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We’ve done

• Dynamic Programming

Now

• In P or not in P, that’s the question!
(A million dollar question, by the way.)

Next

• Approximation algorithms
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Up to this point

• Most problems we have seen can be solved in
“polynomial” time

– All Pairs Shortest Paths in O(|V |3)

– Single Source Shortest Paths in O(|V | lg |V |+ |E|)
– Minimum Spanning Trees in O(|V | lg |V |)
– Sorting in O(n lg n)

• Actually, no problem we have seen required more than
O(n5)

The question is

Can all “natural” problems be solved in polynomial time?

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo November 8, 2004

A few harder problems

• VERTEX COVER: given a graph G, find a minimum size
vertex cover

• 0-1 KNAPSACK: A robber found n items in a store, the ith
item is worth vi dollars and weighs wi pounds
(vi, wi ∈ Z), he can only carry W pounds. Which items
should he take?

• TRAVELING SALESMAN (TSP): find the shortest route for
a salesman to visit each of the n given cities once, and
return to the starting city.

• ... and about 10,000 more natural problems

No-one has ever come up with a poly-time solution to any of
these problems.

Note: we have seen a DP algorithm for 01-knapsack which
runs in O(nW ), but this is NOT poly-time as we shall discuss.

So

What can (or should) we do?
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Dealing with “hard” problems

When your boss asks you to write a program solving a problem
which you can’t come up with an efficient solution, you could

1. Email ask the prof

2. Give up

3. Spend the next 6 months working on the problem

4. Give the boss a brute-force algorithm which takes a
century to finish

5. Mathematically show the boss that this problem does not
have a poly time solution

• Highly unlikely, it is very hard!

• For the hard problems, the best lower bound people
have found is Ω(n), which is totally useless!

6. Mathematically show that your problem is “equivalent” to
some problem which no body knows how to solve

The questions are

What exactly do we mean by “hard”?

How do we show that two problems are equivalently hard?
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Hard and “Equivalently” Hard

We need a computational model, which is a formal tool to
model computation.

Let’s go back to ... Cantor, Russell, Hilbert, Gödel, Church,
Turing, Cook/Levin, Karp, etc.

(Part of the following discussion is based on Chaitin’s book
“The Unknowable”.)
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Georg Ferdinand Ludwig Philipp Cantor
(1845–1918)
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Cantor

In later decades of the 19th century, he considered:

The ordinal numbers:

0, 1, 2, 3, 4, 5, . . .

0, 1, 2, 3, 4, 5, . . . , ω

0, . . . , ω, ω + 1, ω + 2, . . .

0, . . . , ω, ω + 1, ω + 2, . . . , 2ω

0, . . . , ω, ω + 1, . . . , 2ω, . . . , 3ω, . . . , ω2

0, . . . , ω, . . . , 2ω, . . . , ω2, . . . , ω3

0, . . . , ω, . . . , ω2, . . . , ω3, . . . , ωω

0, . . . , ω, . . . , ω2, . . . , ω3, . . . , ωω, . . . , ωω
ω

Now he ran out of names, so he invented a new notation

ε0 = ωω
ω...

where the number of times we take ω-power is ... ω!
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Cantor (cont)

He did not stop there. Let 2S be the set of all subsets of a set S.
Cantor showed that |S| < |2S | using the diagonalization
argument.

He also considered: The cardinal numbers:

ℵ0 = |N|

ℵ1 = |2N|

ℵ2 = |22N |
continue this way, we get

ℵ0,ℵ1, . . . ,ℵω

why stop there?

ℵ0,ℵ1, . . . ,ℵω, . . . ,ℵω2 , . . . ,ℵωω , . . . ,ℵε0

So the ordinal numbers were used to index the cardinal
numbers!
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The great debate

Two of the greatest mathematicians of the later half of the 19th
century and the beginning of the 20th century:

David Hilbert: “no one shall expel us from the paradise which
Cantor has created for us!”

