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Introduction to Graph Coloring

The authoritative reference on graph coloring is probably [Jensen and Toft, 1995]. Most standard
texts on graph theory such as [Diestel, 2000,Lovász, 1993,West, 1996] have chapters on graph coloring.
Some nice problems are discussed in [Jensen and Toft, 2001].

1 Basic definitions and simple properties

A k-coloring of a graphG = (V,E) is a functionc : V → C, where|C| = k. (Most often we use
C = [k].) Vertices of the same color form acolor class. A coloring isproper if adjacent vertices have
different colors. A graph isk-colorableif there is a properk-coloring. Thechromatic numberχ(G) of a
graphG is the minimumk such thatG is k-colorable.

Let H andG be graphs. Thedisjoint unionG+H of G andH is the graph whose vertices and edges
are disjoint unions of vertices and edges ofG andH, respectively. Thejoin G ∨ H of simple graphsG
andH is obtain fromG + H by adding all edges of the form(u, v), with u ∈ V (G), v ∈ V (H). The
cartesian productG2H of G andH is the graph with vertex setV (G) × V (H) and edges of the form
((u, v), (u′, v′)), where eitheru = u′ and(v, v′) ∈ E(H), v = v′ and(u, u′) ∈ E(G).

Exercise 1.1.Show thatG2H is isomorphic toH2G.

Recall that theclique numberω(G) of a graphG is the maximum clique size; theindependent number
α(G) is the size of a maximum independent set.

We put a few simple observations in the following proposition.

Proposition 1.2. LetG andH be simple graphs. Then,

χ(G) ≥ w(G) (1)

χ(G) ≥ |V (G)|
α(G)

(2)

χ(G + H) = max{χ(G), χ(H)} (3)

χ(G ∨H) = χ(G) + χ(H) (4)

χ(G2H) = max{χ(G), χ(H)} (5)

Proof. Only the last identity deserves discussion. We only need to show thatk = max{χ(G), χ(H)} is
sufficient to colorG2H. We shall color each copy ofG in G2H using a coloring ofG, and then shift
all colors up by an amount equal to the color of the vertex ofH that this copy ofG corresponds to. More
precisely, letg andh be optimal colorings ofG andH, respectively, then

f(u, v) = g(u) + h(v) (mod k)

is a proper coloring ofG2H.

Exercise 1.3.Let Cn denote a cycle of sizen, andr ≥ 2 ands be positive integers. Show thatχ(C2r+1∨
Ks) = s + 3, while ω(C2r+1 ∨Ks) = s + 2. (This shows thatχ(G) might be greater thanω(G).)
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Exercise 1.4.Prove that a graphG is m-colorable if and only ifα(G2Km) ≥ |V (G)|.

Exercise 1.5.Let G be a graph where every two odd cycles have at least a vertex in common. Prove that
χ(G) ≤ 5.

Exercise 1.6.Consider the infinite graphG defined as follows. The vertex setV is R2. Two points in
R2 are adjacent if their Euclidean distance is1. Show that4 ≤ χ(G) ≤ 7.

A graphG is k-critical if its chromatic number isk, and every proper subgraph ofG has chromatic
number less thank. Clearly everyk-chromatic graph contains ak-critical subgraph. Actually finding a
k-critical subgraph is a difficult problem, though.

Theorem 1.7 ( [Szekeres and Wilf, 1968]).

χ(G) ≤ 1 + max
H⊆G

δ(H).

Proof. Let k = χ(G), andH̄ a critical subgraph ofG. It is sufficient to show thatk ≤ 1 + δ(H̄). Let
v be a vertex with degreeδ(H̄), thenχ(H̄ − v) = k − 1, sinceH̄ is k-critical. If δ(H̄) ≤ k − 2, then
addingv back in does not require thekth color. Thus,δ(H̄) ≥ k − 1 as desired.

2 Greedy Coloring

Let v1, . . . , vn be some ordering ofV (G). For i from 1 to n, greedily assign tovi the lowest indexed
color not yet assigned to lower-index neighbor ofvi. This coloring is called thegreedy coloringwith
respect to the ordering.

