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SUNY at Buffalo, Spring 2004 Scribe: Hung Q. Ngo

Introduction to Graph Coloring

The authoritative reference on graph coloring is probably [Jensen and Toft, 1995]. Most standard
texts on graph theory such as [Diestel, 2000,as%; 1993, West, 1996] have chapters on graph coloring.
Some nice problems are discussed in [Jensen and Toft, 2001].

1 Basic definitions and simple properties

A Ek-coloring of a graphG = (V, E) is a functionc : V' — C, where|C| = k. (Most often we use
C = [k].) Vertices of the same color formalor class A coloring isproperif adjacent vertices have
different colors. A graph ig-colorableif there is a propek-coloring. Thechromatic numbeg (G) of a
graphG is the minimumk such that= is k-colorable.

Let H andG be graphs. Thdisjoint unionG + H of G andH is the graph whose vertices and edges
are disjoint unions of vertices and edgesband H, respectively. Théoin G v H of simple graph&~
and H is obtain fromG + H by adding all edges of the forfu, v), with uw € V(G), v € V(H). The
cartesian producGOH of G andH is the graph with vertex séf(G) x V(H) and edges of the form
((u,v), (v/;v")), where eithew, = «" and(v,v’) € E(H),v = v and(u,u’) € E(G).

Exercise 1.1.Show thatGOH is isomorphic toH OG.

Recall that thelique numbew(G) of a graphz is the maximum clique size; thedependent number
a(@G) is the size of a maximum independent set.
We put a few simple observations in the following proposition.

Proposition 1.2. Let G and H be simple graphs. Then,

xX(G) > w(G) 1)
V(G)|

x(G) > () @)

X(G+H) = max{x(G),x(H)} (3)

x(GVH) = x(G)+x(H) 4)

x(GOH) = max{x(G),x(H)} (5)

Proof. Only the last identity deserves discussion. We only need to shovi thaiax{x(G), x(H)} is
sufficient to colorGOH. We shall color each copy d@f in GOH using a coloring of7, and then shift
all colors up by an amount equal to the color of the verteK dhat this copy of& corresponds to. More
precisely, lety andh be optimal colorings ofs and H, respectively, then

fu,v) = g(u) +h(v) (mod k)
is a proper coloring oGO0 H. O

Exercise 1.3.Let C), denote a cycle of size, andr > 2 ands be positive integers. Show thatCs, 11V
K;) = s+ 3, whilew(Cy,41 V K;) = s+ 2. (This shows thaf (G) might be greater than(G).)



Exercise 1.4.Prove that a grapty¥ is m-colorable if and only ilo(GOK,,,) > |V (G)].

Exercise 1.5.Let G be a graph where every two odd cycles have at least a vertex in common. Prove that
x(G) <5.

Exercise 1.6.Consider the infinite grapty defined as follows. The vertex sBtis R2. Two points in
R? are adjacent if their Euclidean distancd isShow thatt < x(G) < 7.

A graphd@ is k-critical if its chromatic number i, and every proper subgraph Gfhas chromatic
number less thak. Clearly everyk-chromatic graph contains/acritical subgraph. Actually finding a
k-critical subgraph is a difficult problem, though.

Theorem 1.7 ([Szekeres and Wilf, 1968]).

< .

X(G) <1+ ?géé(H)
Proof. Letk = x(G), andH a critical subgraph of:. It is sufficient to show that < 1+ 6(H). Let
v be a vertex with degre& H), theny(H — v) = k — 1, sinceH is k-critical. If 6(H) < k — 2, then
addingv back in does not require thigh color. Thusé(ﬁ]) > k — 1 as desired. O

2 Greedy Coloring

Let vq,...,v, be some ordering of (G). Fori from 1 to n, greedily assign t@; the lowest indexed
color not yet assigned to lower-index neighborvpf This coloring is called thgreedy coloringwith
respect to the ordering.

Theorem 2.1 (Welsh-Powell, 1967)Letd; > ds > --- > d, be the degree sequence of a gragh
then
X(G) <1+ maxmin{d;,7 — 1}.

Proof. Supposeleg(v;) = d;. Apply greedy coloring to the ordering, . .., v,. O

Corollary 2.2. x(G) <1+ A(G).

The bound in the corollary is not as good as the bound in the theorems Bor2, the graph
G = Cy41VKghasA(G) = max{2r+s,2+s} = 2r+s, and degree sequenég= - - - = ds = 2r+s,
dst1 =+ =dstor41 = 2+ s. Thus, whilel + A(G) =1+ 2r + s,

1 + maxmin{d;,i — 1} = max{min{2r +s,s — 1}, min{2 + s,2r + s}} =3 + s,
(2

which is optimal.

Theorem 2.3 ( [Brooks, 1941]).Let G be a connected graph, thep(G) < A(G), unlessG is a
complete graph or an odd cycle.

Proof. Letk = A(G). We can assumk > 3 andG is neither a complete graph nor an odd cycle. We
will try to produce an orderingy, . . . , v, such that every vertex has at mast 1 lower-index neighbors.
Case 1:G is notk-regular. There is a vertex, with degree< k£ — 1. Consider any spanning trgéeof
G with v, as the root. Visit vertices df level by level, while numbering the vertices in decreasing order
starting fromw,, at level0, and we get the desired ordering.
Case 2:G is k-regular.