Henri Poincaré: “later generations will regard set theory as a
disease from which one has recovered!”

Others: “that’s not mathematics, it’s theology!”

Still, many others just loved Cantor’s work.

Cantor ended his life in a mental hospital.
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Why the debate? The Paradoxes of Set Theory

Liar paradox:

“This statement is false!”

Barber paradox:

“in a village, a barber shaves everyone

who does not shave himself”

Russell’s paradox:

“consider the set of all sets

which are not members of themselves”

Examples:
- Set of all conceivable concepts
- Set of all Bush supporters

Berry’s paradox:

“the first natural number which cannot

be named in less than fifteen English words”
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So, what is the solution?

• Use symbolic logic to do math (Peano, Russell,
Whitehead, ...) In fact, an entire volume of Russell’s and
Whitehead’s 3-volume “Principia Mathematica” was
needed to show that ... 1 + 1 = 2!

• Intuitionism (Brouwer): “the only thing to prove that
something exists is to exhibit it or to provide a method for
calculating it!”

• Formalism (Hilbert): let’s eliminate from mathematics the
uncertainties and ambiguities of natural language.

It should be possible to devise a proof-checking algorithm
which, given a set of axioms and inference rules, shall be
able to decide if a proof is correct!

Plus a few other things, this idea is referred to as the
Hilbert’s program: formalizing Mathematics (as if it is not
formal enough).
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David Hilbert (1962–1943)
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Hilbert’s Problems

Totally 23 problems. Ten were presented at the Second
International Congress of Mathematics (Paris, Aug 8, 1900)

• Problem 1a: is there a transfinite number between that of a
enumerable set and the numbers of the continuum?

• Problem 2: Can it be proven that the axioms of logic are
consistent?

• Problem 8: Riemann hypothesis. (Remember John Nash in
the Beautiful Mind?)

• Problem 10: Does there exist an algorithm to solve
Diophantine equations?

He also asked: is mathematics decidable, i.e., is there an
algorithm which decides if a statement is provable?
(Entscheidungsproblem)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 13



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo November 8, 2004

Kurt Gödel (1906-1978)

On Hilbert’s second problem, Gödel showed (1931) that (any
axiomatic system of) “mathematics” is either inconsistent or
incomplete!
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Alan Turing

Turing machine (1936): models “algorithm” in
Entscheidungsproblem. Also, Turing machine models
“algorithm” in Hilbert’s 10th problem.

Answer to Entscheidungsproblem: the “halting problem” is
undecidable. Turing used, again, the diagonalization argument.
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Church-Turing Thesis

The intuitive notion of computations and algorithms

is captured by the Turing machine model

(other computational models can only be as strong as the
Turing machine model)

Alonzo Church (1903–1995)
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Easy and Hard Problems

• In the 60’s, people noticed some algorithms require longer
time to run, i.e. harder, while some are easier

• Polynomial-time computation: von Neumann (1953),
Cobham (1964), Edmonds (1965)

• Edmonds called poly-time algo. a “good algo.”

• Informally, we define

P := the class of problems which have a poly-time algorithm

• Problems in P are considered to be “easier” than problems
not in P

(Formally, P is the set of languages each of which is
recognized by some Deterministic Turing Machine in
poly-time.)
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John von Neumann (1903–1957)
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Jack Edmonds
The classes of problems which are respectively known and not
known to have good algorithms are of great theoretical interest
... I conjecture that there is no good algorithm for the traveling
salesman problem. My reasons are the same as for any
mathematical conjecture: (1) it is a legitimate mathematical
possibility; and (2) I do not know.
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Decision Problems

For technical reasons, we only consider decision problems:
YES-NO questions.

• Given n cities, is there a TSP tour of length at most l?

• Given a graph G, is there a vertex cover of size at most k?

Note: a problem is at least as hard as its the decision version.

