
c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

We’ve done

• Matroid Theory

– Matroids and weighted matroids

– Generic matroid algorithms

– Minimum spanning trees

Now

• Task scheduling problem (another matroid example)

• Dijkstra’s algorithm (another greedy example)

Next

• Dynamic programming

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

A Task-Scheduling Problem

Input

• A set S = {1, . . . , n} of n unit-time tasks;

• A set D = {d1, . . . , dn} of integer deadlines for the tasks
(1 ≤ di ≤ n);

• A set W = {w1, . . . , wn} of (positive) penalties for each
task, i.e. task i is penalized wi if it’s not finished by time di

Output

• A schedule, i.e. a permutation of tasks, which minimizes
the sum of penalties.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

A Key Observation

Given a scheduling π (just a permutation),

Let P (π) denote the total penalty for π

Call a task early if it finishes at or before the deadline.

We can always transform π into another schedule π′ in which
the early tasks precedes the late tasks with P (π′) = P (π).

The problem reduces to finding a set A of early tasks

which minimizes total penalty.

(Equivalently, maximizes total penalty in S −A!)

Define a pair M = (S, I) as follows

• S is the set of tasks

• A ∈ I if and only if there exists a schedule in which no
tasks in A is late

Theorem 1. M is a matroid

Proof. • Hereditary: obvious!

• Exchange: slightly less obvious. Use the next Lemma.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

A Key Lemma

For each task set A, and a time t, let

St(A) = {i ∈ A | di ≤ t}

Lemma 2. A is independent if and only if |St(A)| ≤ t, for all
t = 1, 2, . . . , n. Moreover, we can schedule A in increasing
deadlines.

Now back to the exchange property:

Consider A,B, where |A| < |B|. We have |Sn(A)| < |Sn(B)|.
Let k ≥ 0 be the least index for which:

|Sj(A)| < |Sj(B)| for all j = k + 1, . . . , n

|Sk(A)| ≥ |Sk(B)|

Thus, we can take a task x in B −A with deadline k + 1 and
add to A. The set A ∪ {x} is independent (why?).

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Algorithm for Task Scheduling

We use MATROID-GREEDY in this context: D –
corresponding deadlines, and W – corresponding penalties.

TASK-SCHEDULING(D,W,n)

1: A← ∅
2: Sort W in decreasing (why?) order of penalty
3: Simultaneously move the deadlines in D correspondingly
4: // Now initialize array N , where N [t] = |St(A)|
5: for t = 1 to n do
6: N [t]← 0

7: end for
8: for i = 1 to n do
9: OK ← TRUE // check if A ∪ {i} ∈ I

10: for j = 1 to D[i] do
11: if N [j] + 1 > j then
12: OK ← FALSE

13: end if
14: end for
15: if OK then
16: A← A ∪ {si}
17: end if
18: end for

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

A Small Summary on Priority Queues

A priority queue is a data structure

• maintains a set S of objects

• each s ∈ S has a key key[s] ∈ R

Two types of priority queues: min-priority queue and
max-priority queue

Min-Priority Queue – denoted by Q

• INSERT(Q, x): insert x into S

• MINIMUM(Q): returns element with min key

• EXTRACT-MIN(Q): removes and returns element with
min key

• DECREASE-KEY(Q, x, k): change the key of x in S into
new key k, where k ≤ key[x]

Using Heap, Min-PQ can be implemented so that:

• Building a Q from an array takes O(n)

• Each of the operations takes O(lg n)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Single Source Shortest-Paths Problem

Terminologies:

• Strictly speaking, a path in a graph G is a sequence of
vertices P = (v0, v1, . . . , vk), where (vi, vi+1) ∈ E, and
no vertex is repeated in the sequence

• A walk is the same kind of sequences with repeated
vertices allowed

• If w : E → R, then
w(P) = w(v0v1) + w(v1v2) + · · ·+ w(vk−1vk).

Given a directed graph G = (V,E), a source vertex s ∈ V .

