We've done

- Matroid Theory
- Task scheduling problem (another matroid example)
- Dijkstra's algorithm (another greedy example)

Now

- Dynamic Programming
 - Matrix Chain Multiplication
 - Longest Common Subsequence

Next

- Dynamic Programming
 - Assembly-line scheduling
 - Optimal Binary Search Trees

Matrix Chain Multiplication (MCM) Problem

Given $A_{10\times100}$, $B_{100\times25}$, then calculating AB requires $10 \cdot 100 \cdot 25 = 25,000$ multiplications.

Given $A_{10\times 100}$, $B_{100\times 25}$, $C_{25\times 4}$, then it is true that

(AB)C = A(BC) = ABC.

- *AB* requires 25,000 multiplications
- (AB)C requires $10 \cdot 25 \cdot 4 = 1000$ more multiplications
- totally 26,000 multiplications

On the other hand

- BC requires $100 \cdot 25 \cdot 4 = 10,000$ multiplications
- A(BC) requires $10 \times 100 \times 4 = 4000$ more multiplications
- totally 14,000 multiplications

MCM (cont)

If there are 4 matrices A, B, C, D, there are 5 ways to parenthesize the product ABCD:

$$(A(B(CD))), (A((BC)D)), ((AB)(CD)),$$

 $((A(BC))D), (((AB)C)D)$

In general, given n matrices:

A_1	of dimension	$p_0 \times p_1$
A_2	of dimension	$p_1 \times p_2$
• •	• •	• •
A_n	of dimension	$p_{n-1} \times p_n$

There are totally

$$\frac{1}{n+1}\binom{2n}{n} = \frac{1}{n+1}\frac{(2n)!}{n!n!} = \Omega\left(\frac{4^n}{n^{3/2}}\right)$$

ways to parenthesize the product.

Find a parenthesization with the least number of multiplications

CSE 431/531 Lecture Notes

October 26, 2004

Some Observations

- Let's try to find the optimal cost first
- Suppose we split between A_k and A_{k+1} , then the parenthesization of $A_1 \dots A_k$ and $A_{k+1} \dots A_n$ have to also be optimal: optimal substructure.
- Let c[1, k] and c[k + 1, n] be the optimal costs for the subproblems, then the cost of splitting at k, k + 1 is

$$c[1,k] + c[k+1,n] + p_0 p_k p_n$$

because

 $A_1 \dots A_k$ has dimension $p_0 \times p_k$ $A_{k+1} \dots A_n$ has dimension $p_k \times p_n$

• The optimal cost c[1, n] is

$$c[1,n] = \min_{1 \le k < n} \left(c[1,k] + c[k+1,n] + p_0 p_k p_n \right)$$

• Hence, in general we need c[i, j] for i < j:

$$c[i,j] = \min_{i \le k < j} \left(c[i,k] + c[k+1,j] + p_{i-1}p_k p_j \right)$$

A Recursive Solution

We need the base cases also:

$$c[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \left(c[i,k] + c[k+1,j] + p_{i-1}p_k p_j \right) & \text{if } i < j \end{cases}$$

Opt-MCM(p, i, j)

- 1: if i = j then
- 2: return 0;
- 3: **else**
- 4: min-so-far $\leftarrow \infty$;
- 5: for $k \leftarrow i$ to j 1 do
- 6: $c \leftarrow \text{Opt-MCM}(i,k) + \text{Opt-MCM}(k+1,j)$

 $+p_{i-1}p_kp_j$

- 7: **if** min-so-far > c **then**
- 8: min-so-far $\leftarrow c$;
- 9: **end if**

10: **end for**

- 11: **return** min-so-far;
- 12: **end if**

Running time is exponential for the same reason FibonacciA was exponential. (What's the recurrence?)

