We’ve done

• Introduction to divide and conquer paradigm
 – Quick Sort
 – Selection in linear time
 – Integer multiplication
 – Matrix multiplication

Now

• “Fast Fourier Transform” using divide and conquer
 – Featuring polynomial multiplication as an application

Next

• Greedy Method
Fourier Transforms

- Roughly, Fourier Transforms allow us to look at a function in two different ways.

- In (analog and digital) communication theory:
 - time domain \xrightarrow{FT} frequency domain
 - time domain $\xleftarrow{FT^{-1}}$ frequency domain
 - For instance: every (well-behaved) periodic signal (waveform) can be written as a sum of sine and cosine waves (sinusoids), whose frequencies are multiples of a fundamental frequency.
Fourier Series of periodic functions

The sine-cosine representation of $x(t)$ of period T:

$$ x(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi nf_0 t) + \sum_{n=1}^{\infty} b_n \sin(2\pi nf_0 t) $$

- $f_0 = 1/T$ is the fundamental frequency.
- Multiples of f_0 are harmonics.

Euler’s formulas:

$$ \frac{a_0}{2} = f_0 \int_{t_0}^{t_0+T} x(t) dt $$
$$ \frac{a_n}{2} = f_0 \int_{t_0}^{t_0+T} x(t) \cos(2\pi nf_0 t) dt $$
$$ \frac{b_n}{2} = f_0 \int_{t_0}^{t_0+T} x(t) \sin(2\pi nf_0 t) dx $$

[Problem: find a natural science without an Euler’s formula]

The amplitude-phase representation:

$$ x(t) = \frac{c_0}{2} \sum_{n=1}^{\infty} c_n \cos(2\pi nf_0 t + \theta_n) $$
Continuous Fourier Transforms of aperiodic signals

- Basically, just a limit case of Fourier series when \(T \to \infty \)

- Applications are numerous: digital signal processing, digital image processing, astronomical data analysis, seismic, optics, acoustics, etc.

- **Forward Fourier transform**
 \[
 F(\nu) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i \nu t} dt.
 \]

- **Inverse Fourier transform**
 \[
 f(t) = \int_{-\infty}^{\infty} F(\nu)e^{2\pi i \nu t} d\nu.
 \]

(Physicists like to use the *angular frequency* \(\omega = 2\pi \nu \))
Discrete Fourier Transforms

- Computers can’t handle continuous signals ⇒ discretize it

- Sampling at \(n \) places:
 \[
 f_k = f(t_k), \quad t_k = k\Delta, \quad k = 0, \ldots, n - 1
 \]

- DFT: (when going from continuous to discrete, integral becomes sum)
 \[
 F_m = \sum_{k=0}^{n-1} f_k(e^{-2\pi im/n})^k, \quad 0 \leq m \leq n - 1
 \]

- \(\text{DFT}^{-1} \):
 \[
 f_k = \frac{1}{n} \sum_{m=0}^{n-1} F_m(e^{2\pi ik/n})^m, \quad 0 \leq k \leq n - 1
 \]

 Fundamental problem: compute DFT and \(\text{DFT}^{-1} \) efficiently
Polynomials

- A polynomial \(A(x) \) over the complex numbers \(\mathbb{C} \):
 \[
 A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} = \sum_{j=0}^{n-1} a_jx^j.
 \]
 (over \(\mathbb{C} \) means \(x \in \mathbb{C} \)).

- \(a_0, \ldots, a_{n-1} \) are the coefficients of \(A \).

- \(A(x) \) is of degree \(k \) if \(a_k \) is the highest non-zero coefficient. For instance,
 \[
 B(x) = 3 - (2 - 4i)x + x^2 \text{ has degree 2.}
 \]

- An integer \(m \) strictly greater than the degree is called a degree bound of the polynomial. For instance, \(B(x) \) above has degree bounds \(3, 4, \ldots \).