• If we can solve TSP, then we only have to check if
OPT(TSP) ≤ l

• If we can solve VC, then we only have to check if
OPT(VC) ≤ k
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Encoding instances of a problem

• Technically, a problem Π is a set of its instances

• An algorithm for Π runs on instances of Π

• Actually, an algorithm runs on encoded instances

Example: in the VERTEX-COVER problem

• a particular graph is an instance,

• the graph’s adjacency matrix is an encoding for the
instance.

• an algorithm for finding a minimum VC has adjacency
matrices as inputs

Note:

• The encoding decides the size of the inputs

• With the adjacency matrix encoding, the input size is
actually Θ(n2)

• Polynomial time or not depends on the input size, i.e. on
the encoding scheme
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More on input sizes and encodings

• We have been informal on what input size of a problem is

• If the input size is Θ(n4), and the algorithm runs in
Θ(n100), then it is still a poly-time algorithm

• In fact, if the input size is f(n), a polynomial in n, and the
running time is g(n), another polynomial in n, then the
running time is polynomial!

The encoding scheme could make a huge difference, e.g.

• Primality testing: given a number n, check if n is a prime

• Suppose for each k < n, we check if n is divisible by k
which takes time about O(lg n)

• The total running time is O(n lg n), right?

• The answer is: it depends on how we encode n.

• If we encode n in unary format (n 1-bits), then the answer
is YES

• In binary format, the input size is m ≈ lg n, and hence the
running time is O(2mm), exponential!
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Reasonable encodings

We shall assume that we use only reasonable encodings.

In particular, numbers are encoded in binary format.

Thus, our DP solution to 01-Knapsack, which was O(nW ), is
not a poly-time algorithm. (Why?)

Decision problems again

Think of each problem Π as a set of instances.

ΠYES is the subset of Π whose answer is YES.

ΠNO is the subset of Π whose answer is NO.

Thus,

Π = ΠYES ∪ΠNO.
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P

Π ∈ P (read “solvable in polynomial time”) if there is a
poly-time algorithm A(·), such that for any instance x ∈ Π

x ∈ ΠYES ⇐⇒ A(x) = YES

NP

Π ∈ NP (read “solvable in nondeterministic polynomial
time”) if there is a poly-time verification algorithm V (·, ·), such
that for any instance x ∈ Π,

x ∈ ΠYES ⇐⇒ ∃certificate y, |y| = poly(|x|), V (x, y) = YES

Examples,

• VC: V (x, y) interprets x as the graph G, y as a set of
vertices, and check if |y| ≤ k and y is a VC.

• TSP: V (x, y) interprets x as the cities, y as a tour T , and
check if the length of T is ≤ l.

What about 01-KNAPSACK, what’s the decision problem and
the verification procedure?
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Polynomial time reduction

A problem Π is polynomial time reducible to a problem Π′ if
there is a polynomial time computable function f : Π→ Π′

such that for any x ∈ Π,

x ∈ ΠYES ⇐⇒ f(x) ∈ Π′YES

We write Π ≤p Π′, and think Π is not harder than Π′.

Example:

• VERTEX-COVER and CLIQUE

• CLIQUE and INDEPENDENT SET

Lemma 1. If Π′ ∈ P, and Π is reducible to Π′, then Π ∈ P.

NP-Complete Problems

Π is NP-hard if every problem in NP is reducible to Π.

Π is NP-complete if and only if

Π ∈ NP and Π is NP-hard.

Lemma 2. Suppose Π ∈ NP, and Π′ ≤p Π where Π′ is
NP-complete, then Π is NP-complete.
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• Let X = {x1, . . . , xn} be a set of Boolean variables.

• A truth assignment for X is a function
t : X → {TRUE, FALSE}.

• x̄ denote the negation of x.

• x and x̄ are called literals.

• A clause over X is a set C of literals, e.g.
C = {x1, x̄3, x4} is a clause.

• A clause C is satisfied by a truth assignment t iff at least
one of its member is TRUE under t.