Case 2a:G is 1-connected. Let be a cut vertex of/. Let C' be a component af —x. LetC’ be the
union of the other components 6f— . Let H and H' be the subgraphs @ induced byl (C) U {z}
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andV (C") U {z}, respectively. The degreesoin H andH’ are less thar, hence bottf/ andH’ are
k-colorable. Fix a propek-coloring of H, while permuting the colors of a propgfcoloring of H' to
match the two colors of, we get a propek-coloring of G.

Case 2b: G is 2-connected. One of the key ideas here is to produce an ordering whéees two
neighbors of the same color. In particular, suppGdas a vertex,, with two neighbors, andwv, which
are not adjacent, anl = G — {v1, v} is connected. Since the degreevgfis H is at mostk — 2, we
can produce an ordering, . . ., v, of vertices ofH such that each vertex has at mbst 1 lower-index
neighbors. The greedy coloring applieditQ. . . , v,, then produces a propércoloring.

How do we find such a triple;, v2, v,, Of vertices? We want non-adjacent v, to be of distance
from one another, an@ — {v;, v2} to be connected.

Consider any vertex. If k(G — x) > 2, then certainly we can takg = z, v, any vertex distanc
away fromz (why such a vertex exists?), aingd be any common neighbor of andwv,.

Hence, we can assuméG — x) = 1. The graphG — = consists ofblocks which are maximal
subgraphs ofs — = which have no cut-vertex. SineéG — =) = 1, there must be at lea8tsuch blocks.
Also, sinceG is 2-connectedz must have a neighbor in every block@f— x which is not a cut-vertex
of G. Callvy, v2 two such neighbors from different blocks. Théh— {z, v, v2} is connected. Since
has degree at lea3t G — {v1, v, } is connected as well, which completes the proof. O

Exercise 2.4.Show that every grapy has a vertex coloring with respect to which the greedy coloring
usesy(G) colors.

Exercise 2.5.Consider a set of straight lines on a plane with no three meeting at a point. Form a graph
G whose vertices are intersections of the lines, with two vertices adjacent if they appear consecutively
on one of the lines. Show thg(G) < 3.

One might ask how bad can greedy coloring be with respect to the optimal coloring. (What is the
approximation ratio of greedy coloring?) The following exercise gives a pretty bad lower bound. Note
that the chromatic number of any tree is at mbst

Exercise 2.6.For all £ € N, construct a tre€}, with maximum degre& and an orderingr of V (1},)
such that greedy coloring with respecttaisesk + 1 colors. (Hint: use inductive construction.)

Exercise 2.7.Show thaty(G) = w(G) whenG is bipartite.
Exercise 2.8.Improvement of Brooks’ Theorem

(a) Given a graplds. Letky, ...,k be non-negative integers with k; > A(G) — t + 1. Prove that
V(@) can be partitioned into set§, . . ., V; so that for each, the subgrapld-; induced byV; has
maximum degree at most.

(b) Ford < r < A(G) + 1, use part (a) to prove that(G) < [=1(A(G) +1)] whenG has no
r-clique.

Exercise 2.9 ( [Albertson, 1998]).Let G be ak-colorable graph, and l&t be a set of vertices i& such
thatd(z,y) > 4 wheneverz,y € S. Prove that every coloring of with colors from[k + 1] can be
extended to a propé€F: + 1)-coloring of G.

3 Orientations

An orientationof a graphG is a directed graph obtained frof by choosing an orientatiom — v or
v — u for each edgew € E(G).



Consider an optimal coloring @F with colors in[k], wherek = x(G). Suppose we orient each edge
(u,v) € G from the smaller color to the larger color. Then, the longest path length in the orientation is at
mostx(G) — 1. What about the reverse, i.e. given an orientafibof G with longest path length D),
can we produce a coloring which uses at most) + 1 colors?

Theorem 3.1 ( [Gallai, 1968, Roy, 1967, Vitaver, 1962])if D is an orientation ofz with longest path
lengthi(D), thenx(G) < 1+ I(D). Moreover, equality holds for some orientation(®f

Proof. The fact that equality holds was noted above. We now show that there is some ([dregdéD))-
coloring.

Consider a maximal acyclic subdigragi of D. Note thatV(D’) = V(D) = V (why?). Color
V(D' by assigning to each € V(D’) the length of a longest path iR’ ending atv. It is easy to see
that the colors strictly increase along any p&tiof D’.

Consider any edge:, v) € E(D). There must be a path i’ connected: andw, since eithefu, v)
itself is in D’, or adding(u, v) to D’ creates a cycle. Since colors strictly increase along any pdih,in
u andwv have different colors. O

Exercise 3.2 (Minty’s Theorem [Minty, 1962]). An acyclic orientatiorof a loop-less graph is an orien-
tation having no cycle. For each acyclic orientatiorof G, letr(D) = maxc[a/b], whereC'is a cycle
in G anda, b count the edges af' that are forward inD or backward inD, respectively. Fix a vertex
z € V(G), and letlV be a walk inG beginning atc. Letg(W) = a — b - r(D), wherea is the number
of steps alond/V that are forward edges i» andb is the number that are backward ih For each
y € V(G), letg(y) be the maximum of (W) such thatV is anz, y-walk (assume that is connected).

