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We’ve done

e Dynamic Programming
— Matrix Chain Multiplication

— Longest Common Subsequence

Now

e Dynamic Programming
— Assembly-line scheduling
— Optimal Binary Search Trees

Next

e Shortest paths algorithms

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1



(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Assembly Line Scheduling (ALS)

A factory has two assembly lines with n stations each
— Line 1: 511,512,...,51.n
— Line 2; 52,1, 52,2, c ooy SQ,n

Automobile chassis enter one of the lines, have parts added
at n stations, and exit at the end of a line

Enter time for line 2 18 e;
Exit time for line 7 1s x;

S1,; and Sy ; perform the same function (thus, a chassis
goes through exactly one of 57 ; or S ;)

Time required at station S; ; 1S a; ;
Time required to move from 5; ; to the other line is ¢; ;

Time required to move from \S; ; to the next station on the
same line 1s 0.

Find a fastest schedule to complete one auto.
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The recurrence

e ™ :the optimal time

o f;|j] : the fastest time to get through S ;

Then,
F* = min{f[1,n] + @1, f[2,n] + z2}.
)
' e1r+ a1 lfj =1
Abl=q | L
\min{filj = 1+ av;, f2l =1 +t25-1 + a1} ifj>1
)
. e2 + a2,1 ifj =1
ul=q | L
\min{faolj = 1] +az;, filj = +t1-1 +az;}p ifj>1

The rest (pseudo code and stuff)

e Straightforward, see text for details
e Running time is linear

e Space used is also linear
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Binary search trees

Keys k1, ko, ..., k,, and dummy keys dg, d1, ..., d,.

Given an ordering:

do < k1 < di < ko <do<---<k,<d,.

A BST on these keys i1s a tree satisfying
e For every node v, keys on the left are less than v
e For every node v, keys on the right are greater than v

e Dummy keys are leaf nodes (representing NOT FOUND)
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Optimal binary search tree problem

Inputs
® {kl,...,kn}
® {dg,...,dn}

o dp < ki<di<ko<dy<---<k,<d,
e p;, = Problk; is queried]

e ¢; = Prob|d; is queried|
(i.e. the probability that a query is in between k; and £;41)

Clearly, it 1s necessary that

sz' + Z%’ = 1.
i=1 i=0

The COST of a query is the number of nodes visited.

Expected query cost

n

— Z(DEPTHT(]Q;) +1)-p; + Z(DEPTHT(di) +1) - g
i=1 =0

Construct a binary search tree which minimizes

expected query cost.
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Step 1: Identify subproblems

e Structure of a BST:

— A root containing k., for some r € {1,...,n}.

— Left subtree consists of keys k1, ..., k-_1, and dummy
keys dg,...,d,_1

— Right subtree consists of keys k11, ..., ky,, and

dummy keys d,., ..., d,
— Subtle point: if » = 1, then the left has only dg; if
r = n, then the right has only d,,.
e Optimal substructure:
— For a BST to be optimal, it 1s necessary that the left
subtree and the right subtree are optimal (why?)
e Sub problems:
- Givenk;,...,k;(1<:<j7+1<n+1)and
di—1,...,d; (nokey kyif1 =7+ 1)
— Construct a BST T, on these keys that minimizes
J

J
Z(DEPTHTU (ky)+1)-pr+ Z (DEPTHT,, (dz)+1) Gy

r=1 r=1—1
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Step 2: The recurrence relation

e Givenl <:<j7+4+1<n+1.
e Let e[i, j] denote the expected query cost of an optimal
BST on keys k;, ..., k; and dummy keys d;_1,...,d;.
e Define
J J
w(za]) = Zpa: + Z Az -
rT=1 r=1—1
Noting that, if £, was the root of 7;;, then
e[ivj] = DPrt (6[7:,7“ o 1] + ’LU(i,?“ R 1))
+(elr + 1, ] + w(r +1,7))
= eli,r —1]+elr+1,5] +w(i,j)

Hence,
o qj—1 ifg=2—1
eli,j]=9 . | . . oy e
min {efi,r —1] +e[r +1,j] +w(i,j)} ifi <y
ISTN)]
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Step 3: How to fill out the table?

e This is very similar to Matrix Chain Multiplication

e Entries e|i, j| are dependent on other e|x, y| with
y—x<j—1.
Let root|i, 7] denote the r for which £, is at the root of 7T5;.

We can record root|i, j| while updating e[i, j]

The rest 1s similar to MCM
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Step 4: Pseudo code

OPTIMAL-BST(p, q,n)

1: fort =1ton+ 1do

2. elt,i — 1] « g;—1 // base cases
3: end for

4. for[ =1ton do

5: fori<—1ton—1[+1do
6 j <« 1+ [ — 1;// not really needed, just to be clearer
7 eli, j| « oo;

8 wli, j] < wli, 7 — 1] + p; + ¢;; // save some time

9: for r — 7to 5 do

10: t —eli,r — 1] +e[r+ 1, 7] + wli, jl;

11: if e[i, j| > ¢ then
12: eli, j| «— t;

13: rootli, j| < r;
14: end if

15: end for

16:  end for

17: end for

18: return e[l,n|;
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Step 5: Analysis of time and space

e Time: O(n?)
e Space: ©(n?)

Constructing the tree from the table root is easy.
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