Theorem 2.1 (Welsh-Powell, 1967).Let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of a graphG,
then

χ(G) ≤ 1 + max
i

min{di, i− 1}.

Proof. Supposedeg(vi) = di. Apply greedy coloring to the orderingv1, . . . , vn.

Corollary 2.2. χ(G) ≤ 1 + ∆(G).

The bound in the corollary is not as good as the bound in the theorem. Forr ≥ 2, the graph
G = C2r+1∨Ks has∆(G) = max{2r+s, 2+s} = 2r+s, and degree sequenced1 = · · · = ds = 2r+s,
ds+1 = · · · = ds+2r+1 = 2 + s. Thus, while1 + ∆(G) = 1 + 2r + s,

1 + max
i

min{di, i− 1} = max{min{2r + s, s− 1},min{2 + s, 2r + s}} = 3 + s,

which is optimal.

Theorem 2.3 ( [Brooks, 1941]).Let G be a connected graph, thenχ(G) ≤ ∆(G), unlessG is a
complete graph or an odd cycle.

Proof. Let k = ∆(G). We can assumek ≥ 3 andG is neither a complete graph nor an odd cycle. We
will try to produce an orderingv1, . . . , vn such that every vertex has at mostk−1 lower-index neighbors.
Case 1:G is notk-regular. There is a vertexvn with degree≤ k − 1. Consider any spanning treeT of
G with vn as the root. Visit vertices ofT level by level, while numbering the vertices in decreasing order
starting fromvn at level0, and we get the desired ordering.
Case 2:G is k-regular.

Case 2a:G is 1-connected. Letx be a cut vertex ofG. LetC be a component ofG−x. LetC ′ be the
union of the other components ofG− x. Let H andH ′ be the subgraphs ofG induced byV (C) ∪ {x}
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andV (C ′) ∪ {x}, respectively. The degrees ofx in H andH ′ are less thank, hence bothH andH ′ are
k-colorable. Fix a properk-coloring ofH, while permuting the colors of a properk-coloring ofH ′ to
match the two colors ofx, we get a properk-coloring ofG.

Case 2b:G is 2-connected. One of the key ideas here is to produce an ordering wherevn has two
neighbors of the same color. In particular, supposeG has a vertexvn with two neighborsv1 andv2 which
are not adjacent, andH = G − {v1, v2} is connected. Since the degree ofvn is H is at mostk − 2, we
can produce an orderingv3, . . . , vn of vertices ofH such that each vertex has at mostk − 1 lower-index
neighbors. The greedy coloring applied tov1, . . . , vn then produces a properk-coloring.

How do we find such a triplev1, v2, vn of vertices? We want non-adjacentv1, v2 to be of distance2
from one another, andG− {v1, v2} to be connected.

Consider any vertexx. If κ(G− x) ≥ 2, then certainly we can takev1 = x, v2 any vertex distance2
away fromx (why such a vertex exists?), andvn be any common neighbor ofv1 andv2.

Hence, we can assumeκ(G − x) = 1. The graphG − x consists ofblocks, which are maximal
subgraphs ofG− x which have no cut-vertex. Sinceκ(G− x) = 1, there must be at least2 such blocks.
Also, sinceG is 2-connected,x must have a neighbor in every block ofG− x which is not a cut-vertex
of G. Call v1, v2 two such neighbors from different blocks. Then,G− {x, v1, v2} is connected. Sincex
has degree at least3, G− {v1, v2} is connected as well, which completes the proof.

Exercise 2.4.Show that every graphG has a vertex coloring with respect to which the greedy coloring
usesχ(G) colors.

Exercise 2.5.Consider a set of straight lines on a plane with no three meeting at a point. Form a graph
G whose vertices are intersections of the lines, with two vertices adjacent if they appear consecutively
on one of the lines. Show thatχ(G) ≤ 3.