- In the generic form of \(A(x) \) given above, \(n \) is a degree bound of \(A(x) \).
Common operations on polynomials

Given two polynomials

\[A(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} \]
\[B(x) = b_0 + b_1 x + \cdots + b_{n-1} x^{n-1} \]

Addition

\[C(x) = A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \cdots + (a_{n-1} + b_{n-1}) x^{n-1} \]

Multiplication

\[C(x) = A(x) B(x) = c_0 + c_1 x + \cdots + c_{2n-2} x^{2n-2} \]

where, for \(0 \leq k \leq 2n - 2 \)

\[c_j = \sum_{j=0}^{k} a_j b_{k-j} \]

Efficiently computing sums and products of polynomials is a very important problem in scientific computing!
Polynomial representations

\[A(x) = a_0 + a_1 x + \ldots a_{n-1} x^{n-1}. \]

Coefficient representation: a vector \(a \)

\[a = (a_0, a_1, \ldots, a_{n-1}) \]

Point-value representation: a set of point-value pairs

\[\{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\} \]

where the \(x_j \) are distinct, and \(y_j = A(x_j), \forall j \)

Question: how do we know that a set of point-value pairs represent a unique polynomial? What if there are two polynomials with the same set of point-value pairs?
Uniqueness of point-value representation

Theorem 1. For any set \(\{(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})\} \) where the \(x_j \) are distinct, there is a unique polynomial \(A(x) \) of degree bound \(n \) such that \(A(x_j) = y_j, \forall j = 0, \ldots, n - 1 \).

(The operation of finding the coefficients from the point-value pairs is called polynomial interpolation)

Proof. We solve a system of \(n \) linear equations for \(n \) unknowns

\[
\begin{bmatrix}
1 & x_0 & x_0^2 & \ldots & x_0^{n-1} \\
1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^2 & \ldots & x_{n-1}^{n-1}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{n-1}
\end{bmatrix}
\]

The matrix is called the Vandermonde matrix \(V(x_0, \ldots, x_{n-1}) \), which has non-zero determinant

\[
\det(V(x_0, \ldots, x_{n-1})) = \prod_{p<q} (x_p - x_q).
\]
Solving the interpolation problem

- Gaussian elimination helps solve the interpolation problem (via the system of linear equations) in $O(n^3)$ time.

- Lagrange’s formula helps solve it in $\Theta(n^2)$ time:

$$A(x) = \sum_{k=0}^{n-1} y_k \prod_{j \neq k} \frac{(x - x_j)}{(x_k - x_j)}$$

(how to get $\Theta(n^2)$ is a homework problem!)

- Fast Fourier Transform (FFT) helps perform the inverse DFT operation (another way to express interpolation) in $\Theta(n \lg n)$-time.

Solving the evaluation problem

The evaluation problem: Given $A(x)$ in coefficient representation, compute $A(x_0), \ldots, A(x_{n-1})$

- Horner’s rule gives $\Theta(n^2)$

- Again FFT helps perform the DFT operation in $\Theta(n \lg n)$-time
Pros and cons

Coefficient representation:

- computing the sum $A(x) + B(x)$ takes $\Theta(n)$,
- evaluating $A(x_k)$ take $\Theta(n)$ with Horner’s rule

$$A(x_k) = a_0 + x_k(a_1 + x_k(a_2 + \cdots + x_k(a_{n-2} + x_k a_{n-1}) \cdots)$$

(we assume $+$ and $*$ of numbers take constant time)
- very convenient for user interaction
- computing the product $A(x)B(x)$ takes $\Theta(n^2)$, however

Point-value representation:

- computing the sum $A(x) + B(x)$ takes $\Theta(n)$,
- computing the product $A(x)B(x)$ takes $\Theta(n)$ (need to have $2n$ points from each of A and B though)
- inconvenient for user interaction

Problem: how can we compute products in coefficient representation in time better than $\Theta(n^2)$?
Efficient polynomial product in coefficient form

Input: $A(x), B(x)$ of degree bound n in coefficient form

Output: $C(x) = A(x)B(x)$ of degree bound $2n - 1$ in coefficient form

1. *Double degree bound:* extend $A(x)$’s and $B(x)$’s coefficient representations to be of degree bound $2n$ $[\Theta(n)]$