(a) Prove thay(y) is finite and thus well-defined, and ugg,) to obtain a propet + r(D)-coloring
of G. Thus,G is 1 + r(D)-colorable.

(b) Prove that

X(G) = gleig(l + (D)),

whereD is the set of acyclic orientations 6f.

Exercise 3.3.Use Minty’s Theorem to prove Theorem 3.1

4 Edge Coloring

A k-edge-coloringof a graphG = (V) E) is a functionc : E — C, where|C| = k. (Most often we use
C = [k].) An edge-coloring iproperif edges incident to the same vertex have different colors. A graph
is k-edge-colorablef there is a propek-edge-coloring. Thehromatic index(’(G) of a graphG is the
minimum k such thai is k-edge-colorable.

Theline graphof a graphG, denoted by.(G), is the graph whose vertices are edge&pand two
vertices ofL(G) are adjacent iff they are incident to the same verte& of

Exercise 4.1.Show thatA(G) < x/(G) < 2A(G) — 1, for all undirected graph&,
We already know one result regarding
Theorem 4.2 ( [Konig, 1916)). If G is bipartite, theny/(G) = A(G).

What about cases wheH is not bipartite? The following theorem, often referred to as Vizing's
theorem, mostly answered this question for simple graphs.



Theorem 4.3 ( [Vizing, 1964, Vizing, 1965, Gupta, 1966])f G is a simple graph, then
X(G) < A(G) +1.

Proof. Let A = A(G). With at mostA + 1 colors, we shall start from the empty coloring, consider any
uncolored edgéu, v) at each step, find a color f@t, v) while possibly altering the current coloring.
Repeat the process until all edges are colored.

Suppos€u, v) is not yet colored with the current coloring. L&tbe the set oA + 1 colors we are
going to use. Since the maximum degredisnot all colors appear at any particular vertex.

If there is a color not appearing at bathandv, then we can use that color féu, v). Otherwise,
suppose colot, does not appear at andc; does not appear &f. Note thatc; # ¢y. Also, letyy = v.

There must be a neighbor of u such that(u, v;) is coloredc;. Let ¢y be a color missing at;. If
co is also missing at;, then we can “down-shift” the colors from by coloring(u, v1) with ¢, (u, vg)
with ¢;. Hence, we can assume there is a neighb@t v such that(u, v2) gets colored:.

This process cannot continue forever, hence either we can down-shift fromuvsand find a color
for (u,v), or there is a smallest indéx > 1 such that a color missing aj, appeared earlier in the list
Cl,...,CL—1, SAYc.

If ¢ is missing aty, then we can colofu, vy) with ¢y, and shift the colors down. Otherwise, et
be a maximal path starting from, which alternate colors between andc;. Note that there is only one

such path.
If P goesuy,...,v;,u, then we can switch the two colors éh and down-shift fromy;. If P goes
vk, ..., v—1 (@nd must stop there at coleg, sincec; is missing at;_1), then we switch colors o,

assign(u, v;—1) with color ¢y, and shift down fromy;_. Lastly, if P does not touchu, v;, or v;_1, plus
the fact thatP cannot end aty, then we can switch colors aR, assign(u, vx) with ¢, and down-shift
from vy,. O

Unlike the vertex coloring case, the edge multiplicities play an important role in determif(iGg.
Let 1(G) denote the maximum edge multiplicity, then one can show the following theorem.

Theorem 4.4 ( [Vizing, 1964, Vizing, 1965, Gupta, 1966])For any undirected grapl,
X' (G) < A(G) + pu(G).
The theorem follows from a result stated in exercise 4.5.

Exercise 4.5 ( [Andersen, 1977, Goldberg, 1977, Goldberg, 1984let G = (V, E') be an undirected
graph. LetP := {z,y,z € V: y € T'(x) N T'(2)}. Then,

¥(6) < max { AG) myx | ) + ulon) + o) + d(2) |} (©)

Exercise 4.6.Use the result of Exercise 4.5 to prove Theorem 4.4
Theorem 4.7 ([Shannon, 1949])Let G be any graph, thery/(G) < %A(G).

Proof. Let k = x/(G). Let H be a minimal subgraph a@¥ such that(’(H) = k. Lete = (u,v) be an
edge ofH with multiplicity x(H). Then,x'(H —e) = k — 1.

Consider a propetk — 1)-edge-coloring off — e with a setC of k£ — 1 colors. LetX andY be the
sets of colors of edges aroundndu, respectively. Clearly,C — X)N(C-Y) =0, | X| < A(H) -1,
and|Y| < A(H) — 1. Hence,

k-1=|C| = |[C-X|+|C-Y|+|XNY]
z 2k —1) = (X[ +[Y]) + p(H) -1
> 2(k—1)—2(A(H)— 1)+ p(H) — 1.
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which impliesk < 2A(H) — p(H). This inequality along with the fact that< A(H) + u(H) lead to
the desired result. O

Exercise 4.8.For any simple grapt¥ which isk-connected, show thdt(G) is k-connected an(2k —2)-
edge-connected.