One might ask how bad can greedy coloring be with respect to the optimal coloring. (What is the
approximation ratio of greedy coloring?) The following exercise gives a pretty bad lower bound. Note
that the chromatic number of any tree is at most2.

Exercise 2.6.For all k ∈ N, construct a treeTk with maximum degreek and an orderingπ of V (Tk)
such that greedy coloring with respect toπ usesk + 1 colors. (Hint: use inductive construction.)

Exercise 2.7.Show thatχ(G) = ω(G) whenḠ is bipartite.

Exercise 2.8.Improvement of Brooks’ Theorem

(a) Given a graphG. Let k1, . . . , kt be non-negative integers with
∑

ki ≥ ∆(G)− t + 1. Prove that
V (G) can be partitioned into setsV1, . . . , Vt so that for eachi, the subgraphGi induced byVi has
maximum degree at mostki.

(b) For 4 ≤ r ≤ ∆(G) + 1, use part (a) to prove thatχ(G) ≤
⌈

r−1
r (∆(G) + 1)

⌉
whenG has no

r-clique.

Exercise 2.9 ( [Albertson, 1998]).Let G be ak-colorable graph, and letS be a set of vertices inG such
that d(x, y) ≥ 4 wheneverx, y ∈ S. Prove that every coloring ofS with colors from[k + 1] can be
extended to a proper(k + 1)-coloring ofG.

3 Orientations

An orientationof a graphG is a directed graph obtained fromG by choosing an orientationu → v or
v → u for each edgeuv ∈ E(G).
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Consider an optimal coloring ofG with colors in[k], wherek = χ(G). Suppose we orient each edge
(u, v) ∈ G from the smaller color to the larger color. Then, the longest path length in the orientation is at
mostχ(G)− 1. What about the reverse, i.e. given an orientationD of G with longest path lengthl(D),
can we produce a coloring which uses at mostl(D) + 1 colors?

Theorem 3.1 ( [Gallai, 1968, Roy, 1967, Vitaver, 1962]).If D is an orientation ofG with longest path
lengthl(D), thenχ(G) ≤ 1 + l(D). Moreover, equality holds for some orientation ofG.

Proof. The fact that equality holds was noted above. We now show that there is some proper(1+ l(D))-
coloring.

Consider a maximal acyclic subdigraphD′ of D. Note thatV (D′) = V (D) = V (why?). Color
V (D′) by assigning to eachv ∈ V (D′) the length of a longest path inD′ ending atv. It is easy to see
that the colors strictly increase along any pathP of D′.

Consider any edge(u, v) ∈ E(D). There must be a path inD′ connectedu andv, since either(u, v)
itself is inD′, or adding(u, v) to D′ creates a cycle. Since colors strictly increase along any path inD′,
u andv have different colors.

Exercise 3.2 (Minty’s Theorem [Minty, 1962]). An acyclic orientationof a loop-less graph is an orien-
tation having no cycle. For each acyclic orientationD of G, let r(D) = maxCda/be, whereC is a cycle
in G anda, b count the edges ofC that are forward inD or backward inD, respectively. Fix a vertex
x ∈ V (G), and letW be a walk inG beginning atx. Let g(W ) = a− b · r(D), wherea is the number
of steps alongW that are forward edges inD andb is the number that are backward inD. For each
y ∈ V (G), let g(y) be the maximum ofg(W ) such thatW is anx, y-walk (assume thatG is connected).

(a) Prove thatg(y) is finite and thus well-defined, and useg(y) to obtain a proper1 + r(D)-coloring
of G. Thus,G is 1 + r(D)-colorable.

(b) Prove that
χ(G) = min

D∈D
(1 + r(D)),

whereD is the set of acyclic orientations ofG.

Exercise 3.3.Use Minty’s Theorem to prove Theorem 3.1

4 Edge Coloring

A k-edge-coloringof a graphG = (V,E) is a functionc : E → C, where|C| = k. (Most often we use
C = [k].) An edge-coloring isproper if edges incident to the same vertex have different colors. A graph
is k-edge-colorableif there is a properk-edge-coloring. Thechromatic indexχ′(G) of a graphG is the
minimumk such thatG is k-edge-colorable.