2. *Evaluate:* compute point-value representations of $A(x)$ and $B(x)$ at each of the $2n$th roots of unity (with FFT of order $2n$) $[\Theta(n \lg n)]$

3. *Pointwise multiply:* compute point-value representation of $C(x) = A(x)B(x)$ $[\Theta(n)]$

4. *Interpolate:* compute coefficient representation of $C(x)$ (with FFT or order $2n$) $[\Theta(n \lg n)]$
Complex numbers, complex roots of unity

- \(\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \} \)

- \(w \in \mathbb{C}, w^n = 1 \), then \(w \) is a complex \(n \)th root of unity

- There are \(n \) of them: \(e^{2\pi ik/n}, k = 0, \ldots, n - 1 \)

- \(e^{iu} = \cos(u) + i \sin(u) \)

- \(w_n = e^{2\pi i/n} \) is the principal \(n \)th root of unity

- all \(n \)th roots are of the form \(w_n^k, k = 0, \ldots, n - 1 \)

- \(1 = w_n^0, w_n^1, w_n^2, \ldots, w_n^{n-1}, w_n^n = w_n^0 = 1, w_n^{n+1} = w_n, w_n^{n+2} = w_n^2, \ldots \)

- In general, \(w_n^j = w_n^{j \mod n} \).

Lemma 2 (Cancellation lemma). For any integers
\(n \geq 0, k \geq 0, \) and \(d > 0 \), then \(w_n^{dk} = w_n^k \).

Corollary 3. \(w_n^{2m} = w_2 = -1 \).

Lemma 4 (Summation lemma). Given \(n \geq 1, k \) not divisible by \(n \), then \(\sum_{j=0}^{n-1} (w_n^k)^j = 0 \).
Discrete Fourier Transform (DFT)

Given \(A(x) = \sum_{j=0}^{n-1} a_j x^j \), let \(y_k = A(w_n^k) \), then the vector
\[
y = (y_0, y_1, \ldots, y_{n-1})\]
is the Discrete Fourier Transform (DFT) of the coefficient vector \(a = (a_0, a_1, \ldots, a_{n-1}) \). We write
\[
y = \text{DFT}_n(a).
\]

Fast Fourier Transform (FFT)

is an efficient algorithm to compute DFT (a transformation)

Idea: suppose \(n = 2m \)

\[
A(x) = a_0 + a_1 x + a_2 x + \cdots + a_{2m-1} x^{2m-1} \\
= a_0 + a_2 x^2 + a_4 x^4 + \cdots + a_{2m-2} x^{2m-2} + x(a_1 + a_3 x^2 + a_5 x^4 + \cdots + a_{2m-1} x^{2m-2}) \\
= A^0(x^2) + x A^1(x^2),
\]

where

\[
A^0(x) = a_0 + a_2 x + a_4 x^2 + \cdots + a_{2m-2} x^{m-1} \\
A^1(x) = a_1 + a_3 x + a_5 x^2 + \cdots + a_{2m-1} x^{m-1}
\]
FFT (continue)

By the cancellation lemma,

\[
(w_{2m}^0)^2 = w_m^0 \\
(w_{2m}^1)^2 = w_m^1 \\
\vdots \quad \vdots \\
(w_{2m}^{m-1})^2 = w_m^{m-1}
\]

\[
(w_{2m}^m)^2 = w_m^0 \\
(w_{2m}^{m+1})^2 = w_m^1 \\
\vdots \quad \vdots \\
(w_{2m}^{2m-1})^2 = w_m^{m-1}
\]

we get two smaller evaluation problems for \(A^0(x)\) and \(A^1(x)\):

\[
A(w_{2m}^j) = A^0((w_{2m}^j)^2) + w_{2m}^j A^1((w_{2m}^j)^2) \\
= A^0(w_m^j) + w_{2m}^j A^1(w_m^j) \\
= A^0(w_m^{j \mod m}) + w_{2m}^j A^1(w_m^{j \mod m})
\]
FFT (continue)

\[a = (a_0, a_1, \ldots, a_{2m-1}), \quad y = \text{DFT}_{2m}(a) \]

\[a[0] = (a_0, a_2, \ldots, a_{2m-2}) \]
\[a[1] = (a_1, a_3, \ldots, a_{2m-1}) \]
\[y[0] = \text{DFT}_m(a[0]) \]
\[y[1] = \text{DFT}_m(a[1]) \]

Then, \(y \) can be computed from \(y[0] \) and \(y[1] \) as follows.