Exercise 4.9.Give an explicit edge-coloring to show thgt(K,, ,) = A(Ky,,), WhereK,, ,, is the
complete bipartite graph whose color classes have sizasdn.

Exercise 4.10.Let D be a directed graph (possibly with loops), where the in-degrees and the out-degrees
are at mostl. Show that there is éedge-coloring ofD such that all in-edges at a particular vertex have
different colors, so do all out-edges at a vertex.

Exercise 4.11.Let G be a regular graph with a cut-vertex. Show tRdiG) > A(G).

Exercise 4.12 ( [de Werra, 1971, McDiarmid, 1972])Let G be a simple graph. Let = A(G).
Show thatG has a propefk + 1)-edge-coloring in which each color is us¢(G)|/(k + 1)] or
LE(G)|/(k+1)] times.

Exercise 4.13.Let G and H be simple graphs which have more than one vertex. Supp@$g) =
A(H). Show thaty(GOH) = A(GOH).

5 List Coloring

Suppose there is a color ligt(v) at each vertex of a graphG. A list coloring (also called ahoice
function) is a proper coloring: such thatc(v) € L(v),Vv € V(G). The graphG is k-choosable
(or k-list-colorablg is there is a list coloring for any assignment of sizeolor lists to vertices of-.

The choosabilityof G (also calledist chromatic numbepr choice numbér denoted byy;(G), is the
minimum k such thatz is k-choosable. It should be clear that

X(G) < xi(G) < A(G) + 1.

An upper bound of;(G) in terms ofy(G) does not exist, since there are bipartite graphs=(2) with
arbitrarily large choice number:

Theorem 5.1 ([Alon, 1992]). There are positive constants andc,, such that for any integeys g > 2,
we have

ciplogq < xi(Kpyq) < caplogg.

There is, however, an analog of Brooks theorem:

Theorem 5.2 ( [Vizing, 1976, Erds et al., 1980]).Let G be a simple connected graph. Lt A(G).
Then,x;(G) < d+1,andy;(G) = d+ 1ifanonly if G is an odd cycle or a complete graph.

Let us first give a simple example from [Kislet al., 1980] which gives some intuition on the choice
number.

Proposition 5.3. K, ,, is notk-choosable ifn > (*%1).

Proof. We use a pigeonhole-like idea. We only need to consides (2’“,;1). Consider a list assignment

where the vertices on each color classf, ,,, get distinctk-subsets of2k — 1]. Suppose there exists
a properk-list-coloring for K, ., = (A, B; A x B). Let S be the set of colors the coloring assigns to
vertices ofA. If |[S| > k, then a vertew € B with L(v) C S cannot be colored. IfS| < k£ — 1, then a
vertexv € A with L(v) C [2k — 1] — S cannot be colored. O
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Heawood (1890) showed that every planar graph-@®lorable (the five color theorem) using an
argument earlier by Kempe (1879) who gave a flawed proof of the four color theorem. [Vizing, 1976]
and [Erds et al., 1980] conjectured that planar graphssacboosable. [Voigt, 1993] and [Mirzakhani,
1996] constructed examples of planar graphs which ard4cbbosable. [Thomassen, 1994] proved the
conjecture, giving another entirely different proof of the five coloring theorem. For good introductions to
topological graph theory from combinatorial perspectives, see [Mohar and Thomassen, 2001,Bonnington
and Little, 1995].

Theorem 5.4 ([Thomassen, 1994])Every planar graph i$-choosable.

Proof. Consider a plane graphi. Keep adding edges so that every bounded face is a triangle, the outer
face is a cycleC = (v1,...,v,) (in clock-wise order), while keeping the planarity 6f Doing so

does not reduce the choice numbercaf We will show that all such plane graphs dehoosable by
inductively showing the following statement:

Supposev; andwv,, have been assigned with two different coloss,. .., v, 1 have
color lists of size3, and the rest of the vertices have lists of sizeThen it is possible to
extend this coloring to a proper list coloring Gf

The statement is trivially true fdiV (G)| = 3, sinceG is just the triangle”. SupposeV (G)| > 4.
If C' has a chordv;,v;) € E(G), wherel < i < j—2<m—2,and(v;,v;) # (v1,vm,m). Then, we

can apply induction first on the plane graph whose unbounded fage.is , v;, vj, . . ., v,; and then on
the plane graph whose unbounded face j®; 1, . .., v;.

Otherwise, lety, uq,. .., u,, v3 be the neighbors ofy, such thaw,u1,...,up,vs,..., vy is the
unbounded face aff — {v2}. Choose two colorgcy, co} from the list (of size three ofi;) other than
the assigned color af;. Removec; andc; (if any) from the lists (of sizé) of w1, ..., w,. Then, our
induction hypothesis ensures tifat- {v; } is still list colorable. Moreover, none af;, . . ., u, gets either

c1 Or cs. Itis possible fows to gete; or ¢, in which case we assign with ¢, or ¢q, respectively. [

The edge version is somewhat more interesting. We can define the concéptsedfe-coloring
k-edge-choosableandedge-choosability;(G) in the same fashion. The outstanding open problem is
the so-calledist coloring conjectureobserved by many researchers, including Vizing, Gupta, Albertson,
Collins, and most likely appeared first in print in [Bolkdand Harris, 1985].

