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We’ve done

• Solving Recurrences

– The substitution method

∗ Make a guess with iteration or recursion-tree
∗ Prove correctness by induction

– The Master theorem

Now

• The “Divide and Conquer” method

– Introduction to sorting, featuring Quicksort

– Medians and order statistics

– Introduction to probabilistic analysis, average-case
analysis

– Integer multiplication

– Matrix multiplication

Next

• Sorting networks
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Divide and Conquer

Basic idea:

1. Divide: Partition the problem into smaller ones

2. Conquer: Recursively solve the smaller problems
(Remember to solve the base case)

3. Combine the partial solutions

Examples:

• Merge-sort (read on your own)

• Quicksort

• Order statistics, matrix multiplication, integer
multiplication

• Bitonic & merging networks (parallel sorting)

One of my favorite motivating examples:

Given an array A[1, . . . , n] of real numbers. Report the

largest sum of numbers in a (contiguous) sub-array of A

(If all elements are negative, report 0: the sum of an empty
sub-array)
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Sorting algorithms

Importance

• Many many practical applications require sorting

• Great problems to illustrate algorithm design and analysis
techniques

• One of the very few problems which we can prove
non-trivial lower-bound on running time

Classification

• In place: only a constant amount of extra memory needed

• Comparison based: only comparisons are used to gain
order information

A few names

• Classic: insertion, merge, quick, shell, bucket, counting,
radix

• More modern: no names yet
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On presenting an algorithm

1. Input & Output

2. A brief description of the idea

3. Pseudo code

4. Analysis of running time (worst case, average case, ...),
memory usage, and possibly other practical measures

You will be asked to follow this convention in homework
assignments
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Quicksort

• Input: array A, two indices p, q

• Output: same array with A[p, . . . , q] sorted

• Idea: use divide & conquer

– Divide: rearrange A[p, . . . , q] such that for some r in
between p and q,

A[i] ≤ A[r] ∀i = p, . . . , r − 1

A[r] ≤ A[j] ∀j = r + 1, . . . , q

Compute r as part of this step.

– Conquer: Quicksort(A[p, . . . , r − 1]), and
Quicksort(A[r + 1, . . . , q])

– Combine: Nothing

Note: I intentionally use different indices than in CLRS.
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Quicksort: Pseudo code

Quicksort(A, p, q)

1: if p < q then
2: r ← Partition(A, p, q)

3: Quicksort(A, p, r − 1)

4: Quicksort(A, r + 1, q)

5: end if

Let’s “Analyze this”

Note:

• Robert de Niro was not the inventor of Quicksort,

• neither was Billy Crystal.

• Definitely not Al Gore (-ithm), the self-proclaimed
“inventor” of the Internet
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The key: partitioning

i p,j q

... 3 1 8 5 6 2 7 4 ...

p,i j q

... 3 1 8 5 6 2 7 4 ...

p i j q

... 3 1 8 5 6 2 7 4 ...

p i j q

... 3 1 8 5 6 2 7 4 ...

p i j q

... 3 1 8 5 6 2 7 4 ...

p i j q

... 3 1 8 5 6 2 7 4 ...

p i j q

... 3 1 2 5 6 8 7 4 ...

p i q,j

... 3 1 2 5 6 8 7 4 ...

p i q,j

... 3 1 2 4 6 8 7 5 ...
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Partitioning: pseudo code

Partition around A[q]:

Partition(A, p, q)

1: x← A[q]

2: i← p− 1

3: for j ← p to q do
4: if A[j] ≤ x then
5: swap A[i+ 1] and A[j]

6: i← i+ 1

7: end if
8: end for
9: return i

Question: how would you partition around A[m] for some m:
p ≤ m ≤ q ?

Notes:

• Slightly different from the textbook. Idea is the same.

• A[p], . . . , A[i] ≤ x

• A[i+ 1], . . . , A[j − 1] > x

• A[j], . . . , A[q − 1]: elements not examined yet
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Worst case running time

Let T (n) be the worst-case running time of Quicksort.