The line graphof a graphG, denoted byL(G), is the graph whose vertices are edges ofG, and two
vertices ofL(G) are adjacent iff they are incident to the same vertex ofG.

Exercise 4.1.Show that∆(G) ≤ χ′(G) ≤ 2∆(G)− 1, for all undirected graphsG,

We already know one result regardingχ′:

Theorem 4.2 ( [König, 1916]). If G is bipartite, thenχ′(G) = ∆(G).

What about cases whenG is not bipartite? The following theorem, often referred to as Vizing’s
theorem, mostly answered this question for simple graphs.
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Theorem 4.3 ( [Vizing, 1964,Vizing, 1965,Gupta, 1966]).If G is a simple graph, then

χ′(G) ≤ ∆(G) + 1.

Proof. Let ∆ = ∆(G). With at most∆ + 1 colors, we shall start from the empty coloring, consider any
uncolored edge(u, v) at each step, find a color for(u, v) while possibly altering the current coloring.
Repeat the process until all edges are colored.

Suppose(u, v) is not yet colored with the current coloring. LetS be the set of∆ + 1 colors we are
going to use. Since the maximum degree is∆, not all colors appear at any particular vertex.

If there is a color not appearing at bothu andv, then we can use that color for(u, v). Otherwise,
suppose colorc0 does not appear atu, andc1 does not appear atV . Note thatc1 6= c0. Also, letv0 = v.

There must be a neighborv1 of u such that(u, v1) is coloredc1. Let c2 be a color missing atv1. If
c2 is also missing atu, then we can “down-shift” the colors fromv1 by coloring(u, v1) with c2, (u, v0)
with c1. Hence, we can assume there is a neighborv2 atu such that(u, v2) gets coloredc2.

This process cannot continue forever, hence either we can down-shift from somevk and find a color
for (u, v), or there is a smallest indexk ≥ 1 such that a color missing atvk appeared earlier in the list
c1, . . . , ck−1, saycl.

If c0 is missing atvk, then we can color(u, vk) with c0, and shift the colors down. Otherwise, letP
be a maximal path starting fromvk which alternate colors betweenc0 andcl. Note that there is only one
such path.

If P goesvk, . . . , vl, u, then we can switch the two colors onP , and down-shift fromvl. If P goes
vk, . . . , vl−1 (and must stop there at colorc0, sincecl is missing atvl−1), then we switch colors onP ,
assign(u, vl−1) with color c0, and shift down fromvl−1. Lastly, if P does not touchu, vl, or vl−1, plus
the fact thatP cannot end atvk, then we can switch colors onP , assign(u, vk) with c0, and down-shift
from vk.

Unlike the vertex coloring case, the edge multiplicities play an important role in determiningχ′(G).
Let µ(G) denote the maximum edge multiplicity, then one can show the following theorem.

Theorem 4.4 ( [Vizing, 1964,Vizing, 1965,Gupta, 1966]).For any undirected graphG,

χ′(G) ≤ ∆(G) + µ(G).

The theorem follows from a result stated in exercise 4.5.

Exercise 4.5 ( [Andersen, 1977, Goldberg, 1977, Goldberg, 1984]).Let G = (V,E) be an undirected
graph. LetP := {x, y, z ∈ V : y ∈ Γ(x) ∩ Γ(z)}. Then,

χ′(G) ≤ max
{

∆(G),max
P

⌊
1
2
(d(x) + µ(xy) + µ(yz) + d(z))

⌋}
. (6)

Exercise 4.6.Use the result of Exercise 4.5 to prove Theorem 4.4

Theorem 4.7 ( [Shannon, 1949]).LetG be any graph, thenχ′(G) ≤ 3
2∆(G).

