We've done

- Fast Fourier Transform
 - Polynomial Multiplication

Now

- Introduction to the greedy method
 - Activity selection problem
 - How to prove that a greedy algorithm works
 - Huffman coding

Next

• Matroid theory

Greedy Algorithms

- The second algorithm design technique we learn
- Used to deal with optimization problems
- Optimization problems: find an optimal solution among a large set of candidate solutions
 - 0-1 knapsack problem: A robber found n items in a store, the *i*th item is worth v_i dollars and weighs w_i pounds (v_i, w_i ∈ Z⁺), he can only carry W pounds. Which items should he take?
 - Traveling Salesman Problem (TSP): find the shortest route for a salesman to visit each of the n given cities once, and return to the starting city.
- Different than brute-force
- Characterized by
 - Greedy-choice property
 - Optimal substructure

The Activity-Selection Problem

• Has to do with scheduling of resources (class room, CPU)

• Input:

- a set of activities $A = \{a_1, \ldots, a_n\}$ to be scheduled
- activity a_i spends the time interval $[s_i, f_i)$
- **Output:** a set of as many activities as possible with no time conflict

A Greedy Algorithm

Arrays S and F store start and finish times:

$$S[i] = s_i, \quad F[i] = f_i.$$

Activity-Selection(S, F, n)

- 1: Sort F in increasing order
- 2: Simultaneously rearrange S correspondingly
- 3: $C \leftarrow \{1\}$ // pick the first activity
- 4: $j \leftarrow 1$ // record the last chosen activity
- 5: for $i \leftarrow 2$ to n do
- 6: **if** $s_i \ge f_j$ **then**
- 7: $C \leftarrow C \cup \{i\} // \text{ add } i \text{ to the output set}$
- 8: $j \leftarrow i$ // record the last chosen activity
- 9: **end if**
- 10: **end for**
- 11: Output C

Why does it work?

- Remember the objective: maximize the number of scheduled activities
- Want: show that the algorithm's output is optimal
- **Greedy-choice property**: At every step there exists an optimal solution which contains the greedy choice (the first interval)
 - This shows that we are on the right track to get to an optimal solution
- **Optimal substructure**: Are we still on the right track at the next step?
 - At the next step: we try to solve the same problem with the set A' of activities compatible with the first choice
 - If O is an optimal solution to the original problem containing $\{1\}$, then $O' = O \{1\}$ is an optimal solution to A'

Elements of the Greedy Strategy

- Question: in the Activity Selection Problem, might there be an optimal solution which does not contain the greedy choice?
- At every step, the choice we made narrows down the search
- Make sure we do not narrow it down to zero
- **Greedy-choice property**: There exists an optimal solution which contains the greedy choice
- Optimal substructure:
 - An optimal solution to the problem contains within it an optimal solution to the subproblem
 - After each greedy choice is made, we are left with an optimization problem of the same form as the original problem

October 12, 2004

Knapsack Problems

0-1 knapsack problem

- Input: n items, the *i*th item has value v_i dollars and weighs w_i . A maximum weight W. $v_i, w_i, W \in \mathbb{Z}^+$.
- **Output:** a set of items as valuable as possible with total weight at most *W*.

Fractional knapsack problem

- Input: n items, the *i*th item has value v_i dollars and weighs w_i . A maximum weight W. $v_i, w_i, W \in \mathbb{Z}^+$.
- **Output:** a set of items as valuable as possible with total weight at most W.
- **Relaxation:** can take any fraction of an item.

October 12, 2004

Huffman Codes

- 7-bit ASCII code for "abbccc" uses 42 bits
- Suppose we use '0' to code 'c', '10' to code 'b', and '11' to code 'c': "111010000" 9 bits
- To code effectively:
 - Variable codes
 - No code of a character is a prefix of a code for another:
 prefix code
 - The characters with higher frequencies should get shorter codes
- Prefix codes can be represented by binary trees with characters at leaves
- The binary trees have to be full if we want the code to be optimal (why?)
- The problem: given the frequencies, find an optimal full binary tree

Huffman's Greedy Algorithm

• Input:

- C: the set of characters
- Frequency f(c) for each $c \in C$
- **Output:** an optimal coding tree *T*.

Let $d_T(c)$ be the depth of a leaf c of T

The total number of bits required is

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

We want to find T with the least B(T)

Huffman's Idea

- 1: while there are two or more leaves in C do
- 2: Pick two leaves x, y with least frequency
- 3: Create a node z with two children x, y, and frequency f(z) = f(x) + f(y)

4:
$$C = (C - \{x, y\}) \cup \{z\}$$

5: end while

Correctness of Huffman Coding

Greedy-Choice Property

Lemma 1. Let C be a character set, where each $c \in C$ has frequency f(c). Let x and y be two characters with least frequencies. Then, there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit

Optimal Substructure

Lemma 2. Let T be a full binary tree representing an optimal prefix code for C. Let x and y be any leaves of T which share the same parent z. Let $C' = (C - \{x, y\}) \cup \{z\}$, with f(z) = f(x) + f(y). Then, $T' = T - \{x, y\}$ is an optimal tree for C'.

Things to remember

- To prove greedy choice property:
 - Show that there exists an optimal solution which "contains" the greedy choice
 - A common method: take any optimal solution O, try modifying O to O', so that O' is still optimal, and O' contains the greedy choice
- To prove optimal substructure:
 - Let O_1 be an optimal solution which contains the greedy choice. Show that O_1 minus the greedy choice (resulting in O'_1 , say) is an optimal solution to the subproblem.
 - A common method: assume O'_1 is not optimal for the subproblem, then there is some optimal solution O'_2 of the subproblem. Then, construct a solution O_2 of the original problem from O'_2 and the greedy choice, such that O_2 is a better solution than O_1 . Contradiction!