
c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

We’ve done

• Introduction to divide and conquer paradigm

– Quick Sort

– Selection in linear time

– Integer multiplication

– Matrix multiplication

Now

• “Fast Fourier Transform” using divide and conquer

– Featuring polynomial multiplication as an application

Next

• Greedy Method

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Fourier Transforms

• Roughly, Fourier Transforms allow us to look at a function
in two different ways

• In (analog and digital) communication theory:

– time domain FT−→ frequency domain

– time domain FT−1

←− frequency domain

– For instance: every (well-behaved) periodic signal
(waveform) can be written as a sum of sine and cosine
waves (sinusoids), whose frequencies are multiples of a
fundamental frequency

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Fourier Series of periodic functions

The sine-cosine representation of x(t) of period T :

x(t) =
1

2
a0 +

∞∑

n=1

an cos(2πnf0t) +
∞∑

n=1

bn sin(2πnf0t)

• f0 = 1/T is the fundamental frequency.

• Multiples of f0 are harmonics.

Euler’s formulas:

a0

2
= f0

∫ t0+T

t0

x(t)dt

an
2

= f0

∫ t0+T

t0

x(t) cos(2πnf0t)dt

bn
2

= f0

∫ t0+T

t0

x(t) sin(2πnf0t)dx

[Problem: find a natural science without an Euler’s formula]

The amplitude-phase representation:

x(t) =
c0
2

∞∑

n=1

cn cos(2πnf0t+ θn)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Continuous Fourier Transforms of aperiodic
signals

• Basically, just a limit case of Fourier series when T →∞

• Applications are numerous: digital signal processing,
digital image processing, astronomical data analysis,
seismic, optics, acoustics, etc.

• Forward Fourier transform

F (ν) =

∫ ∞

−∞
f(t)e−2πiνtdt.

• Inverse Fourier transform

f(t) =

∫ ∞

−∞
F (ν)e2πitνdν.

(Physicists like to use the angular frequency ω = 2πν)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Discrete Fourier Transforms

• Computers can’t handle continuous signals⇒ discretize it

• Sampling at n places:

fk = f(tk), tk = k∆, k = 0, . . . , n− 1

• DFT: (when going from continuous to discrete, integral
becomes sum)

Fm =
n−1∑

k=0

fk(e−2πim/n)k, 0 ≤ m ≤ n− 1

• DFT−1:

fk =
1

n

n−1∑

m=0

Fm(e2πik/n)m, 0 ≤ k ≤ n− 1

Fundamental problem: compute DFT and DFT−1 efficiently

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Polynomials

• A polynomial A(x) over the complex numbers C:

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 =
n−1∑

j=0

ajx
j .

(over C means x ∈ C).

• a0, . . . , an−1 are the coefficients of A.

• A(x) is of degree k if ak is the highest non-zero
coefficient. For instance,

B(x) = 3− (2− 4i)x+ x2 has degree 2.

• An integer m strictly greater than the degree is called a
degree bound of the polynomial. For instance, B(x) above
has degree bounds 3, 4, . . .

• In the generic form of A(x) given above, n is a degree
bound of A(x).

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Common operations on polynomials

Given two polynomials

A(x) = a0 + a1x+ · · ·+ an−1x
n−1

B(x) = b0 + b1x+ · · ·+ bn−1x
n−1

Addition

C(x) = A(x) +B(x)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)xn−1

Multiplication

C(x) = A(x)B(x)

= c0 + c1x+ · · ·+ c2n−2x
2n−2

where, for 0 ≤ k ≤ 2n− 2

cj =

k∑

j=0

ajbk−j

Efficiently computing sums and products of polynomials is a
very important problem in scientific computing!

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Polynomial representations

A(x) = a0 + a1x+ . . . an−1x
n−1.

Coefficient representation: a vector a

a = (a0, a1, . . . , an−1)

Point-value representation: a set of point-value pairs

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}

where the xj are distinct, and yj = A(xj),∀j
Question: how do we know that a set of point-value pairs
represent a unique polynomial? What if there are two
polynomials with the same set of point-value pairs?

