We've done

- Administrative aspects
- A brief overview of the course

Now

- Growth of functions
- Asymptotic notations
- Scare some people off

Next

• Recurrence relations & ways to solve them

Some conventions

Growth of functions

Consider a Pentium-4, 1 GHz, i.e. roughly 10^{-9} second for each basic instruction.

	10	20	30	40	50	1000
$\lg \lg n$	1.7 ns	2.17 ns	2.29 ns	2.4 ns	2.49 ns	3.3 ns
lg n	3.3 ns	4.3 ns	4.9 ns	5.3 ns	5.6 ns	9.9 ns
\overline{n}	10 ns	20 ns	3 ns	4 ns	5 ns	$1 \mu s$
n^2	$0.1~\mu \mathrm{s}$	$0.4~\mu \mathrm{s}$	$0.9~\mu \mathrm{s}$	$1.6~\mu \mathrm{s}$	$2.5~\mu \mathrm{s}$	1 ms
n^3	$1 \mu \mathrm{s}$	$8 \mu s$	$27~\mu \mathrm{s}$	$64~\mu s$	$125~\mu s$	1 sec
n^5	0.1 ms	3.2 ms	24.3 ms	0.1 sec	0.3 sec	277 h
2^n	$1 \mu s$	1 ms	1 s	18.3 m	312 h	$3.4 \cdot 10^{282}$ centuries
$\overline{3^n}$	59 μs	3.5 s	57.2 h	386 y	227644 с	$4.2 \cdot 10^{458}$ centuries

 1.6^{100} ns is approx. 82 centuries (Recall FibA).

$$\lg 10^{10} = 33$$
, $\lg \lg 10^{10} = 4.9$

Some other large numbers

- The age of the universe ≤ 13 G-Years $= 13 \cdot 10^7$ centuries.
- $4*10^{78} \le \text{Number of atoms is the universe} \le 6*10^{79}$.
- Number of seconds since big-bang $\approx 10^{17}$.
- The probability that a monkey can compose Hamlet is $\frac{1}{10^{40}}$ (what's the philosophical implication of this?).

Talking about large numbers

Just for fun:

What's the largest number you could describe using thirteen English words?

How about:

"Nine trillion trillion ... trillion"

(The *trillion* is repeated 12 times)

Note:

A googol = 10^{100} .

Dominating Terms

Compare the following functions:

$$f_1(n) = 2000n^2 + 1,000,000n + 3$$

$$f_2(n) = 100n^2$$

$$f_3(n) = n^5 + 10^7 n$$

$$f_4(n) = 2^n + n^{10,000}$$

$$f_5(n) = 2^n$$

$$f_6(n) = \frac{3^n}{10^6}$$

when n is "large" (we often say "sufficiently large")

Behind comparing functions

Mathematically, $f(n) \gg g(n)$ for "large enough" n means

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty.$$

We also say f(n) is asymptotically larger than g(n). They are "comparable" if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$$

and $f(n) \ll g(n)$ for large n means

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

In this case, f(n) is asymptotically smaller than g(n).

Asymptotic notations give a convenient way to formalize these concepts.

Asymptotic Notations

$$f(n) = O(g(n)) \quad \text{iff} \quad \exists c > 0, n_0 > 0 : f(n) \le cg(n), \text{ for } n \ge n_0$$

$$f(n) = \Omega(g(n)) \quad \text{iff} \quad \exists c > 0, n_0 > 0 : f(n) \ge cg(n), \text{ for } n \ge n_0$$

$$f(n) = \Theta(g(n)) \quad \text{iff} \quad f(n) = O(g(n)) \& f(n) = \Omega(g(n))$$

$$f(n) = o(g(n)) \quad \text{iff} \quad \forall c > 0, \exists n_0 > 0 : f(n) \le cg(n), \text{ for } n \ge n_0$$

$$f(n) = \omega(g(n)) \quad \text{iff} \quad \forall c > 0, \exists n_0 > 0 : f(n) \ge cg(n), \text{ for } n \ge n_0$$

Note:

- we shall be concerned only with functions f of the form $f: \mathbb{N}^+ \to \mathbb{R}^+$, unless specified otherwise.
- $f(n) = \mathbf{x}(g(n))$ isn't mathematically correct