Conjecture 5.5 (List Coloring Conjecture). For any graplG, we havey;(G) = x'(G).

For simple graphg;, if the conjecture is true, then we get(G) < A(G) + 1. There have been a
series of results aiming at showing this bound(G) < cA(G),c > 11/6 and largeA(G) [Bollobas
and Harris, 1985]x;(G) < (1 + o(1))A(G) [Kahn, 1996], plus a few minor improvementsgbikvist
and Janssen, 1997, Molloy and Reed, 2000].

The List Coloring Conjecture foff = K, ,, is related to (partial).atin squares given ann by n
matrix where each entry has a list ofsymbols, then it is possible to assign to each entry a symbol
from its list such that symbols on the same row or same column are distinct. This is knowrDasithe
problemor Dinitz conjecture(1979). In 1993, Galvin found a proof of the list coloring conjecture for
bipartite graphs, settling Dinitz problem as a special case. The proof is not published until 1995 [Galvin,
1995].

We need to set a few things up before proving Galvin’'s theorem. We have seen how path lengths in
orientations relate to graph coloring. There is different relation. In a listing. . , v,, of vertices of a
graphG for greedy coloring, let us orient edges from higher indexed to lower indexed vertices. Then, the
setS; of vertices which got coloretl satisfies the following conditions: (&) is independent, (b) each
vertexv € V' — S has an out-edge pointing inf). The setS, of vertices which got coloref satisfies



the same conditions with respect@— S;. Note also that the greedy algorithm producésa@loring
if the out-degree of each vertex is less titan

Let D be an orientation of a grapfi. For eachv € V (D), letd*(v),d™ (v),I'"(v), andT'~ (v)
denote the out-degree, in-degree, set of neighbasspointing to, and set of neighbors pointingtp
respectively. A sef{ C V(D) is called akernelof D if K is independent anf*(v) N K # () for each
ve V(D) - K.

Lemma 5.6. Let D be an orientation of a graptrr, which has a list assignmef{v) for eachw € V(G).
Supposel (v) < |L(v)| for all v € V(D), and every induced subgraph bfhas a kernel. Then, there
is proper list coloring forG.

Proof. We show this by induction. Fgi/(G)| = 1, the assertion clearly holds. Suppds&G)| > 2.

Let ¢ be any color in somé.(v), v € V(D). Consider the subgrapH of D induced by the set of
vertices having: in their color lists. LetJ be a kernel off, andD’ = D — U. Remover from the color
lists of vertices ofD’. We claim thatD’ still satisfies the condition of the lemma. Consider any vertex
v e V(D). IfveV(D)—V(H), thend},(v) < |L(v)| as before, as ¢ L(v). If v € V(H) — U,
then|L(v)| is reduced by one but}, is also reduced by at least onewabas an out-edge pointing into
U. Hence, there is a list coloring d?’ which does not involve. We can then color all vertices it
with c. ]

Theorem 5.7 ([Galvin, 1995]). Every bipartite graphG satisfiesy;(G) = x'(G) = A(G).

Proof. The second equality is the content abig’s theorem. We show the first equality here. The idea
is to find an orientation of.(G) satisfying the conditions of Lemma 5.6. Let E(G) — [k] be an edge
coloring of G, wherek = \/(G) = A(G).

Supposes = (A U B; E). We refer to vertices ird as theleft verticesand B asright vertices
Thus edges may be adjacent on the left or on the right. Consider an orientatdn.(G), where
(e,e') € E(D) if eithere ande’ are adjacent on the left ange) > ¢(¢’), ore ande’ are adjacent on the
right andc(e) < c(€).

We first verify thatd™ (e) < k, for alle € V(D). If ¢(e) = 4, then the number of incident toe on
the left withc(e’) < ¢(e) is at most — 1, and the number of incident toe on the right withc(e’) > ¢(e)
is at mostk — 4, for a total of at most: — 1. Henced™(e) < k — 1 < k.

Secondly, we show that every induced subgrapltbdias a kernel by induction on the size of the
induced subgraph. Consider a subSetf V(D). The base case is trivial. We assups¢ > 2. Let
D' = D[S]. Define

U:={e|le=(u,v) €S cle) <c(e),Ve = (u,v') € S.}

It is clear that for every’ € S — U, there is some € U such thate’, e) € F(D). Otherwise:’ would
have been if/. If U is a matching of7, then we are done. Otherwise, there aré € U which share
a common right end point. Without loss of generality, assufag < c(¢’), so that(e,¢’) € E(D’). By
induction hypothesisD’ — {e} has a kernelU’. If ¢/ € U’, thenU’ is also a kernel oD’. If ¢/ ¢ U’,
then there is some’ € U’ such thate’, ") € E(D’). Clearlyc(e’) < c(e”) ande’ ande” are incident
on the right. Which meang, ¢”) € E(D'), andU’ is also a kernel foD'. O

Exercise 5.8 ( [Erds et al., 1980]).Show thatky, ,, is k-choosable if and only ifn < k*.

