We've done

- Matroid Theory
 - Matroids and weighted matroids
 - Generic matroid algorithms
 - Minimum spanning trees

Now

- Task scheduling problem (another matroid example)
- Dijkstra's algorithm (another greedy example)

Next

• Dynamic programming

A Task-Scheduling Problem

Input

- A set $S = \{1, \dots, n\}$ of n unit-time tasks;
- A set $D = \{d_1, \dots, d_n\}$ of integer deadlines for the tasks $(1 \le d_i \le n)$;
- A set $W = \{w_1, \dots, w_n\}$ of (positive) penalties for each task, i.e. task i is penalized w_i if it's not finished by time d_i

Output

• A schedule, i.e. a permutation of tasks, which minimizes the sum of penalties.

A Key Observation

Given a scheduling π (just a permutation),

Let $P(\pi)$ denote the total penalty for π

Call a task *early* if it finishes at or before the deadline.

We can always transform π into another schedule π' in which the early tasks precedes the late tasks with $P(\pi') = P(\pi)$.

The problem reduces to finding a set A of early tasks which minimizes total penalty.

(Equivalently, maximizes total penalty in S - A!)

Define a pair $M = (S, \mathcal{I})$ as follows

- S is the set of tasks
- $A \in \mathcal{I}$ if and only if there exists a schedule in which no tasks in A is late

Theorem 1. *M* is a matroid

Proof. • Hereditary: obvious!

• Exchange: slightly less obvious. Use the next Lemma.

A Key Lemma

For each task set A, and a time t, let

$$S_t(A) = \{ i \in A \mid d_i \le t \}$$

Lemma 2. A is independent if and only if $|S_t(A)| \le t$, for all t = 1, 2, ..., n. Moreover, we can schedule A in increasing deadlines.

Now back to the exchange property:

Consider A, B, where |A| < |B|. We have $|S_n(A)| < |S_n(B)|$.

Let $k \ge 0$ be the least index for which:

$$|S_j(A)| < |S_j(B)|$$
 for all $j = k + 1, \dots, n$
 $|S_k(A)| \ge |S_k(B)|$

Thus, we can take a task x in B-A with deadline k+1 and add to A. The set $A \cup \{x\}$ is independent (why?).

Algorithm for Task Scheduling

We use MATROID-GREEDY in this context: D – corresponding deadlines, and W – corresponding penalties.

TASK-SCHEDULING(D, W, n)

- 1: $A \leftarrow \emptyset$
- 2: Sort W in **decreasing** (why?) order of penalty
- 3: Simultaneously move the deadlines in D correspondingly
- 4: // Now initialize array N, where $N[t] = |S_t(A)|$
- 5: **for** t = 1 **to** n **do**
- 6: $N[t] \leftarrow 0$
- 7: end for
- 8: **for** i = 1 **to** n **do**
- 9: $OK \leftarrow \text{TRUE} // \text{check if } A \cup \{i\} \in \mathcal{I}$
- 10: **for** j = 1 **to** D[i] **do**
- 11: **if** N[j] + 1 > j **then**
- 12: $OK \leftarrow FALSE$
- 13: **end if**
- 14: **end for**
- 15: if OK then
- 16: $A \leftarrow A \cup \{s_i\}$
- 17: **end if**
- **18: end for**

A Small Summary on Priority Queues

A priority queue is a data structure

- maintains a set S of objects
- each $s \in S$ has a key $key[s] \in \mathbb{R}$

Two types of priority queues: min-priority queue and max-priority queue

Min-Priority Queue - denoted by Q

- INSERT(Q, x): insert x into S
- MINIMUM(Q): returns element with min key
- EXTRACT-MIN(Q): removes and returns element with min key
- DECREASE-KEY(Q, x, k): change the key of x in S into new key k, where $k \leq key[x]$

Using Heap, Min-PQ can be implemented so that:

- Building a Q from an array takes O(n)
- Each of the operations takes $O(\lg n)$

Single Source Shortest-Paths Problem

Terminologies:

- Strictly speaking, a **path** in a graph G is a sequence of vertices $P = (v_0, v_1, \dots, v_k)$, where $(v_i, v_{i+1}) \in E$, and no vertex is repeated in the sequence
- A walk is the same kind of sequences with repeated vertices allowed
- If $w: E \to \mathbb{R}$, then $w(P) = w(v_0v_1) + w(v_1v_2) + \cdots + w(v_{k-1}v_k).$

Given a directed graph G=(V,E), a source vertex $s\in V$.

