
c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

We’ve done

• Fast Fourier Transform

– Polynomial Multiplication

Now

• Introduction to the greedy method

– Activity selection problem

– How to prove that a greedy algorithm works

– Huffman coding

Next

• Matroid theory

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Greedy Algorithms

• The second algorithm design technique we learn

• Used to deal with optimization problems

• Optimization problems: find an optimal solution among a
large set of candidate solutions

– 0-1 knapsack problem: A robber found n items in a
store, the ith item is worth vi dollars and weighs wi
pounds (vi, wi ∈ Z+), he can only carry W pounds.
Which items should he take?

– Traveling Salesman Problem (TSP): find the shortest
route for a salesman to visit each of the n given cities
once, and return to the starting city.

• Different than brute-force

• Characterized by

– Greedy-choice property

– Optimal substructure

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

The Activity-Selection Problem

• Has to do with scheduling of resources (class room, CPU)

• Input:

– a set of activities A = {a1, . . . , an} to be scheduled

– activity ai spends the time interval [si, fi)

• Output: a set of as many activities as possible with no
time conflict

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

A Greedy Algorithm

Arrays S and F store start and finish times:

S[i] = si, F [i] = fi.

Activity-Selection(S, F, n)

1: Sort F in increasing order
2: Simultaneously rearrange S correspondingly
3: C ← {1} // pick the first activity
4: j ← 1 // record the last chosen activity
5: for i← 2 to n do
6: if si ≥ fj then
7: C ← C ∪ {i} // add i to the output set
8: j ← i // record the last chosen activity
9: end if

10: end for
11: Output C

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Why does it work?

• Remember the objective: maximize the number of
scheduled activities

• Want: show that the algorithm’s output is optimal

• Greedy-choice property: At every step there exists an
optimal solution which contains the greedy choice (the
first interval)

– This shows that we are on the right track to get to an
optimal solution

• Optimal substructure: Are we still on the right track at
the next step?

– At the next step: we try to solve the same problem with
the set A′ of activities compatible with the first choice

– If O is an optimal solution to the original problem
containing {1}, then O′ = O − {1} is an optimal
solution to A′

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Elements of the Greedy Strategy

• Question: in the Activity Selection Problem, might there
be an optimal solution which does not contain the greedy
choice?

• At every step, the choice we made narrows down the
search

• Make sure we do not narrow it down to zero

• Greedy-choice property: There exists an optimal solution
which contains the greedy choice

• Optimal substructure:

– An optimal solution to the problem contains within it
an optimal solution to the subproblem

– After each greedy choice is made, we are left with an
optimization problem of the same form as the original
problem

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Knapsack Problems

0-1 knapsack problem

• Input: n items, the ith item has value vi dollars and
weighs wi. A maximum weight W . vi, wi,W ∈ Z+.

• Output: a set of items as valuable as possible with total
weight at most W .

Fractional knapsack problem

• Input: n items, the ith item has value vi dollars and
weighs wi. A maximum weight W . vi, wi,W ∈ Z+.

• Output: a set of items as valuable as possible with total
weight at most W .

• Relaxation: can take any fraction of an item.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Huffman Codes

• 7-bit ASCII code for “abbccc” uses 42 bits

• Suppose we use ’0’ to code ’c’, ’10’ to code ’b’, and ’11’
to code ’c’: “111010000” - 9 bits

• To code effectively:

– Variable codes

– No code of a character is a prefix of a code for another:
prefix code

– The characters with higher frequencies should get
shorter codes

• Prefix codes can be represented by binary trees with
characters at leaves

• The binary trees have to be full if we want the code to be
optimal (why?)

• The problem: given the frequencies, find an optimal full
binary tree

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Huffman’s Greedy Algorithm

• Input:

– C: the set of characters

– Frequency f(c) for each c ∈ C

• Output: an optimal coding tree T .

Let dT (c) be the depth of a leaf c of T

The total number of bits required is

B(T ) =
∑

c∈C
f(c)dT (c)

We want to find T with the least B(T )

Huffman’s Idea

1: while there are two or more leaves in C do
2: Pick two leaves x, y with least frequency
3: Create a node z with two children x, y, and frequency

f(z) = f(x) + f(y)

4: C = (C − {x, y}) ∪ {z}
5: end while

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Correctness of Huffman Coding

Greedy-Choice Property

Lemma 1. Let C be a character set, where each c ∈ C has
frequency f(c). Let x and y be two characters with least
frequencies. Then, there exists an optimal prefix code for C in
which the codewords for x and y have the same length and
differ only in the last bit

Optimal Substructure

Lemma 2. Let T be a full binary tree representing an optimal
prefix code for C. Let x and y be any leaves of T which share
the same parent z. Let C ′ = (C − {x, y}) ∪ {z}, with
f(z) = f(x) + f(y). Then, T ′ = T − {x, y} is an optimal tree
for C ′.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Things to remember

• To prove greedy choice property:

– Show that there exists an optimal solution which
“contains” the greedy choice

– A common method: take any optimal solution O, try
modifying O to O′, so that O′ is still optimal, and O′

contains the greedy choice

• To prove optimal substructure:

– Let O1 be an optimal solution which contains the
greedy choice. Show that O1 minus the greedy choice
(resulting in O′1, say) is an optimal solution to the
subproblem.

– A common method: assume O′1 is not optimal for the
subproblem, then there is some optimal solution O′2 of
the subproblem. Then, construct a solution O2 of the
original problem from O′2 and the greedy choice, such
that O2 is a better solution than O1. Contradiction!

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11