A Bottom Up Solution

- We use a table to store $c[i, j], i \leq j$.
- For each l = 1 to n 1, recursively calculate the entries c[i, i + l]

MCM-Order(p, n)

- 1: **for** i = 1 **to** n **do**
- 2: $c[i,i] \leftarrow 0$ // base cases
- 3: end for
- 4: for l = 1 to n 1 do
- 5: for $i \leftarrow 1$ to n l do
- 6: $j \leftarrow i + l$; // not really needed, just to be clearer
- 7: $c[i,j] \leftarrow \infty;$
- 8: for $k \leftarrow i$ to j 1 do

9:
$$t \leftarrow c[i,k] + c[k+1,j] + p_{i-1}p_kp_j;$$

- 10: **if** c[i, j] > t **then**
- 11: $c[i,j] \leftarrow t;$
- 12: **end if**
- 13: **end for**
- 14: **end for**
- 15: **end for**
- 16: **return** c[1, n];

Also Record the Splitting Points

Use s[i, j] to store the optimal splitting point k:

$\operatorname{\textbf{MCM-Order}}(p,n)$

- 1: for i = 1 to n do
- 2: $c[i,i] \leftarrow 0$ // base cases

3: end for

4: for
$$l = 1$$
 to $n - 1$ do

5: for
$$i \leftarrow 1$$
 to $n - l$ do

6: $j \leftarrow i + l$; // not really needed, just to be clearer

7:
$$c[i,j] \leftarrow \infty;$$

8: for
$$k \leftarrow i$$
 to $j - 1$ do

9:
$$t \leftarrow c[i,k] + c[k+1,j] + p_{i-1}p_kp_j;$$

10: **if**
$$c[i, j] > t$$
 then

11:
$$c[i,j] \leftarrow t;$$

12:
$$s[i,j] \leftarrow k;$$

- 13: **end if**
- 14: **end for**
- 15: **end for**
- 16: **end for**

17: return *c*;

October 26, 2004

The Actual MCM

Knowing the splitting points, it is now easy:

Matrix-Chain-Multiply(A, i, j, s)

1: **if** j > i **then**

- 2: $k \leftarrow s[i, j];$
- 3: $X \leftarrow \text{Matrix-Chain-Multiply}(A, i, k, s);$
- 4: $Y \leftarrow \text{Matrix-Chain-Multiply}(A, k+1, j, s);$
- 5: return XY;

6: **else**

- 7: **return** A_i ; // i = j in this case
- 8: **end if**

Analysis of MCM's Algorithm

- We also are concerned about space, not only time
- Space needed is $O(n^2)$ for the tables c and s
- Suppose the inner-most loop takes about 1 time unit, then the running time is

$$\sum_{l=1}^{n-1} \sum_{i=1}^{n-l} l = \sum_{l=1}^{n-1} l(n-l)$$

= $n \sum_{l=1}^{n-1} l - \sum_{l=1}^{n-1} l^2$
= $n \frac{n(n-1)}{2} - \frac{(n-1)n(2(n-1)+6)}{6}$
= $\Theta(n^3)$

Memoization

Memoized-MCM-Order(p, n)

- 1: for $i \leftarrow 1$ to n do
- 2: $c[i,j] \leftarrow \infty;$
- 3: end for
- 4: Lookup(p, 1, n);

 $\operatorname{Lookup}(p, i, j)$

- 1: if $c[i, j] < \infty$ then
- 2: return c[i, j]; // it's calculated!! Time saved right here
- 3: **end if**
- 4: if i = j then
- 5: $c[i,i] \leftarrow 0;$
- 6: **else**

7: for
$$k \leftarrow i$$
 to $j - 1$ do

8:
$$t \leftarrow \text{Lookup}(p, i, k) + \text{Lookup}(p, k+1, n) +$$

 $p_{i-1}p_kp_j;$

9: **if** t < c[i, j] **then**

10:
$$c[i,j] \leftarrow t; \ s[i,j] \leftarrow k;$$

- 11: **end if**
- 12: **end for**
- 13: **end if**
- 14: return c[i, j];

Longest Common Subsequence (LCS) Problem i Χ h i t S S С r =a Ζ У Ζ h i = С a Ζ У Z is a subsequence of X. Х h i s i s c t r = a Ζ y Y t b i u n t e r S t i = e n g So, Z = [t, i, s, i] is a common subsequence of X and Y

Given 2 sequences X and Y of lengths m and n, respectively Find a common subsequence Z of longest length

Analyzing the LCS Problem

- Somehow, find a recursive formula for the objective function
- Suppose $X = [x_1, ..., x_m], Y = [y_1, ..., y_n]$

Key observation: optimal substructure Theorem 1. Let LCS(X, Y) be the length of a LCS of X and Y

• If $x_m = y_n$, then

$$LCS(X,Y) = 1 + LCS([x_1, \dots, x_{m-1}], [y_1, \dots, y_{n-1}])$$

• If
$$x_m \neq y_n$$
, then either

$$LCS(X,Y) = LCS([x_1,...,x_m], [y_1,...,y_{n-1}])$$

or

$$LCS(X, Y) = LCS([x_1, \dots, x_{m-1}], [y_1, \dots, y_n])$$

In other words, LCS(X, Y) is the max of the two in this case.

