(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

We’ve done

e Introduction to divide and conquer paradigm
— Quick Sort
— Selection in linear time
— Integer multiplication

— Matrix multiplication

Now

e “Fast Fourier Transform” using divide and conquer

— Featuring polynomial multiplication as an application

Next

e Greedy Method

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Fourier Transforms

e Roughly, Fourier Transforms allow us to look at a function
in two different ways

e In (analog and digital) communication theory:

: . FT :
— time domain — frequency domain

: . FT! :
— time domain +— frequency domain

— For instance: every (well-behaved) periodic signal
(waveform) can be written as a sum of sine and cosine

waves (sinusoids), whose frequencies are multiples of a

fundamental frequency

fix)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Fourier Series of periodic functions

The sine-cosine representation of x(¢) of period 7"

1

x(t) = 540 + Z ay, cos(2mn fot) + Z by, sin(27n fot)

n=1 n=1
e fo =1/T is the fundamental frequency.

e Multiples of fy are harmonics.

Euler’s formulas:

to+T
o= £ / x(t)dt
2 "

a to+T

— = fO/ x(t) cos(2mn fot)dt

2 to

b to+T

?n = fO/ x(t) sin(2mn fot)dx
to

[Problem: find a natural science without an Euler’s formula]

The amplitude-phase representation:

Co

=5 chcos 2rnfot + 60,,)
n=1

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Continuous Fourier Transforms of aperiodic

signals

e Basically, just a limit case of Fourier series when T' — oo

e Applications are numerous: digital signal processing,
digital image processing, astronomical data analysis,

seismic, optics, acoustics, etc.

e Forward Fourier transform
m .
F(v) = / f(t)e 2™qt,
— 0
e Inverse Fourier transform

f(t) = / h F(v)e*™"dy.

— o0

(Physicists like to use the angular frequency w = 2mv)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Discrete Fourier Transforms

e Computers can’t handle continuous signals = discretize it

e Sampling at n places:
fe = f(tg), tx = kA, k=0,...,n—1

e DFT: (when going from continuous to discrete, integral

becomes sum)

n—1
F = ka<e—27m'm/n)k’ 0<m<n-—1
k=0

e DFT':

1 n—1

_ - Fm 2mik /n\m 0< k < 1
fki nmz::() (6)) SRS

Fundamental problem: compute DFT and DFT ! efficiently

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Polynomials

e A polynomial A(x) over the complex numbers C:

n—1

§=0

(over C means x € C).
® ag,...,a,_1 are the coefficients of A.

e A(x)is of degree k if ay, is the highest non-zero
coefficient. For instance,

B(x) =3 — (2 — 4i)x + x* has degree 2.

e An integer m strictly greater than the degree is called a
degree bound of the polynomial. For instance, B(x) above

has degree bounds 3,4, . ..

e In the generic form of A(x) given above, n is a degree
bound of A(x).

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Common operations on polynomials

Given two polynomials

1

s
8
Il

ap+a1x+ -+ a,_1x""

B(CIJ) = b() +b1$—|-"'+bn_1$n_1

Addition

C(z) = A(x)+ B(x)
= (ao+bo) + (a1 + b))z + -+ (an_1 + bp_1)z" "

Multiplication

C(x) = A(x)B(x)

= co+cix+ -+ cop_ox"

where, for0 < k£ < 2n — 2

k
Cj: E ajbk_j
J=0

Efficiently computing sums and products of polynomials is a
very important problem in scientific computing!

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Polynomial representations

—1
Alx) =ap+ a1z + ... ap_12" .
Coefficient representation: a vector a
a= (ag,a1,...,0,-1)

Point-value representation: a set of point-value pairs

{(ZC(), yO)? (x17 yl)a SR (:C’n—la yn—l)}
where the z; are distinct, and y; = A(x;), VY

Question: how do we know that a set of point-value pairs
represent a unique polynomial? What if there are two
polynomials with the same set of point-value pairs?

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Uniqueness of point-value representation

Theorem 1. For any set {(xo,v0), ..., (Tn_1,Yn—1)} where
the x; are distinct, there is a unique polynomial A(x) of degree
bound n such that A(z;) =y;,vj =0,...,n— 1L

(The operation of finding the coefficients from the point-value

pairs is called polynomial interpolation)

Proof. We solve a system of n linear equations for n unknowns

2 n—1
1 o x5 X ao (0
2 n—1
1 T1 1 X1 aq U1
2 n—1
1 xp1 25, Tp_1| [An-1 Yn—1

The matrix is called the Vandermonde matrix

V(xg,...,Tn_1), which has non-zero determinant

det(V(zg,...,Tn_1)) = H(:L'p — Zq).

p<q

Page 9

CSE 431/531 Lecture Notes Algorithms Analysis and Design

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Solving the interpolation problem

e Gaussian elimination helps solve the interpolation problem
(via the system of linear equations) in O(n?) time.

e Lagrange’s formula helps solve it in ©(n?) time:

j;ék :Cj)
Z U |
k=0

j;ék x])

(how to get ©(n?) is a homework problem!)

e Fast Fourier Transform (FFT) helps perform the inverse
DFT operation (another way to express interpolation) in
O(nlgn)-time.