SATISFIABILITY (SAT)

INSTANCE: A set X of variables and a collection C of clauses
over X .

QUESTION: Is there a truth assignment which satisfies all
clauses in C.

Intuitively, we want a truth assignment for which f = TRUE,
given f under conjunctive normal form (CNF), e.g.

f(x1, . . . , xn) = (x1 + x̄3 + x4)(x2 + x3)(x̄1 + x2 + x̄3)
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Stephen Cook

In 1971 he showed that SAT, 3-SAT, and SUBGRAPH

ISOMORPHISM are NP-complete.
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Leonid Levin

Wrote his doctoral thesis in 1971 under Kolmogorov
Was denied his Ph.D. for political reasons
Published a paper in 1973 showing the same Cook’s result.
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Richard Karp

In 1972, he showed that 20 other problems are NP-complete
also, including VC, TSP, CLIQUE, INDEPENDENT SET,
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Knuth

1974, settled the terminologies we are using today.
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A Connection to Turing

Cook, Karp, Knuth got Turing awards.

Levin did not.

The Millennium Prize Problems

In the spirit of Hilbert, Clay Research Institute offered one
million dollars award to whoever solves one of a few
outstanding problems, including

• P = NP?

• The Riemann hypothesis (Hilbert’s 8th problem)

We believe in two possibilities

• P = NP? is independent (unlikely)

• P 6= NP, because natural evolution takes a long time to
optimize “natural things”, it should take computers a long
time to solve “natural problems”
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What do we do next?

• New computational models and physical computers, e.g.
Quantum computers (probably still equivalent to Turing
Machine)

• Randomized algorithms

• Approximation algorithms

• ...
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Basic NP-complete problems - Our road map

SAT


3-SAT


VC
 3-COLORABILITY


SC
 CLIQUE
 SS


KNAPSACK
IS
DS


k-COLORABILITY


HC


TSP


Other problems are defined as we go along.
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3-SAT

INSTANCE: A collection C of clauses {C1, . . . , Cm} over
X = {x1, . . . , xn}, where each clause Ci consists of 3 literals.

QUESTION: Is there a truth assignment satisfying all of C?

VERTEX COVER (VC)

INSTANCE: A graph G = (V,E), and a bound b ∈ Z+.

QUESTION: Is there a vertex cover of size at most b?

CLIQUE

INSTANCE: A graph G = (V,E), and a bound b ∈ Z+.

QUESTION: Is there a clique in G clique of size at least b?

INDEPENDENT SET (IS)

INSTANCE: A graph G = (V,E), and a bound b ∈ N.

QUESTION: Is there an independent set of G of size at least b?
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SAT ≤p 3-SAT

Since 3-SAT ∈ NP (why?) - 3-SAT is NP-complete.

Given an instance C of SAT, we would like to construct an
instance C′ of 3-SAT in polynomial time such that C is
satisfiable if and only if C ′ is satisfiable.

Example:

C = {{x̄3}, {x1, x̄4}, {x1, x̄2, x̄3, x4}}

Recall that we interpret this as

φC = x̄3(x1 + x̄4)(x1 + x̄2 + x̄3 + x4 + x5 + x̄6)

In C′, there are 4 clauses to make up for x̄3:

(x̄3 + a+ b)(x̄3 + ā+ b)(x̄3 + a+ b̄)(x̄3 + ā+ b̄)

2 clauses for (x1 + x̄4):

(x1 + x̄4 + c)(x1 + x̄4 + c̄)

4 clauses for (x1 + x̄2 + x̄3 + x4 + x5 + x̄6):

(x1 + x̄2 + d1)(d̄1 + x̄3 + d2)(d̄2 + x4 + d3)(d̄3 + x5 + x̄6)
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3-SAT ≤p VC

VC is in NP obviously.

Given an instance C = {C1, . . . , Cm} of 3-SAT, we would like
to construct an instance (G, b) of V C in poly time such that C
is satisfiable if and only if G has a VC of size at most b.