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Uniqueness of point-value representation
Theorem 1. For any set {(x0, y0), . . . , (xn−1, yn−1)} where
the xj are distinct, there is a unique polynomial A(x) of degree
bound n such that A(xj) = yj ,∀j = 0, . . . , n− 1.

(The operation of finding the coefficients from the point-value
pairs is called polynomial interpolation)

Proof. We solve a system of n linear equations for n unknowns



1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1

...
...

... . . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1







a0

a1

...

an−1




=




y0

y1

...

yn−1




The matrix is called the Vandermonde matrix
V (x0, . . . , xn−1), which has non-zero determinant

det(V (x0, . . . , xn−1)) =
∏

p<q

(xp − xq).

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Solving the interpolation problem

• Gaussian elimination helps solve the interpolation problem
(via the system of linear equations) in O(n3) time.

• Lagrange’s formula helps solve it in Θ(n2) time:

A(x) =
n−1∑

k=0

yk

∏
j 6=k(x− xj)∏
j 6=k(xk − xj)

(how to get Θ(n2) is a homework problem!)

• Fast Fourier Transform (FFT) helps perform the inverse
DFT operation (another way to express interpolation) in
Θ(n lg n)-time.

Solving the evaluation problem

The evaluation problem: Given A(x) in coefficient
representation, compute A(x0), . . . , A(xn−1)

• Horner’s rule gives Θ(n2)

• Again FFT helps perform the DFT operation in
Θ(n lg n)-time

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Pros and cons

Coefficient representation:

• computing the sum A(x) +B(x) takes Θ(n),

• evaluating A(xk) take Θ(n) with Horner’s rule

A(xk) = a0+xk(a1+xk(a2+· · ·+xk(an−2+xkan−1) . . . )

(we assume + and ∗ of numbers take constant time)

• very convenient for user interaction

• computing the product A(x)B(x) takes Θ(n2), however

Point-value representation:

• computing the sum A(x) +B(x) takes Θ(n),

• computing the product A(x)B(x) takes Θ(n) (need to
have 2n points from each of A and B though)

• inconvenient for user interaction

Problem: how can we compute products in coefficient

representation in time better than Θ(n2)?

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Efficient polynomial product in coefficient form

Input: A(x), B(x) of degree bound n in coefficient form
Output: C(x) = A(x)B(x) of degree bound 2n− 1 in
coefficient form

1. Double degree bound: extend A(x)’s and B(x)’s
coefficient representations to be of degree bound 2n

[Θ(n)]

2. Evaluate: compute point-value representations of A(x)

and B(x) at each of the 2nth roots of unity (with FFT of
order 2n) [Θ(n lg n)]

3. Pointwise multiply: compute point-value representation of
C(x) = A(x)B(x) [Θ(n)]

4. Interpolate: compute coefficient representation of C(x)

(with FFT or order 2n) [Θ(n lg n)]

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 12



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Complex numbers, complex roots of unity

• C = {a+ bi | a, b ∈ R}

• w ∈ C, wn = 1, then w is a complex nth root of unity

• There are n of them: e2πik/n, k = 0, . . . , n− 1

• eiu = cos(u) + i sin(u)

• wn = e2πi/n is the principal nth root of unity

• all nth roots are of the form wkn, k = 0, . . . , n− 1

• 1 = w0
n, w

1
n, w

2
n, . . . , w

n−1
n , wnn = w0

n = 1, wn+1
n =

wn, w
n+2
n = w2

n, . . .

• In general, wjn = wj mod n
n .

Lemma 2 (Cancellation lemma). For any integers
n ≥ 0, k ≥ 0, and d > 0, then wdkdn = wkn.

Corollary 3. wm2m = w2 = −1.

Lemma 4 (Summation lemma). Given n ≥ 1, k not divisible
by n, then

∑n−1
j=0 (wkn)j = 0.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 13



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Discrete Fourier Transform (DFT)

Given A(x) =
∑n−1
j=0 ajx

j , let yk = A(wkn), then the vector

y = (y0, y1, . . . , yn−1)

is the Discrete Fourier Transform (DFT) of the coefficient
vector a = (a0, a1, . . . , an−1). We write

y = DFTn(a).