A weight function $w: E \to \mathbb{R}^+$

Find a "shortest" path from s to each vertex $v \in V$

Note:

- "Shortest" means least weight
- In general, $w: E \to \mathbb{R}$, we'll discuss this later
- We want to find n-1 shortest paths, not one
- Note also that the graph G is directed (what if it wasn't?)

Representing Shortest Paths

Given a directed graph G=(V,E) and a source vertex $s\in V$.

We would like to represent the shortest paths from s to each vertex $v \in V$.

Lemma 3. If a shortest path from s to v is P = (s, ..., u, v), then the part of P from s to u is a shortest path from s to u.

Hence, a representation of all shortest paths is as follows:

For each $v \in V$, maintain a pointer $\pi[v]$ to the previous vertex along a shortest path from s to v

$$\pi[s] = \text{NIL}$$

 $\pi[v] = \text{NIL if } v \text{ is not reachable from } s$

Note:

- There could be multiple shortest paths to the same vertex
- The representation gives one set of shortest paths
- All SSSP algorithms we shall discuss produce a shortest paths tree

Shortest-Paths Trees

Given a directed graph G=(V,E), a source s and a weight function w

A shortest-paths tree rooted at s is a directed subgraph T = (V', E'), where

- $V' \subseteq V, E' \subseteq E$ (part of being a subgraph)
- V' is a set of vertices reachable from s
- T forms a rooted tree with root s
- for all $v \in V'$, the unique simple path from s to v in T is a shortest path from s to v in G

Note:

- We've noted that shortest paths are not necessarily unique
- SPTs are also not necessarily unique

Important Data Structures and Sub-routines

For each vertex $v \in V(G)$:

- ullet d[v]: current estimate of the weight of a shortest path to v
- $\pi[v]$: pointer to the previous vertex on the shortest path to v

Initialize-Single-Source(G, s)

- 1: for each $v \in V(G)$ do
- 2: $d[v] \leftarrow \infty$
- 3: $\pi[v] \leftarrow \text{NIL}$
- 4: end for
- 5: $d[s] \leftarrow 0$

Relax(u, v, w)

- 1: **if** d[v] > d[u] + w(u, v) **then**
- 2: $d[v] \leftarrow d[u] + w(u, v)$
- 3: $\pi[v] \leftarrow u$
- 4: end if

Dijkstra's Algorithm

Pictorially, it operates very similar to Prim's Algorithm

$\mathbf{DIJKSTRA}(G,s,w)$

- 1: INITIALIZE-SINGLE-SOURCE(G, s)
- 2: $S \leftarrow \emptyset$ // set of vertices considered so far
- 3: $Q \leftarrow V(G) // \forall v, key[v] = d[v]$ after initialization
- 4: **while** Q is not empty **do**
- 5: $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 6: $S \leftarrow S \cup \{u\}$
- 7: **for** each $v \in Adj[u]$ **do**
- 8: RELAX(u, v, w)
- 9: **end for**
- 10: end while

This is a greedy algorithm because at every step, we add a vertex in V-S "closest" to S into S.

Analysis of Dijkstra's Algorithm

Let
$$n = |V(G)|$$
, and $m = |E(G)|$

- INITIALIZE-SINGLE-SOURCE takes O(n)
- Building the queue takes O(n)
- The while loop is done n times, so EXTRACT-MIN is called n times for a total of $O(n \lg n)$
- For each u extracted, and each v adjacent to u, RELAX(u,v,w) is called, hence totally |E| calls to RELAX were made
- Each call to Relax implicitly implies a call to Decrease-Key, which takes $O(\lg n)$; hence, totally $O(m \lg n)$ -time on Decrease-Key

In total, we have $O((m+n) \lg n)$, which could be improved using FIBONACCI-HEAP to implement the priority queue

Correctness of Dijkstra's Algorithm

Let $\delta(s, v)$ denote the weight of a shortest path from s to v.

We note the following facts

- $d[v] \ge \delta(s, v)$, and once $d[v] = \delta(s, v)$ it never changes
- if v is not reachable from s, then $d[v] = \infty$ always
- if there is a path from s to u, and there is an edge uv, and $d[u] = \delta(s, u)$ at any time before the call to Relax(u, v, w), then $d[v] = \delta(s, v)$ after the call

Theorem 4. Dijkstra's Algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$

Proof. We show that at the start of each iteration, $d[v] = \delta(s, v)$ for each $v \in S$.

(Note: this is like induction on the number of steps of the algorithm.)

Lemma 5. The predecessor subgraph produced by the π 's is a shortest-paths tree.