CSE 431/531 Lecture Notes

Conclusions From the Theorem

• For $0 \le i \le m, 0 \le j \le n$, let

$$X_i = [x_1, \dots, x_i]$$
$$Y_j = [y_1, \dots, y_j]$$

- If x_m = y_n = z, then a LCS Z of X and Y can be found by computing a LCS Z' of X_{m-1} and Y_{n-1}, and append z at the end, i.e. Z = [Z', z].
- If x_m ≠ y_n, then let Z₁ be a LCS of X_{m-1} and Y_n, Z₂ be a LCS of X_m and Y_{n-1}.
 Z is then either Z₁ or Z₂, whichever is longer.
- Let $c[i, j] = LCS[X_i, Y_j]$, then

$$c[i,j] = \begin{cases} 0 & \text{if } i \text{ or } j \text{ is } 0\\ 1 + c[i-1,j-1] & \text{if } x_i = y_j\\ \max(c[i-1,j],c[i,j-1]) & \text{if } x_i \neq y_j \end{cases}$$

Hence, c[i, j] in general depends on one of three entries: the North entry c[i - 1, j], the West entry c[i, j - 1], and the NorthWest entry c[i - 1, j - 1].

Computing LCS length

We maintain a cost table c[0..m, 0..n] of optimal lengths, and a "direction" table d[1..m, 1..n] of $\{N, W, NW\}$ recording where c[i, j] comes from.

LCS-Length(X, Y, m, n)1: $c[i, 0] \leftarrow 0$ for each $i = 0, \ldots, m$; 2: $c[0, j] \leftarrow 0$ for each $j = 0, \ldots, n$; 3: for $i \leftarrow 1$ to m do for $j \leftarrow 1$ to n do 4: if $x_i = y_i$ then 5: $c[i, j] \leftarrow 1 + c[i - 1, j - 1];$ 6: $d[i, j] \leftarrow NW;$ 7: else 8: if c[i-1, j] > c[i, j-1] then 9: $c[i, j] \leftarrow c[i-1, j];$ 10: $d[i, j] \leftarrow N;$ 11: else 12: $c[i,j] \leftarrow c[i,j-1];$ 13: $d[i, j] \leftarrow W;$ 14: end if 15: end if 16: end for 17: <u>18:</u> end for

Constructing an LCS

Suppose Z is a global array.

(The first call is Construct-LCS(Z, m, n).)

Construct-LCS(Z, i, j)

- 1: **if** i = 0 or j = 0 **then**
- 2: return Z;
- 3: **else**

4:
$$k \leftarrow c[i, j];$$

5: **if**
$$d[i, j] = NW$$
 then

6:
$$Z[k] \leftarrow x_i$$
; // which is the same as $Y[j]$

7: Construct-LCS
$$(Z, i - 1, j - 1)$$
;

8: **end if**

9: **if**
$$d[i, j] = N$$
 then

10: Construct-LCS
$$(Z, i - 1, j)$$
;

11: **end if**

12: **if**
$$d[i, j] = W$$
 then

13: Construct-LCS
$$(Z, i, j - 1)$$
;

- 14: **end if**
- 15: **end if**

Space and Time Analysis

- Filling out the c and d tables take $\Theta(mn)$ -time, which is also the running time of LCS-Length
- The space requirement is also $\Theta(mn)$ -time
- Construct-LCS takes O(m+n) (why?)

Note:

- We don't really need the direction table (why?)
- Memoizing this is quite simple too (homework)

A General Look at Dynamic Programming

Step 1

- Identify the sub-problems
- The sub-problems of sub-problems are overlapping
- The total number of sub-problems is a polynomial in input size (why do we need this?)

Step 2

- Write a recurrence for the objective function
- Carefully identify the base cases

Step 3

- Investigate the recurrence to see how to fill out the cost table in a "bottom-up" fashion
- Design appropriate data structure(s) for constructing an optimal solution later on

Step 4 Pseudo CodeStep 5 Analysis of time and space