Exercise 5.9.Given color lists for vertices of a gragh such thatL(v)| > d(v), forallv € V(G). And,
there is somey such thatL(vg)| > d(v). Show that there is a proper list coloring 6t

Exercise 5.10.A total coloring of a graphG assigns a color to each vertex and each edg&,afuch
that elements o (G) U E(G) have different colors when they are adjacent or incident. Show that every
graphG has a total coloring with at mogt/(G) + 2 colors.
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Exercise 5.11.Show thaty;(K3") = m.

Exercise 5.12 (Richardson’s theorem)Show that every directed graph without odd directed cycle has
a kernel.

Exercise 5.13.Show that every bipartite planar grapi8ishoosable.

6 Perfect Graphs

A graph G is perfectif every induced subgrap/ of G hasx(H) = w(H). (Recall thatw(H) is

the cligue numberof H.) This concept dated back to the works in [Gallai, 1958, Gallai, 1959, Gallali,
1962, Hajnal and Sanyi, 1958, Berge, 1960, Berge, 1966, Dirac, 1961]. The concept is closely related
to computational complexity and linear programming, but far from being understood. For example, even
though computing the chromatic number of a general graph is NP-hard [Karp, 1972], computing the
chromatic number of a perfect graph can be done in polynomial time as shown dtg¢@el et al.,
1981]. More information on perfect graphs and connections to optimization can be found &s#,ov
1983, Berge and Clatal, 1984, Loasz, 1994].

Berge (1960) made two conjectures on perfect graphs, calledvélaé perfect graph conjecture
and thestrong perfect graph conjecturelhe weak perfect graph conjecture states thas perfect if
and only if G is perfect. Loasz, then 22 year-old, proved the weak perfect graph conjecturé@sgizov
1972a, Loasz, 1972b], turning it into theerfect graph theorem We shall prove the perfect graph
theorem later in this section.

The strong perfect graph conjecture was one of the most outstanding and challenging open problems
in graph theory, until Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas announced
a proof in May 2002. The four joint authors presented their work at a workshop held from October
30 to November 3, 2002 at the American Institute of Mathematics in Palo Alto, California. The proof
needs about 150 pages, and the paper is still under reviewed. Some sketches of the proof can be found
in [Cornwgjols, 2002]. Graphs which have neith@j;, 1 nor Ca,y1 (k > 2) as induced subgraphs are
calledBerge graphs

Conjecture 6.1 (Strong Perfect Graph Conjecture).A graph is perfect iff it is a Berge graph.

Relevant information on perfect graphs, including many open problems can be founchtalGiper-
fect graph webpagdttp://www.cs.rutgers.edu/ chvatal/perfect/problems.html

Many classes of graphs are known to be perfect, inclublipartite graphs chordal graphs(also
calledrigid circuit graphs or triangulated graphy comparability graphsandinterval graphs By the
perfect graph theorem, the complements of these graphs are also perfect.

Exercise 6.2.Determine the smallest imperfect gra@hsuch thaty(G) = w(G).

Let us give a sample class of perfect graphs. A simple graphasdal if every cycle of lengthd
or more has a chord. In other words, every induced cycle of a chordal graph is a triangle. A vertex
v of a graph issimplicial if G[I'(v)] is a clique. Asimplicial elimination orderingalso calledperfect
elimination ordering of a graphG is an orderinguy, ..., v, of V(G) such thaty; is simplicial with
respect taG[{v;, ..., vn}].

Lemma 6.3 ( [Voloshin, 1982, Farber and Jamison, 1986])For every vertex of a chordal graph,
there is a simplicial vertex among the vertices farthest away from

Proof. We induct on|V (G)|. If G is not connected, then we can apply induction on the compon&#t of
containingu. Thus, we can assuneis connected.



Claim: if S is a minimal separating set @f, thenG[S] is a clique.

We can assumgs| > 2. Consider any:, v € S. We show thatiw € E(G). Supposew ¢ E(G).
Both v andv must have a neighbor in every componentbt S. Let C1, Cs be two components of
G — S. Fori = 1,2, let P; be a shortest path fromto v in G[V(C;) U {u,v}]. ThenP, and P, form a
cycle of length at least, in which the only possible chord ig. This shows the claim.

Now, back to our lemma. Let be the longest distance from If d = 1, then we apply induction on
G — {v} and any vertex’ € V(G — v). A simplicial vertex ofG — {v} is also simplicial forG.

Assumed > 2. Let A be the set of all vertices of distanddrom v, B the set of vertices of distance
d—1fromw. Clearly B is a separating set ¢f. Let.S be a minimal subset a8 which is also separating.
Then,S is a clique because of the previous claim. Cebe some component 6[A] which is separated
from v by S. Note that vertices i’ cannot have neighbors outside$f) V' (C), and every vertex of’
has a neighbor i%.

Let H = G[SUV(C)]. If there is some vertex ifY (C') of distance at least from a vertexu in
S, then we can apply induction anand H to find a simplicial vertexv of H. The vertexw must be
in V(C), andw is also be a simplicial vertex @¥, as desired. Otherwise, we can asswrendV (C)
are completely connected. @f is complete, then any vertex 6f would do. Otherwise, we can apply
induction onH and anyu € V(C') which has some vertex of distance at leéhatvay from it (inH). The
resulting simplicial vertex o must be inC. O

Theorem 6.4 ( [Dirac, 1961]).A graph is chordal iff it has a perfect elimination ordering.