It’s easy to see that T (n) = Ω(n2)

We shall show T (n) = O(n2), implying T (n) = Θ(n2).

T (n) = max
0≤r≤n−1

(T (r) + T (n− r − 1)) + Θ(n)

T (n) = O(n2) follows by induction.
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Informal analysis

Worse-case partitioning:

T (n) = T (n− 1) + T (0) + Θ(n) = T (n− 1) + Θ(n)

yielding T (n) = O(n2).

Best-case partitioning:

T (n) ≈ 2T (n/2) + Θ(n)

yielding T (n) = O(n lg n).

Somewhat balanced partitioning:

T (n) ≈ T
( n

10

)
+ T

(
9
n

10

)
+ Θ(n)

yielding T (n) = O(n lg n) (recursion-tree).
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Average-case running time: a sketch
Claim. The running time of Quicksort is proportional to the
number of comparisons

Let Mn be the expected number of comparisons (what’s the
sample space?).

Let X be the random variable counting the number of
comparisons.

Mn = E[X] =

n∑

j=1

E[X | A[q] is the jth least number]
1

n

=
1

n

n∑

j=1

(
n− 1 +Mj−1 +Mn−j

)

= n− 1 +
2

n

n−1∑

j=0

Mj

Hence,

Mn =
2(n− 1)

n
+
n+ 1

n
Mn−1,

which yields Mn = Θ(n lg n).
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Randomized Quicksort

Randomized-Quicksort(A, p, q)

1: if p < q then
2: r ← Randomized-Partition(A, p, q)

3: Randomized-Quicksort(A, p, r − 1)

4: Randomized-Quicksort(A, r + 1, q)

5: end if

Randomized-Partition(A, p, q)

1: pick m at random between p, q
2: swap A[m] and A[q]

// The rest is unchanged
3: x← A[q]

4: i← p− 1

5: for j ← p to q do
6: if A[j] ≤ x then
7: swap A[i+ 1] and A[j]

8: i← i+ 1

9: end if
10: end for
11: return i

Question: why bother?

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 12



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo September 14, 2004

Basic concepts from Probability Theory - a quick
reminder

(Please also scan Chapter 5 and Appendix C1-4.)

• Sample space S, e.g. all pairs of outcomes when rolling 2

dice

• E ⊆ S are events, e.g. the event that the first die is 4

• E,F are events, then E ∩ F and E ∪ F are events

• A function Pr assigning each event a number in [0, 1]

• Probability of an event E is Pr(E)

• Pr must satisfy

– 0 ≤ Pr(E) ≤ 1, ∀E ⊆ S
– P (S) = 1

– If {Ei | i ∈ I} is mutually exclusive, then

Pr (∪i∈IEi) =
∑

i∈I
Pr(Ei)

For example, let Ei, i ∈ {1, 2, . . . , 6} be the events that the first
die gives i, then the Ei are mutually exclusive
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Conditional Probability

Probability of E given F is

Pr[E | F ] =
Pr(E ∩ F )

Pr(F )

(Note: this is only valid when Pr(F ) = 0.)

Example:

• E the event the first die is 4

• F the event the second die is 4

• Intuitively, what’s Pr(E | F ) ?

• Does the definition of conditional probability agree with
your intuition?
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Random variables

• We’re often more interested in some function on events

• E.g., what’s the probability that the sum of two dice is 7?

• These quantities of interest are random variables

• Formally, a random variable X is a function:

X : 2S → R

which means each event E has a real value assigned by X

Example:

• X the number of coin tosses until a head turns up

• What’s the probability that X = 5?

• What’s the probability that X = k?

A random variable X is discrete if it only takes countably many
values.

X and Y are independent if for all a, b,

Pr[X ≤ a, Y ≤ b] = Pr[X ≤ a]Pr[Y ≤ b]
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Expectation

The expected value of a discrete random variable X is:

E[X] =
∑

a

aPr[X = a]

where the sum ranges over all possible values of X .