A weight function w : E → R+

Find a “shortest” path from s to each vertex v ∈ V

Note:

• “Shortest” means least weight

• In general, w : E → R, we’ll discuss this later

• We want to find n− 1 shortest paths, not one

• Note also that the graph G is directed (what if it wasn’t?)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Representing Shortest Paths

Given a directed graph G = (V,E) and a source vertex s ∈ V .

We would like to represent the shortest paths from s to each
vertex v ∈ V .

Lemma 3. If a shortest path from s to v is P = (s, . . . , u, v),
then the part of P from s to u is a shortest path from s to u.

Hence, a representation of all shortest paths is as follows:

For each v ∈ V , maintain a pointer π[v] to the previous

vertex along a shortest path from s to v

π[s] = NIL

π[v] = NIL if v is not reachable from s

Note:

• There could be multiple shortest paths to the same vertex

• The representation gives one set of shortest paths

• All SSSP algorithms we shall discuss produce a shortest
paths tree

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Shortest-Paths Trees

Given a directed graph G = (V,E), a source s and a weight
function w

A shortest-paths tree rooted at s is a directed subgraph
T = (V ′, E′), where

• V ′ ⊆ V , E′ ⊆ E (part of being a subgraph)

• V ′ is a set of vertices reachable from s

• T forms a rooted tree with root s

• for all v ∈ V ′, the unique simple path from s to v in T is a
shortest path from s to v in G

Note:

• We’ve noted that shortest paths are not necessarily unique

• SPTs are also not necessarily unique

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Important Data Structures and Sub-routines

For each vertex v ∈ V (G):

• d[v]: current estimate of the weight of a shortest path to v

• π[v]: pointer to the previous vertex on the shortest path to v

INITIALIZE-SINGLE-SOURCE(G, s)

1: for each v ∈ V (G) do
2: d[v]←∞
3: π[v]← NIL

4: end for
5: d[s]← 0

RELAX(u, v, w)

1: if d[v] > d[u] + w(u, v) then
2: d[v]← d[u] + w(u, v)

3: π[v]← u

4: end if

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Dijkstra’s Algorithm

Pictorially, it operates very similar to Prim’s Algorithm

DIJKSTRA(G, s, w)

1: INITIALIZE-SINGLE-SOURCE(G, s)

2: S ← ∅ // set of vertices considered so far
3: Q← V (G) // ∀v, key[v] = d[v] after initialization
4: while Q is not empty do
5: u← EXTRACT-MIN(Q)

6: S ← S ∪ {u}
7: for each v ∈ Adj[u] do
8: RELAX(u, v, w)

9: end for
10: end while

This is a greedy algorithm because at every step, we add a
vertex in V − S “closest” to S into S.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Analysis of Dijkstra’s Algorithm

Let n = |V (G)|, and m = |E(G)|

• INITIALIZE-SINGLE-SOURCE takes O(n)

• Building the queue takes O(n)

• The while loop is done n times, so EXTRACT-MIN is
called n times for a total of O(n lg n)

• For each u extracted, and each v adjacent to u,
RELAX(u, v, w) is called, hence totally |E| calls to
RELAX were made

• Each call to RELAX implicitly implies a call to
DECREASE-KEY, which takes O(lg n); hence, totally
O(m lg n)-time on DECREASE-KEY

In total, we have O((m+ n) lg n), which could be improved
using FIBONACCI-HEAP to implement the priority queue

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 12

c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Correctness of Dijkstra’s Algorithm

Let δ(s, v) denote the weight of a shortest path from s to v.

We note the following facts

• d[v] ≥ δ(s, v), and once d[v] = δ(s, v) it never changes

• if v is not reachable from s, then d[v] =∞ always

• if there is a path from s to u, and there is an edge uv, and
d[u] = δ(s, u) at any time before the call to
RELAX(u, v, w), then d[v] = δ(s, v) after the call

Theorem 4. Dijkstra’s Algorithm terminates with
d[v] = δ(s, v) for all v ∈ V

Proof. We show that at the start of each iteration,
d[v] = δ(s, v) for each v ∈ S.

(Note: this is like induction on the number of steps of the
algorithm.)

Lemma 5. The predecessor subgraph produced by the π’s is a
shortest-paths tree.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 13

