We've done

- Dynamic Programming
 - Matrix Chain Multiplication
 - Longest Common Subsequence

Now

- Dynamic Programming
 - Assembly-line scheduling
 - Optimal Binary Search Trees

Next

• Shortest paths algorithms

Assembly Line Scheduling (ALS)

• A factory has two assembly lines with n stations each

- Line 1: $S_{1,1}, S_{1,2}, \ldots, S_{1,n}$

- Line 2: $S_{2,1}, S_{2,2}, \ldots, S_{2,n}$
- Automobile chassis enter one of the lines, have parts added at *n* stations, and exit at the end of a line
- Enter time for line i is e_i
- Exit time for line i is x_i
- $S_{1,j}$ and $S_{2,j}$ perform the same function (thus, a chassis goes through exactly one of $S_{1,j}$ or $S_{2,j}$)
- Time required at station $S_{i,j}$ is $a_{i,j}$
- Time required to move from $S_{i,j}$ to the other line is $t_{i,j}$
- Time required to move from $S_{i,j}$ to the next station on the same line is 0.

Find a fastest schedule to complete one auto.

CSE 431/531 Lecture Notes

The recurrence

- f^* : the optimal time
- $f_i[j]$: the fastest time to get through $S_{i,j}$

Then,

$$f^* = \min\{f[1, n] + x_1, f[2, n] + x_2\}.$$

$$f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1\\ \min\{f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}\} & \text{if } j > 1 \end{cases}$$

$$f_2[j] = \begin{cases} e_2 + a_{2,1} & \text{if } j = 1\\ \min\{f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j}\} & \text{if } j > 1 \end{cases}$$

The rest (pseudo code and stuff)

- Straightforward, see text for details
- Running time is linear
- Space used is also linear

Binary search trees

Keys k_1, k_2, \ldots, k_n , and dummy keys d_0, d_1, \ldots, d_n . Given an ordering:

$$d_0 < k_1 < d_1 < k_2 < d_2 < \dots < k_n < d_n.$$

A BST on these keys is a tree satisfying

- For every node v, keys on the left are less than v
- For every node v, keys on the right are greater than v
- Dummy keys are leaf nodes (representing NOT FOUND)

Optimal binary search tree problem

Inputs

- $\{k_1,\ldots,k_n\}$
- $\{d_0,\ldots,d_n\}$
- $d_0 < k_1 < d_1 < k_2 < d_2 < \dots < k_n < d_n$
- $p_i = \operatorname{Prob}[k_i \text{ is queried}]$
- q_i = Prob[d_i is queried]
 (i.e. the probability that a query is in between k_i and k_{i+1})

Clearly, it is necessary that

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1.$$

The COST of a query is the number of nodes visited.

Expected query cost
=
$$\sum_{i=1}^{n} (\text{DEPTH}_T(k_i) + 1) \cdot p_i + \sum_{i=0}^{n} (\text{DEPTH}_T(d_i) + 1)$$

Construct a binary search tree which minimizes expected query cost.

 $\cdot q_i$

Step 1: Identify subproblems

- Structure of a BST:
 - A root containing k_r , for some $r \in \{1, \ldots, n\}$.
 - Left subtree consists of keys k_1, \ldots, k_{r-1} , and dummy keys d_0, \ldots, d_{r-1}
 - Right subtree consists of keys k_{r+1}, \ldots, k_n , and dummy keys d_r, \ldots, d_n
 - Subtle point: if r = 1, then the left has only d_0 ; if r = n, then the right has only d_n .
- Optimal substructure:
 - For a BST to be optimal, it is necessary that the left subtree and the right subtree are optimal (why?)
- Sub problems:
 - Given k_i, \ldots, k_j $(1 \le i \le j+1 \le n+1)$ and d_{i-1}, \ldots, d_j (no key k_x if i = j+1)
 - Construct a BST T_{ij} on these keys that minimizes

$$\sum_{x=i}^{j} (\text{Depth}_{T_{ij}}(k_x) + 1) \cdot p_x + \sum_{x=i-1}^{j} (\text{Depth}_{T_{ij}}(d_x) + 1) \cdot q_x$$

CSE 431/531 Lecture Notes

Step 2: The recurrence relation

- Given $1 \le i \le j+1 \le n+1$.
- Let e[i, j] denote the expected query cost of an optimal BST on keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_j .
- Define

$$w(i,j) := \sum_{x=i}^{j} p_x + \sum_{x=i-1}^{j} q_x.$$

Noting that, if k_r was the root of T_{ij} , then

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j)) = e[i,r-1] + e[r+1,j] + w(i,j)$$

Hence,

$$e[i,j] = \begin{cases} q_{j-1} & \text{if } j = i-1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

Step 3: How to fill out the table?

- This is very similar to Matrix Chain Multiplication
- Entries e[i, j] are dependent on other e[x, y] with y x < j i.

Let root[i, j] denote the r for which k_r is at the root of T_{ij} .

We can record root[i, j] while updating e[i, j]

The rest is similar to MCM

Step 4: Pseudo code

Optimal-BST (p, q, n)	
1:	for $i = 1$ to $n + 1$ do
2:	$e[i, i-1] \leftarrow q_{i-1}$ // base cases
3:	end for
4:	for $l = 1$ to n do
5:	for $i \leftarrow 1$ to $n - l + 1$ do
6:	$j \leftarrow i + l - 1$; // not really needed, just to be clearer
7:	$e[i,j] \leftarrow \infty;$
8:	$w[i, j] \leftarrow w[i, j - 1] + p_j + q_j; // \text{ save some time}$
9:	for $r \leftarrow i$ to j do
10:	$t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j];$
11:	if $e[i, j] > t$ then
12:	$e[i,j] \leftarrow t;$
13:	$root[i, j] \leftarrow r;$
14:	end if
15:	end for
16:	end for
17:	end for
18:	return $e[1,n]$;

Step 5: Analysis of time and space

- Time: $\Theta(n^3)$
- Space: $\Theta(n^2)$

Constructing the tree from the table *root* is easy.