Example:

• Roll a fair die

• Let X be the number on the face up

• Then

E[X] = 1
1

6
+ 2

1

6
+ 3

1

6
+ 4

1

6
+ 5

1

6
+ 6

1

6
= 3.6777

Further properties
Linearity of expectation

E[a1X1 + · · ·+ anXn] = a1E[X1] + · · ·+ anE[Xn]

When X and Y are independent,

E[XY ] = E[X]E[Y ]
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Conditional Probability and Expectation

Definitions:

Pr[X = a | Y = b] :=
Pr[X = a, Y = b]

Pr[Y = b]

E[X | Y = b] :=
∑

a

aPr[X = a | Y = b]

Properties:

Pr[X = a] =
∑

b

Pr[X = a | Y = b]Pr[Y = b]

E[X] =
∑

b

E[X | Y = b]Pr[Y = b]

Note: these only hold for discrete random variables
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Average-case analysis of Quicksort revisited

(See the textbook for another way to do this analysis.)

Let Mn be the expected number of comparisons.

Let X be the random variable counting the number of
comparisons.

Mn = E[X] =
n∑

j=1

E[X | A[q] is the jth least number]
1

n

=
1

n

n∑

j=1

(
n− 1 +Mj−1 +Mn−j

)

= n− 1 +
2

n

n−1∑

j=0

Mj

Hence,

Mn =
2(n− 1)

n
+
n+ 1

n
Mn−1,

which yields Mn = Θ(n lg n).
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The selection problem

• The ith order statistic of a set of n numbers is the ith
smallest number

• The median is the bn/2cth order statistic

• Selection problem: find the ith order statistic as fast as
possible

Examples:

• Conceivable that the running time is proportional to the
number of comparisons

• Find a way to determine the 2nd order statistic using as
few comparisons as possible

• How about the 3rd order statistic?
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Randomized selection

• Input: A[p, . . . , q] and i, 1 ≤ i ≤ q − p+ 1

• Output: the ith order statistic of A[p, . . . , q]

• Idea: use “Partition” from Quicksort

If “Partition” return the right O-STAT, then accept it

If not, go left or right correspondingly
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Randomized selection: pseudo code

Randomized-Select(A, p, q, i)
1: r ← Partition(A, p, q)

2: k = r − p+ 1 // the O-STAT order of A[r]

3: if i = k then
4: return A[r]

5: end if
6: if i < k then
7: return Randomized-Select(A, p, r − 1, i)

8: else
9: return Randomized-Select(A, r + 1, q, i− r)

10: end if

Of course, we could replace “Partition” by
“Randomized-Partition”
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Randomized-Selection: Analysis

• Let Xk be the indicator that A[r] is the kth O-STAT

• Let T (n) be the expected running time

Then,

T (n) ≤
n∑

k=1

Xk (T (max(k − 1, n− k)) +O(n))

=
n∑

k=1

(XkT (max(k − 1, n− k))) +O(n)

Hence,

E[T (n)] ≤ E

[
n∑

k=1

XkT (max(k − 1, n− k))

]
+O(n)

=
n∑

k=1

E[Xk]E[T (max(k − 1, n− k))] +O(n)

Consequently,

E[T (n)] ≤ 2

n

n∑

k=bn/2c
E[T (k)] +O(n)
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Selection in Worst-case Linear Time

• Input: A[p, . . . , q] and i, 1 ≤ i ≤ q − p+ 1

• Output: the ith order statistic of A[p, . . . , q]

• Idea: same as Randomized-Selection, but also try to
guarantee a good split.