Some examples

$$a(n) = \sqrt{n}$$

$$b(n) = n^{5} + 10^{7}n$$

$$c(n) = (1.3)^{n}$$

$$d(n) = (\lg n)^{100}$$

$$e(n) = \frac{3^{n}}{10^{6}}$$

$$f(n) = 3180$$

$$g(n) = n^{0.0000001}$$

$$h(n) = (\lg n)^{\lg n}$$

A few properties

$$f(n) = o(g(n)) \quad \Rightarrow \quad f(n) = O(g(n)) \& f(n) \neq \Theta(g(n)) \quad (1)$$

$$f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n)) \& f(n) \neq \Theta(g(n))$$
 (2)

$$f(n) = O(g(n)) \quad \Leftrightarrow \quad g(n) = \Omega(f(n)) \tag{3}$$

$$f(n) = \Theta(g(n)) \quad \Leftrightarrow \quad g(n) = \Theta(f(n)) \tag{4}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty \quad \Leftrightarrow \quad f(n) = \omega(g(n)) \tag{5}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \quad \Rightarrow \quad f(n) = \Theta(g(n)) \tag{6}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \quad \Leftrightarrow \quad f(n) = o(g(n)) \tag{7}$$

Remember: we only consider functions from $\mathbb{N}^+ \to \mathbb{R}^+$.

A reminder: L'Hôpital's rule

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if

 $\lim_{n\to\infty} f(n)$ and $\lim_{n\to\infty} g(n)$ are both 0 or both $\pm\infty$.

Examples:

$$\lim_{n \to \infty} \frac{\lg n}{\sqrt{n}} = 0$$

$$\lim_{n \to \infty} \frac{(\lg n)^{\lg n}}{\sqrt{n}} = ?$$

Stirling's approximation

For all $n \geq 1$,

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\alpha_n},$$

where

$$\frac{1}{12n+1} < \alpha_n < \frac{1}{12n}.$$

It then follows that

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$$

The last formula is often referred to as the "Stirling's approximation"

More examples

$$a(n) = \lfloor \lg n \rfloor!$$

$$b(n) = n^5 + 10^7 n$$

$$c(n) = 2^{\sqrt{\lg n}}$$

$$d(n) = (\lg n)^{100}$$

$$e(n) = 3^n$$

$$f(n) = (\lg n)^{\lg \lg n}$$

$$g(n) = 2^{n^{0.001}}$$

$$h(n) = (\lg n)^{\lg n}$$

$$i(n) = n!$$

Special functions

Some functions cannot be compared, e.g. $n^{1+\sin(n\frac{\pi}{2})}$ and n.

$$\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\},\$$

where for any function $f: \mathbb{N}^+ \to \mathbb{R}^+$,

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ f(f^{(i-1)}(n)) & \text{if } i > 0 \end{cases}$$

Intuitively, compare

$$\begin{aligned}
\lg^* n & \text{vs} & \lg n \\
\lg^* n & \text{vs} & (\lg n)^{\epsilon}, \ \epsilon > 0 \\
2^n & \text{vs} & n^n \\
\lg^*(\lg n) & \text{vs} & \lg(\lg^* n)
\end{aligned}$$

How about rigorously?

Asymptotic notations in equations

$$5n^3 + 6n^2 + 3 = 5n^3 + \Theta(n^2)$$

means "the LHS is equal to $5n^3$ plus "some" function which is $\Theta(n^2)$."

$$o(n^6) + O(n^5) = o(n^6)$$

means "for any $f(n) = o(n^6)$, $g(n) = O(n^5)$, the function h(n) = f(n) + g(n) is $o(n^6)$." Why?

Be very careful!! For example:

$$O(n^5) + \Omega(n^2) \stackrel{?}{=} \Omega(n^2)$$

$$O(n^5) + \Omega(n^2) \stackrel{?}{=} O(n^5)$$

Tight and not tight

 $n \log n = O(n^2)$ is not tight

$$n^2 = O(n^2)$$
 is tight

What to focus on when comparing functions asymptotically?

- Determine the dominating term
- Use intuition first
- Transform intuition into rigorous proof.