Solving the evaluation problem

The evaluation problem: Given A(x) in coefficient

representation, compute A(xg),..., A(x,_1)
e Horner’s rule gives O(n?)

e Again FFT helps perform the DFT operation in
O(nlgn)-time

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Pros and cons

Coefficient representation:
e computing the sum A(x) + B(x) takes O(n),
e cvaluating A(xy) take ©(n) with Horner’s rule
A(xk) = agtzi(a1+xk(as+- - +2k(Gn_2F+Tran_1) .. .)
(we assume + and * of numbers take constant time)
e very convenient for user interaction
e computing the product A(x)B(x) takes ©(n?), however
Point-value representation:
e computing the sum A(x) + B(x) takes O(n),

e computing the product A(x)B(x) takes ©(n) (need to
have 2n points from each of A and B though)

e inconvenient for user interaction

Problem: how can we compute products in coefficient

representation in time better than O (n?)?

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Efficient polynomial product in coefficient form

Input: A(x), B(z) of degree bound n in coefficient form
Output: C(x) = A(z)B(x) of degree bound 2n — 1 in
coefficient form

1. Double degree bound: extend A(x)’s and B(x)’s
coefficient representations to be of degree bound 2n

[©(n)]

2. Evaluate: compute point-value representations of A(x)
and B(x) at each of the 2nth roots of unity (with FFT of
order 2n) [O(nlgn)]

3. Pointwise multiply: compute point-value representation of

C(z) = A(z)B(z) [©(n)]

4. Interpolate: compute coefficient representation of C'(x)
(with FFT or order 2n) [©(nlgn)]

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 12

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Complex numbers, complex roots of unity

e C={a+1bi|labeR}

o we C,w" =1, then w is a complex nth root of unity

e There are n of them: e2™*/" | =0,...,n—1

o " = cos(u) + ¢sin(u)

o w, = 2™/ is the principal nth root of unity

e all nth roots are of the form w*, k =0,...,n — 1

e 1 =wd wl w2 ... wrtw=wd=1w" =
Wy, W2 = w? ..

e In general, w/) = w) med ™,
Lemma 2 (Cancellation lemma). For any integers
n>0,k>0 andd > 0, thenwgﬁ :wf;.
Corollary 3. w3} = ws; = —1.
Lemma 4 (Summation lemma). Given n > 1, k not divisible
by n, then 37— (wk)i =

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 13

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Discrete Fourier Transform (DFT)

Given A(z) = Z?:_Ol a;z, let yp = A(wr), then the vector

Yy = (?JO,yl, R 7yn—1)

1s the Discrete Fourier Transform (DFT) of the coefficient

vector a = (ag,a,...,0a,_1). We write
y = DFT,(a).

Fast Fourier Transform (FFT)

is an efficient algorithm to compute DFT (a transformation)

Idea: suppose n = 2m

A(:r;) = Qg+ a1 +agx + -+ a2m_1w2m_1

2 4 2m—2
— a9+ aox’ +aqxr” + -+ agy_ox T4+

2 4 2m—2
z(ar + agx” + asx™ + -+ - + agm_12°")

= A2 4 AN (22),

>
=

=
||

2
ao + aox + asx” + - + agp_ox’"

Alll () = a1 +asr+ asx’ + -+ a9 1™

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 14

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

FFT (continue)

By the cancellation lemma,

(w3m)® = wy,
(w3)® = wp,
(Wi)* = wp™
(w3,,)° = wp,
(Wit =y,
(Wi ™) = wpt

we get two smaller evaluation problems for A% (x) and
Alt(2):

Alwh,) = ACN(wd,,)?) + wl, A ((w,,)?)
= AOwg,) + wh,, AV (w),)

_ A[O] (UJ%mOd m) 4+ w%mA[l] (wgﬁmod m)

CSE 431/531 Lecture Notes Algorithms Analysis and Design

Page 15

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

FFT (continue)

a = (ag,ai,...,azm-1), y = DFTa,(a)

A (ag, a9, ...,02m—2)
ol = (a1,a3,...,02m—1)
yl% = DFT,,(al)
yllI' = DFT,,(alt)

(0]

Then, y can be computed from y!° and y!!! as follows.

For0<j3<m—1:

v = Alwh,) = A%w),) +wl, Al (w],)
= yj[-o] +w§my£1]-

Form <7 <2m — 1:

v = Alwh,) = A% w] ™) + wh, AN)

0 ' 1 0 —m |1

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 16

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

FFT - pseudo code

RECURSIVE-FFT(a)

1: n < length(a) //n is a power of 2
2: if n = 1 then

3: returna

4: end if

5. w, <« e>™/™ |/ principal nth root of unity
6: al% — (ag,as,...,an_os)

7. ol — (a1, as,...,an_1)

8: yl% «— RECURSIVE-FFT(al?)

9: yll « RECURSIVE-FFT(al!)
10: w + 1 really meant w « w>
11: for k < Oton/2 —1do
12: yp <« y,[ﬁo] + wyl[j]
13: Yk4n/2 < y,LO] — wy,[j]
14: W «— wwy,
15: end for
16: return y

T(n)=2T(n/2)+0O(n)=T(n) =0(nlgn)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 17

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 14, 2004

Inverse DFT - Interpolation at the roots

Now that we know g, how to compute @ = DFT, * (y)?

1 w, w? e wn—1 ag Yo
2(n—1
1 w? wi AL ai Y1
1wt wi(n_l) . wﬁﬁ‘l)(”‘l) Ap—1 Yn—1
Need the inverse V. ! of V,, := V (1, w,,w? ..., w1

Theorem 5. For0 < 5.k <n —1,

—kj
_ w,,
[Vn 1]j,7€ — n
Thus,
— — w Uk,
aj = WVi'lieyr =) YR = 2. g(w?)k
k=0 k=0 k=0
a; =Y(w), V()=L 4+ Ly 4 In-lyn-t
n n n

We can easily modify the pseudo code for FFT to compute a
from y in ©(n lgn)-time (homework 3!)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 18