Find A[m] which is not too far left nor too far right

Then, split around A[m]

The idea is from the following paper:

Manuel Blum, Vaughan Pratt, Robert E. Tarjan, Robert W.
Floyd, and Ronald L. Rivest, “Time bounds for selection.”
Fourth Annual ACM Symposium on the Theory of Computing
(Denver, Colo., 1972). Also, J. Comput. System Sci. 7 (1973),
448–461.
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Linear-Selection: Pseudo-Pseudo Code

Linear-Select(A, i)
1: “Divide” n elements into dn5 e groups,

• bn5 c groups of size 5, and

• dn5 e − bn5 c group of size n− 5bn5 c
2: Find the median of each group
3: Find x: the median of the medians by calling Linear-Select

recursively
4: Swap A[m] with A[n], where A[m] = x

5: r ← Partition(A, 1, n)

6: if r = i then
7: return A[r]

8: else
9: recursively go left or right accordingly

10: end if
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Linear-Select: Analysis

• T (n) denotes running time

• Lines 1 & 2: Θ(n)

• Line 3: T (dn5 e)

• Lines 4, 5: Θ(n)

• Lines 6-10: at most T (f(n)), where f(n) is the larger of
two numbers:

– number of elements to the left of A[r],

– number of elements to the right of A[r]

f(n) could be shown to be at most 7n
10 + 6, hence

T (n) ≤





Θ(1) if n ≤ 71

T (dn5 e) + T (b 7n
10 + 6c) + Θ(n) if n > 71

Induction gives T (n) = O(n)
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Long integer multiplication

• Let i and j be two n-bit integers, n is huge, compute ij.

• Straightforward multiplication takes Θ(n2) (please
convince yourself of this fact)

• Naive D&C:

i = a22n/3 + b2n/3 + c

j = x22n/3 + y2n/3 + z

Hence,

ij = ax24n/3 + (ay + bx)2n+

(az + cx+ by)22n/3 + (bz + cy)2n/3 + cz. (1)

Naive D&C gives

T (n) = 9T (n/3) + Θ(n),

which is again Θ(n2) by Master Theorem.

Note: addition and shifting take Θ(n), hence we want to
reduce the number of (recursive) multiplications
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Smart D&C
Want only 5 terms: ax, ay + bx, az + cx+ by, bz + cy, cz.

p1 = (a+ b)(x+ y) = (ay + bx) + ax+ by

p2 = (b+ c)(y + z) = (bz + cy) + by + cz

p3 = (a+ c)(x+ z) = (az + cx + by) + ax+ cz − by
p4 = ax

p5 = by

p6 = cz

ax = p4

ay + bx = p2 − p4 − p5

az + cx+ by = p3 − p4 − p6 + p5

bz + cy = p2 − p5 − p6

cz = p6

ij = p424n/3 + (p2 − p4 − p5)2n+

(p3 − p4 − p6 + p5)22n/3 + (p2 − p5 − p6)2n/3 + p6. (2)

T (n) = 6T (n/3) + Θ(n)

Hence, T (n) = Θ(nlog3 6) = o(n2).
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Questions

• What if n is not an exact power of 3? What’s the running
time in terms of n in that case?

• Would dividing things into 2 pieces work?

• Would dividing things into 4 pieces work?

• Would they be better than 3?
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Matrix Multiplication

• X and Y are two n× n matrices. Compute XY .

• Straightforward method takes Θ(n3).

• Naive Divide & Conquer:

XY =


A B

C D




S T

U V




=


AS +BU AT +BV

CS +DU CT +DV




T (n) = 8T (n/2) + Θ(n2)

Thus,

T (n) = Θ(n3)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 29



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo September 14, 2004

Smart D&C: Strassen Algorithm

Idea: somehow reduce the number of multiplications to be less
than 8. E.g., T (n) = 7T (n/2) + Θ(n2) gives

T (n) = nlog2 7 = o(n3)

Want: 4 terms (in lower-case letters for easy reading)

as+ bu

at+ bv

cs+ du

ct+ dv
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Seven

(Again, this is Strassen’s algo, not Brat Pitt’s)

p1 = (a− c)(s+ t) = as + at− cs− ct

p2 = (b− d)(u+ v) = bu + bv − du− dv

p3 = (a+ d)(s+ v) = as + dv + av + ds

p4 = a(t− v) = at− av
p5 = (a+ b)v = bv + av

p6 = (c+ d)s = cs + ds

p7 = d(u− s) = du− ds

Write the following in terms of the pi’s. Homework 2!

as+ bu = ???

at+ bv = ???

cs+ du = ???

ct+ dv = ???

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 31