VC ≤p IS

IS is in NP obviously.

Given G = (V,E). A subset S ⊆ V is a vertex cover of size
|S| ≤ b of G iff V − S is an independent set of size at least
|V | − b.

IS ≤p CLIQUE

Let G = (V,E), S ⊆ V is an independent set if and only if S
is a clique of Ḡ = (V, Ē).
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SET COVER (SC)

INSTANCE: A family S of subsets {S1, . . . , Sm} of a finite
universe U (|U | = n), and a bound b ∈ Z+.

QUESTION: Is there I ⊆ {1, . . . ,m}, |I| ≤ b, such that

U =
⋃

i∈I
Si

DOMINATING SET (DS)

INSTANCE: A graph G = (V,E), a bound b ∈ Z+.

QUESTION: Is there S ⊆ V , |S| ≤ b, such that every vertex v
not in S is incident to some vertex in S
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VC ≤p SC

Given an instance (G, b) of VC where G = (V,E), let U = E,
Sv be the set of edges incident to v ∈ V . Then a set C ⊆ V of
vertices cover all edges of G if and only if E = ∪v∈CSv.

SC ≤p DS

S1 = {1, 2, 4}, S2 = {2, 3}, S3 = {1, 5}.

S
1


S
3

S
2


1
 2
 3
 4
 5
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3-COLORABILITY

INSTANCE: A graph G = (V,E).

QUESTION: Is G 3-colorable, i.e. is there a way to assign each
vertex of G one of 3 colors such that two adjacent vertices have
different colors.

k-COLORABILITY

INSTANCE: A graph G = (V,E), k ≥ 3.

QUESTION: Is G k-colorable, i.e. is there a way to assign each
vertex of G one of k colors {1, . . . , k} such that two adjacent
vertices have different colors.
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3-SAT ≤p 3-COLORABILITY

x
1
 x
2
 x
3

x
4


x
1
+(-
x
2
)+x
4
 x
2
+
x
3
+(-x
4
)


Example for (x1 + x̄2 + x4)(x2 + x3 + x̄4).
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3-COLORABILITY ≤p k-COLORABILITY

Example for k = 6.
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HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G = (V,E).

QUESTION: Does G contain a Hamiltonian Circuit? (An HC is
a cycle containing all vertices of G.)

TRAVELING SALESMAN (TSP)

INSTANCE: A finite set C of n cities {1, . . . , n}, and their
distances d(i, j) ∈ Z+, and a bound b ∈ Z+.

QUESTION: Is there a TSP tour with total length at most b.

3-SAT ≤p HC

This requires a good figure.

HC ≤p TSP

This is quite simple.
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SUBSET-SUM (SS)

INSTANCE: A finite set S of natural numbers, and a target
t ∈ N.

QUESTION: Is there a subset S ′ ⊆ S, whose elements sum up
to t.

KNAPSACK

INSTANCE: n items, their values vi ∈ Z+, their corresponding
weights wi ∈ Z+, a weight limit W ∈ Z+, and a value limit
V ∈ Z+.

QUESTION: Is there a subset of items with total weight at most
W , and total value at least V ?

SS ≤p KNAPSACK

This is quite simple!
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VC ≤p SS

1


2
 3


4


5


Question: is there a VC of size ≤ 3?
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S 12 15 24 34 45

a1 1 1 1 0 0 0

a2 1 1 0 1 0 0

a3 1 0 0 0 1 0

a4 1 0 0 1 1 1

a5 1 0 1 0 0 1

b12 1 0 0 0 0

b15 0 1 0 0 0

b24 0 0 1 0 0

b34 0 0 0 1 0

b45 0 0 0 0 1

c1 1 0 0 0 0 0

c2 1 0 0 0 0 0

c3 1 0 0 0 0 0

c4 1 0 0 0 0 0

c5 1 0 0 0 0 0

t 3 2 2 2 2 2
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