Proof. SupposeZ is chordal. Applying Lemma 6.3 inductively we get a perfect elimination ordering
for GG. Conversely, supposg has such an ordering. Consider any cyClef length at least in G. By
the time we “remove” the first vertexfrom the cycle according to the perfect elimination orderirg,
neighbors form a clique, which mea@smust have a chord. O

Theorem 6.5 ( [Berge, 1960]).Chordal graphs are perfect.

Proof. Since every subgraph of a chordal graghs also chordal, we only need to show thgtz) =
w(G) for a particular chordal grapfi. Sincex(G) > w(G), it is sufficient to find a coloring o7 with
as many colors as some clique@f By Theorem 6.4, there is a perfect elimination ordeting . . , v,
for G. We apply greedy coloring on the sequenge. .., v;. Letk = x(G). Suppose some vertex
gets colored:. Since the neighbor séf(v;) of v; in G[{vy,...,v;}] forms a cliqueG[T',, U {v;}] is a
clique of sizek. O

Exercise 6.6.Let G be a chordal graph. Show that
(8) G has at most maximal cliques, andr has exactly. maximal cliques iffG has no edges.
(b) Every maximal clique ofs containing no simplicial vertex af is a separating set.

Exercise 6.7.Show that(G is chordal iff for every induced subgragh of G we have

wH)=1 +}<ng}<[(5(K).

The numbed + maxxcy 6(K) is called theSzekeres-Wilf numbef H.

Exercise 6.8.Let n;(G) be the number of-cliques in a connected chordal gragh Show that

> (=1 (G) =1.
(Hint: induction.)

10



Exercise 6.9.Let e be an edge of a cycl€ in a chordal grapliz. Show that there is a triangle containing
€.

Exercise 6.10.Let () be a maximal clique in a chordal gragh Show that ifG — @ is connected, then
Q) contains a simplicial vertex.

A transitive orientationD of a graph( is an orientation such that, yz € E(D) imply zz € E(D).
A graph that has a transitive orientation (such as a bipartite graph) is caltedarability graph

Theorem 6.11 ( [Berge, 1960]) Comparability graphs are perfect.

Proof. Let D be a transitive orientation of a comparability graphthenD is also an acyclic orientation.
Vertices on every directed path i form a clique. By Theorem 3.3(G) < 1+ (D) < w(G). O

Exercise 6.12.A graphG is aninterval graphif there exists a set of (closed) real intervdlg | v €
V(G)} such thaww is an edge iffl, N I, # (. Let G be an interval graph. Show thétis a chordal
graph and? is a comparability graph.

The following theorem settles the weak perfect graph conjecture by Berge, and thus it is called the
perfect graph theorem. It was shown by [lasz, 1972b] in the context of normal hypergraphs.

Theorem 6.13 (Perfect Graph Theorem).A graph is perfect iff its complement is perfect.

[Lovasz, 1972a] proved another characterization of perfect graph which also proves the weak perfect
graph conjecture. [Gasparian, 1996] found a simple and elegant proof of this theorem. We shall present
Gasparian’s proof.

Theorem 6.14 ( [Lovasz, 1972a]).A graphG is perfect if and only if, for all induced subgraplis of
G,
[V(H)| < a(H) -w(H).

Exercise 6.15.Show that Theorem 6.14 implies Theorem 6.13

Before showing these theorems, let us try to find out as much as possible the properties of perfect
graphs and their complements. ldet 0(G) be the minimum size of a partition & (G) into V4, ..., Vj
such thatG[V;] is a clique, for ali = 1,...,6. Then,x(G) = 0(G) andw(G) = a(G). The relations
X(G) > w(G) andf(G) > «(G) are obvious, since every color class of a coloringsbintersects a
cligue at at most one vertex, and since evEryn a clique partition intersects an independent set at at
most one vertex. Thus, in order to show that a grépk perfect, we only need to shoyH) < w(H)
for every induced subgrapH of G; in other words, we can show that there is.gif )-coloring for H.
Suppose we want to show the perfect graph theorem by induction. At the induction stéfs if
perfect butG is not, thenG is a graph all of whose proper induced subgraphs are perfeaf; iself is
imperfect. In other wordsj is a minimal imperfect graph. What can we say about a minimal imperfect

graph? Clearlyx(G) > w(G), butx(H) < w(H) for every proper induced subgraphof G. Let S be
any independent set ¢f, then

w(G—8)=x(G—-8)>x(G)-1>w(G) -1.
Hencew(G — S) = w(G). Consequently, we get the following lemma.
Lemma 6.16. Every independent set of a minimal imperfect graph misses at least one maximum clique.

Let v be a vertex of a perfect grapgh. Let G o v be the graph obtained frod by duplicatingv,
namelyG o v is obtained fromy by creating another copy of v, wherev’ is adjacent to every neighbor
of v, andvv’ € E(G ov). (Basically, we replaced by an edgevv’.) The next lemma is a crucial
observation by Lo&sz.

11



Lemma 6.17.1f G is perfect and € V(G), thenG o v is perfect.

