
c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

We’ve done

• Dynamic Programming

– Matrix Chain Multiplication

– Longest Common Subsequence

Now

• Dynamic Programming

– Assembly-line scheduling

– Optimal Binary Search Trees

Next

• Shortest paths algorithms
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Assembly Line Scheduling (ALS)

• A factory has two assembly lines with n stations each

– Line 1: S1,1, S1,2, . . . , S1,n

– Line 2: S2,1, S2,2, . . . , S2,n

• Automobile chassis enter one of the lines, have parts added
at n stations, and exit at the end of a line

• Enter time for line i is ei

• Exit time for line i is xi

• S1,j and S2,j perform the same function (thus, a chassis
goes through exactly one of S1,j or S2,j)

• Time required at station Si,j is ai,j

• Time required to move from Si,j to the other line is ti,j

• Time required to move from Si,j to the next station on the
same line is 0.

Find a fastest schedule to complete one auto.
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The recurrence

• f∗ : the optimal time

• fi[j] : the fastest time to get through Si,j

Then,
f∗ = min{f [1, n] + x1, f [2, n] + x2}.

f1[j] =




e1 + a1,1 if j = 1

min{f1[j − 1] + a1,j , f2[j − 1] + t2,j−1 + a1,j} if j > 1

f2[j] =




e2 + a2,1 if j = 1

min{f2[j − 1] + a2,j , f1[j − 1] + t1,j−1 + a2,j} if j > 1

The rest (pseudo code and stuff)

• Straightforward, see text for details

• Running time is linear

• Space used is also linear
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Binary search trees

Keys k1, k2, . . . , kn, and dummy keys d0, d1, . . . , dn.
Given an ordering:

d0 < k1 < d1 < k2 < d2 < · · · < kn < dn.

k1

d0

k2

k4

k3 k5

d4 d5d3d2

d1

A BST on these keys is a tree satisfying

• For every node v, keys on the left are less than v

• For every node v, keys on the right are greater than v

• Dummy keys are leaf nodes (representing NOT FOUND)
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Optimal binary search tree problem

Inputs

• {k1, . . . , kn}

• {d0, . . . , dn}

• d0 < k1 < d1 < k2 < d2 < · · · < kn < dn

• pi = Prob[ki is queried]

• qi = Prob[di is queried]

(i.e. the probability that a query is in between ki and ki+1)

Clearly, it is necessary that

n∑

i=1

pi +
n∑

i=0

qi = 1.

The COST of a query is the number of nodes visited.

Expected query cost

=
n∑

i=1

(DEPTHT (ki) + 1) · pi +
n∑

i=0

(DEPTHT (di) + 1) · qi

Construct a binary search tree which minimizes

expected query cost.
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Step 1: Identify subproblems

• Structure of a BST:

– A root containing kr, for some r ∈ {1, . . . , n}.
– Left subtree consists of keys k1, . . . , kr−1, and dummy

keys d0, . . . , dr−1

– Right subtree consists of keys kr+1, . . . , kn, and
dummy keys dr, . . . , dn

– Subtle point: if r = 1, then the left has only d0; if
r = n, then the right has only dn.

• Optimal substructure:

– For a BST to be optimal, it is necessary that the left
subtree and the right subtree are optimal (why?)

• Sub problems:

– Given ki, . . . , kj (1 ≤ i ≤ j + 1 ≤ n+ 1) and
di−1, . . . , dj (no key kx if i = j + 1)

– Construct a BST Tij on these keys that minimizes

j∑

x=i

(DEPTHTij (kx)+1)·px+

j∑

x=i−1

(DEPTHTij (dx)+1)·qx
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Step 2: The recurrence relation

• Given 1 ≤ i ≤ j + 1 ≤ n+ 1.

• Let e[i, j] denote the expected query cost of an optimal
BST on keys ki, . . . , kj and dummy keys di−1, . . . , dj .

• Define

w(i, j) :=

j∑

x=i

px +

j∑

x=i−1

qx.

Noting that, if kr was the root of Tij , then

e[i, j] = pr + (e[i, r − 1] + w(i, r − 1))

+(e[r + 1, j] + w(r + 1, j))

= e[i, r − 1] + e[r + 1, j] + w(i, j)

Hence,

e[i, j] =




qj−1 if j = i− 1

min
i≤r≤j

{e[i, r − 1] + e[r + 1, j] + w(i, j)} if i ≤ j
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Step 3: How to fill out the table?

• This is very similar to Matrix Chain Multiplication

• Entries e[i, j] are dependent on other e[x, y] with
y − x < j − i.

Let root[i, j] denote the r for which kr is at the root of Tij .

We can record root[i, j] while updating e[i, j]

The rest is similar to MCM
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Step 4: Pseudo code

OPTIMAL-BST(p, q, n)

1: for i = 1 to n+ 1 do
2: e[i, i− 1]← qi−1 // base cases
3: end for
4: for l = 1 to n do
5: for i← 1 to n− l + 1 do
6: j ← i+ l − 1; // not really needed, just to be clearer
7: e[i, j]←∞;
8: w[i, j]← w[i, j − 1] + pj + qj ; // save some time
9: for r ← i to j do

10: t← e[i, r − 1] + e[r + 1, j] + w[i, j];
11: if e[i, j] > t then
12: e[i, j]← t;
13: root[i, j]← r;
14: end if
15: end for
16: end for
17: end for
18: return e[1, n];
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Step 5: Analysis of time and space

• Time: Θ(n3)

• Space: Θ(n2)

Constructing the tree from the table root is easy.
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