Fast Fourier Transform (FFT)

is an efficient algorithm to compute DFT (a transformation)

Idea: suppose n = 2m

A(x) = a0 + a1x+ a2x+ · · ·+ a2m−1x
2m−1

= a0 + a2x
2 + a4x

4 + · · ·+ a2m−2x
2m−2 +

x(a1 + a3x
2 + a5x

4 + · · ·+ a2m−1x
2m−2)

= A[0](x2) + xA[1](x2),

where

A[0](x) = a0 + a2x+ a4x
2 + · · ·+ a2m−2x

m−1

A[1](x) = a1 + a3x+ a5x
2 + · · ·+ a2m−1x

m−1

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 14



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

FFT (continue)

By the cancellation lemma,

(w0
2m)2 = w0

m

(w1
2m)2 = w1

m

...
...

(wm−1
2m )2 = wm−1

m

(wm2m)2 = w0
m

(wm+1
2m )2 = w1

m

...
...

(w2m−1
2m )2 = wm−1

m

we get two smaller evaluation problems for A[0](x) and
A[1](x):

A(wj2m) = A[0]((wj2m)2) + wj2mA
[1]((wj2m)2)

= A[0](wjm) + wj2mA
[1](wjm)

= A[0](wj mod m
m ) + wj2mA

[1](wj mod m
m )

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 15



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

FFT (continue)

a = (a0, a1, . . . , a2m−1), y = DFT2m(a)

a[0] = (a0, a2, . . . , a2m−2)

a[1] = (a1, a3, . . . , a2m−1)

y[0] = DFTm(a[0])

y[1] = DFTm(a[1])

Then, y can be computed from y[0] and y[1] as follows.

For 0 ≤ j ≤ m− 1:

yj = A(wj2m) = A[0](wjm) + wj2mA
[1](wjm)

= y
[0]
j + wj2my

[1]
j .

For m ≤ j ≤ 2m− 1:

yj = A(wj2m) = A[0](wj−mm ) + wj2mA
[1](wj−mm )

= y
[0]
j−m + wj2my

[1]
j−m = y

[0]
j−m − wj−m2m y

[1]
j−m.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 16



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

FFT – pseudo code

RECURSIVE-FFT(a)

1: n← length(a) // n is a power of 2

2: if n = 1 then
3: return a
4: end if
5: wn ← e2πi/n // principal nth root of unity
6: a[0] ← (a0, a2, . . . , an−2)

7: a[1] ← (a1, a3, . . . , an−1)

8: y[0] ← RECURSIVE-FFT(a[0])

9: y[1] ← RECURSIVE-FFT(a[1])

10: w ← 1 really meant w ← w0
n

11: for k ← 0 to n/2− 1 do
12: yk ← y

[0]
k + wy

[1]
k

13: yk+n/2 ← y
[0]
k − wy

[1]
k

14: w ← wwn

15: end for
16: return y

T (n) = 2T (n/2) + Θ(n)⇒ T (n) = Θ(n lg n)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 17



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Inverse DFT – Interpolation at the roots

Now that we know y, how to compute a = DFT−1
n (y)?




1 wn w2
n . . . wn−1

n

1 w2
n w4

n . . . w
2(n−1)
n

...
...

... . . .
...

1 wn−1
n w

2(n−1)
n . . . w

(n−1)(n−1)
n







a0

a1

...

an−1




=




y0

y1

...

yn−1




Need the inverse V −1
n of Vn := V (1, wn, w

2
n . . . , w

n−1
n )

Theorem 5. For 0 ≤ j, k ≤ n− 1,

[V −1
n ]j,k =

w−kjn

n
.

Thus,

aj =
n−1∑

k=0

[V −1
n ]j,kyk =

n−1∑

k=0

w−kjn

n
yk =

n−1∑

k=0

yk
n

(w−jn )k

aj = Y (w−jn ), Y (x) =
y0

n
+
y1

n
x+ · · ·+ yn−1

n
xn−1

We can easily modify the pseudo code for FFT to compute a
from y in Θ(n lg n)-time (homework 3!)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 18