Proof. We induct on|V (G)|. The base case is trivial. Consider a perfect grapbf size at lease,
andv € V(G). LetG’ = G o v, with the extra vertex’. Every proper induced subgragh’ of G’
is either isomorphic to an induced subgraphtbbr equal toH o v for some induced subgrapt of
G. Thus,x(H') = w(H’) by induction hypothesis. We only need to show thét’) < w(G’). Let
w=w(G) = x(G). Itis easy to see that

w=w(G) <wG@) <x(G)<x(@)+1=w+1.

Hence, we can assum€G’) = w; otherwise, we would be done. This means that not part of any
maximum clique inG. Let’s color G with w colors. Suppose gets colored:. Let S be the set of
all vertices which got colored excludingv. Any w-clique of G must intersectS and missv. Hence,
X(G - 95) = w(G - S) < w, which means we can cold¥ — S with at mostw — 1 colors, then color
S U {v'} with one additional color for a total of at mastcolor. This shows(G’) < w as desired. [

A proof of Theorem 6.13We only need to show that if7 is perfect, then’ is also perfect. Again,
induction is the most natural tool for dealing with perfect graphs. For the induction step, it is sufficient
to prove thatv(G) = x(G). Assume otherwise, thed is a minimal imperfect graph, which means that
every independent set 6f misses at least one maximum clique(af In other words, every clique
misses at least one maximum independent sét. of

We finish the proof by a counting argument. lkébe the collection of all cliques a¥, andZ be the
collection of all maximum independent sets@f Then, for everyK € I, there is somdg € 7 such
thatK N [ = 0.

To this end, create a graghf from G by duplicating each vertext, times, where
t,={K eK|velg}

(Note thatt,, > 0.) By Lemma 6.17(" is a perfect graph. It is easy to see that for sdiiec K, we

have
w@)=> ty=Y HKeKlvelkl=> |[IxnNKo| <IK|-1.

veKy veEKy Kek
This is becauselx N Ky| < 1, VK € K, andIk, N Ky = (). On the other hand,

V(&)= > te= >, HKeK|velkl=)  |k|=aG) K|

veV(G) veV(Q) KeK
Thus,w(G') = x(G') > |[V(G")|/a(G") = |K|, a contradiction. O

A proof of Theorem 6.14Necessity is obvious. We show sufficiency by induction|BitG)|. For the
induction step, suppos€ is a graph of order at leagtsuch thatV (H)| < «(H) - w(H) for every
induced subgraplt? of G. If G is not perfect, then by induction hypothesisis a minimal imperfect
graph. Thus, every independent setdmrmisses some maximum clique 6f. Consequently, for any
vertexv € V(G), we have

X(G —v) =w(G —v) =w(qG).

Leta = a(G) andw = w(G). Letly = {v1,...,v,} be anindependent setGf Let ;1) 41, -, [

be the color classes of ancoloring of G — v;, for j = 1,..., . We getaw + 1 independent sets from
Iy to I,.,,. There is some maximum cliqu€; for which I; N K; = 0, for eachi < aw. It is easy to see
that|/; N I;| < 1. We claim that ; N I;| = 1, wheneveti # j. In fact, a stronger statement holds:
everyw-clique K is disjoint from at most oné;. If K is disjoint fromIy, then it must intersect all other
I;, since vertices of{ take allw colors in everyw-coloring of G — v;. If K is not disjoint from/y, then
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K intersectd at somey;. In this case, vertices df getw colors in everyw-coloring of G — vy, 5’ # j.
For thew-coloring of G — v;, vertices of ' — {v;} getsw — 1 colors, missing at most one color class.
Letn = |V(G)|. Let A be the(aw + 1) x n matrix whoseth row is a characteristic vector &f. Let
B be then x (aw + 1) matrix whosejth column is a characteristic vector af;. Then,AB = J —1,
wherelJ is the all-one matrix andl is the identity matrix. Since rafik) > rankJ — I) = wa + 1 (itis
easy to see thalet (J — I) = (n — 1)(—=1)""!), we haven > wa + 1, a contradiction. O

Exercise 6.18.Show that the complement of every bipartite graph is perfect without using Theorems
6.13 and 6.14.

Exercise 6.19.Show thatv(G) < x(G) < w(G) + 1if G is aline graph.

Exercise 6.20.Let G be a graph for which every induced subgrdplinas the property that every maxi-
mal independent set df intersects every maximal clique &f. Prove that7 is perfect. Prove also that
such graphs- are precisely the graphs with i as an induced subgraphPs(is a path of lengtf3.)

Exercise 6.21.Let GG be a perfect graph. Prove that we can find a collecfi@i independent sets and
a collectionk of cliques such thal’ (G) = Ujerl = UgexV(K), and thatl N K # () for every pair
(I,K) € T x K. (Hint: apply Lemma 6.17.)

Exercise 6.22.1n the proof of Theorem 6.14, we basically replaced each vertax a clique of order
t,. Show that ifG is a perfect graph, then replacing each vertekdiy a perfect graph yields another
perfect graph.

Exercise 6.23.Let G ¢ v be the graph obtained frotd by duplicatingyv, namelyG ¢ v is obtained from
v by creating another copy of v, wherev’ is adjacent to every neighbor of Show that ifG is perfect
thenG ¢ v is perfect for anw € V(G). (There is a short proof using Lemma 6.17 and Theorem 6.13.)
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