(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

We’ve done

e Dynamic Programming
— Matrix Chain Multiplication

— Longest Common Subsequence

Now

e Dynamic Programming
— Assembly-line scheduling
— Optimal Binary Search Trees

Next

e Shortest paths algorithms

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Assembly Line Scheduling (ALS)

A factory has two assembly lines with n stations each
— Line 1: 511,512,...,51.n
— Line 2; 52,1, 52,2, c ooy SQ,n

Automobile chassis enter one of the lines, have parts added
at n stations, and exit at the end of a line

Enter time for line 2 18 e;
Exit time for line 7 1s x;

S1,; and Sy ; perform the same function (thus, a chassis
goes through exactly one of 57 ; or S ;)

Time required at station S; ; 1S a; ;
Time required to move from 5; ; to the other line is ¢; ;

Time required to move from \S; ; to the next station on the
same line 1s 0.

Find a fastest schedule to complete one auto.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

The recurrence

e ™ :the optimal time

o f;|j] : the fastest time to get through S ;

Then,
F* = min{f[1,n] + @1, f[2,n] + z2}.
)
' e1r+ a1 lfj =1
Abl=q | L
\min{filj = 1+ av;, f2l =1 +t25-1 + a1} ifj>1
)
. e2 + a2,1 ifj =1
ul=q | L
\min{faolj = 1] +az;, filj = +t1-1 +az;}p ifj>1

The rest (pseudo code and stuff)

e Straightforward, see text for details
e Running time is linear

e Space used is also linear

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Binary search trees

Keys k1, ko, ..., k,, and dummy keys dg, d1, ..., d,.

Given an ordering:

do < k1 < di < ko <do<---<k,<d,.

A BST on these keys i1s a tree satisfying
e For every node v, keys on the left are less than v
e For every node v, keys on the right are greater than v

e Dummy keys are leaf nodes (representing NOT FOUND)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Optimal binary search tree problem

Inputs
® {kl,...,kn}
® {dg,...,dn}

o dp < ki<di<ko<dy<---<k,<d,
e p;, = Problk; is queried]

e ¢; = Prob|d; is queried|
(i.e. the probability that a query is in between k; and £;41)

Clearly, it 1s necessary that

sz' + Z%’ = 1.
i=1 i=0

The COST of a query is the number of nodes visited.

Expected query cost

n

— Z(DEPTHT(]Q;) +1)-p; + Z(DEPTHT(di) +1) - g
i=1 =0

Construct a binary search tree which minimizes

expected query cost.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Step 1: Identify subproblems

e Structure of a BST:

— A root containing k., for some r € {1,...,n}.

— Left subtree consists of keys k1, ..., k-_1, and dummy
keys dg,...,d,_1

— Right subtree consists of keys k11, ..., ky,, and

dummy keys d,., ..., d,
— Subtle point: if » = 1, then the left has only dg; if
r = n, then the right has only d,,.
e Optimal substructure:
— For a BST to be optimal, it 1s necessary that the left
subtree and the right subtree are optimal (why?)
e Sub problems:
- Givenk;,...,k;(1<:<j7+1<n+1)and
di—1,...,d; (nokey kyif1 =7+ 1)
— Construct a BST T, on these keys that minimizes
J

J
Z(DEPTHTU (ky)+1)-pr+ Z (DEPTHT,, (dz)+1) Gy

r=1 r=1—1

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Step 2: The recurrence relation

e Givenl <:<j7+4+1<n+1.
e Let e[i, j] denote the expected query cost of an optimal
BST on keys k;, ..., k; and dummy keys d;_1,...,d;.
e Define
J J
w(za]) = Zpa: + Z Az -
rT=1 r=1—1
Noting that, if £, was the root of 7;;, then
e[ivj] = DPrt (6[7:,7“ o 1] + ’LU(i,?“ R 1))
+(elr + 1,] + w(r +1,7))
= eli,r —1]+elr+1,5] +w(i,j)

Hence,
o qj—1 ifg=2—1
eli,j]=9 . | . . oy e
min {efi,r —1] +e[r +1,j] +w(i,j)} ifi <y
ISTN)]

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Step 3: How to fill out the table?

e This is very similar to Matrix Chain Multiplication

e Entries e|i, j| are dependent on other e|x, y| with
y—x<j—1.
Let root|i, 7] denote the r for which £, is at the root of 7T5;.

We can record root|i, j| while updating e[i, j]

The rest 1s similar to MCM

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Step 4: Pseudo code

OPTIMAL-BST(p, q,n)

1: fort =1ton+ 1do

2. elt,i — 1] « g;—1 // base cases
3: end for

4. for[=1ton do

5: fori<—1ton—1[+1do
6 j <« 1+ [— 1;// not really needed, just to be clearer
7 eli, j| « oo;

8 wli, j] < wli, 7 — 1] + p; + ¢;; // save some time

9: for r — 7to 5 do

10: t —eli,r — 1] +e[r+ 1, 7] + wli, jl;

11: if e[i, j| > ¢ then
12: eli, j| «— t;

13: rootli, j| < r;
14: end if

15: end for

16: end for

17: end for

18: return e[l,n|;

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Step 5: Analysis of time and space

e Time: O(n?)
e Space: ©(n?)

Constructing the tree from the table root is easy.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10