For \(0 \leq j \leq m - 1 \):

\[y_j = A(w_{2m}^j) = A[0](w_m^j) + w_{2m}^j A[1](w_m^j) \]
\[= y_j^{[0]} + w_{2m}^j y_j^{[1]}. \]

For \(m \leq j \leq 2m - 1 \):

\[y_j = A(w_{2m}^j) = A[0](w_m^{j-m}) + w_{2m}^j A[1](w_m^{j-m}) \]
\[= y_j^{[0]} + w_{2m}^j y_j^{[1]} = y_j^{[0]} - w_{2m}^{j-m} y_j^{[1]} . \]
FFT – pseudo code

RECURSIVE-FFT(a)

1: \(n \leftarrow \text{length}(a) \) // \(n \) is a power of 2
2: \textbf{if} \(n = 1 \) \textbf{then}
3: \hspace{1em} \textbf{return} \(a \)
4: \textbf{end if}
5: \(w_n \leftarrow e^{2\pi i / n} \) // principal \(n \)th root of unity
6: \(a[0] \leftarrow (a_0, a_2, \ldots, a_{n-2}) \)
7: \(a[1] \leftarrow (a_1, a_3, \ldots, a_{n-1}) \)
8: \(y[0] \leftarrow \text{RECURSIVE-FFT}(a[0]) \)
9: \(y[1] \leftarrow \text{RECURSIVE-FFT}(a[1]) \)
10: \(w \leftarrow 1 \) really meant \(w \leftarrow w_n^0 \)
11: \textbf{for} \(k \leftarrow 0 \) to \(n/2 - 1 \) \textbf{do}
12: \hspace{1em} \(y_k \leftarrow y_k^{[0]} + wy_k^{[1]} \)
13: \hspace{1em} \(y_{k+n/2} \leftarrow y_k^{[0]} - wy_k^{[1]} \)
14: \hspace{1em} \(w \leftarrow w w_n \)
15: \textbf{end for}
16: \textbf{return} \(y \)

\[
T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)
\]
Inverse DFT – Interpolation at the roots

Now that we know y, how to compute $a = \text{DFT}^{-1}_n(y)$?

$$
\begin{bmatrix}
1 & w_n & w_n^2 & \cdots & w_n^{n-1} \\
1 & w_n^2 & w_n^4 & \cdots & w_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w_n^{n-1} & w_n^{2(n-1)} & \cdots & w_n^{(n-1)(n-1)} \\
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1} \\
\end{bmatrix}
=
\begin{bmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{n-1} \\
\end{bmatrix}
$$

Need the inverse V_n^{-1} of $V_n := V(1, w_n, w_n^2 \ldots, w_n^{n-1})$

Theorem 5. For $0 \leq j, k \leq n - 1$,

$$
[V_n^{-1}]_{j,k} = \frac{w_n^{-kj}}{n}.
$$

Thus,

$$
a_j = \sum_{k=0}^{n-1} [V_n^{-1}]_{j,k} y_k = \sum_{k=0}^{n-1} \frac{w_n^{-kj}}{n} y_k = \sum_{k=0}^{n-1} \frac{y_k}{n} (w_n^{-j})^k
$$

$$
a_j = Y(w_n^{-j}), \quad Y(x) = \frac{y_0}{n} + \frac{y_1}{n} x + \cdots + \frac{y_{n-1}}{n} x^{n-1}
$$

We can easily modify the pseudo code for FFT to compute a from y in $\Theta(n \log n)$-time (homework 3!)