If the answer ig/r or more, thenp is satisfiable, else is not.

Techniques for proving NP-hardness seem inadequate for this kigdpproducingreductions.
Intuitively, the reason is that non-deterministic Turing Machines are sensitive to small changes: the
accepting computations and rejecting computations are not very far from one another (no gap). In 1990,
the landmark work by Feige, Goldwasser, Bs¥, Safra, and Szegedy [15] connects probabilistic proof
systems and inapproximability of NP-hard problems. This has become knotkie RECP connection.

A year later, the PCP theorem - a very strong characterization of NP - was proved with the works of
Arora and Safra [4], Arora, Lund, Motwani, Sudan, and Szegedy [3]. A plethora of inapproximability
results using the PCP connection follow, some of them are optimal [2,10,13,16,20-22,31]. The reader is
referred to recent surveys by Feige [14] and Trevisan [36] for good discussions on this point and related
history.
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