Proof. Let k = χ′(G). Let H be a minimal subgraph ofG such thatχ′(H) = k. Let e = (u, v) be an
edge ofH with multiplicity µ(H). Then,χ′(H − e) = k − 1.

Consider a proper(k − 1)-edge-coloring ofH − e with a setC of k − 1 colors. LetX andY be the
sets of colors of edges aroundu andv, respectively. Clearly,(C−X)∩ (C−Y ) = ∅, |X| ≤ ∆(H)−1,
and|Y | ≤ ∆(H)− 1. Hence,

k − 1 = |C| = |C −X|+ |C − Y |+ |X ∩ Y |
≥ 2(k − 1)− (|X|+ |Y |) + µ(H)− 1
≥ 2(k − 1)− 2(∆(H)− 1) + µ(H)− 1.
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which impliesk ≤ 2∆(H)− µ(H). This inequality along with the fact thatk ≤ ∆(H) + µ(H) lead to
the desired result.

Exercise 4.8.For any simple graphG which isk-connected, show thatL(G) isk-connected and(2k−2)-
edge-connected.

Exercise 4.9.Give an explicit edge-coloring to show thatχ′(Km,n) = ∆(Km,n), whereKm,n is the
complete bipartite graph whose color classes have sizesm andn.

Exercise 4.10.Let D be a directed graph (possibly with loops), where the in-degrees and the out-degrees
are at mostd. Show that there is ad-edge-coloring ofD such that all in-edges at a particular vertex have
different colors, so do all out-edges at a vertex.

Exercise 4.11.Let G be a regular graph with a cut-vertex. Show thatχ′(G) > ∆(G).

Exercise 4.12 ( [de Werra, 1971, McDiarmid, 1972]).Let G be a simple graph. Letk = ∆(G).
Show thatG has a proper(k + 1)-edge-coloring in which each color is usedd|E(G)|/(k + 1)e or
b|E(G)|/(k + 1)c times.

Exercise 4.13.Let G andH be simple graphs which have more than one vertex. Supposeχ′(H) =
∆(H). Show thatχ′(G2H) = ∆(G2H).

5 List Coloring

Suppose there is a color listL(v) at each vertexv of a graphG. A list coloring (also called achoice
function) is a proper coloringc such thatc(v) ∈ L(v),∀v ∈ V (G). The graphG is k-choosable
(or k-list-colorable) is there is a list coloring for any assignment of sizek color lists to vertices ofG.
The choosabilityof G (also calledlist chromatic numberor choice number), denoted byχl(G), is the
minimumk such thatG is k-choosable. It should be clear that

χ(G) ≤ χl(G) ≤ ∆(G) + 1.

An upper bound ofχl(G) in terms ofχ(G) does not exist, since there are bipartite graphs (χ = 2) with
arbitrarily large choice number:

Theorem 5.1 ( [Alon, 1992]).There are positive constantsc1 andc2, such that for any integersp, q ≥ 2,
we have

c1p log q ≤ χl(Kp,q) ≤ c2p log q.

There is, however, an analog of Brooks theorem:

Theorem 5.2 ( [Vizing, 1976,Erd̋os et al., 1980]).LetG be a simple connected graph. Letd = ∆(G).
Then,χl(G) ≤ d + 1, andχl(G) = d + 1 if an only ifG is an odd cycle or a complete graph.

Let us first give a simple example from [Erdős et al., 1980] which gives some intuition on the choice
number.

Proposition 5.3. Km,m is notk-choosable ifm ≥
(
2k−1

k

)
.

Proof. We use a pigeonhole-like idea. We only need to considerm =
(
2k−1

k

)
. Consider a list assignment

where the vertices on each color class ofKm,m get distinctk-subsets of[2k − 1]. Suppose there exists
a properk-list-coloring forKm,m = (A,B;A × B). Let S be the set of colors the coloring assigns to
vertices ofA. If |S| ≥ k, then a vertexv ∈ B with L(v) ⊆ S cannot be colored. If|S| ≤ k − 1, then a
vertexv ∈ A with L(v) ⊆ [2k − 1]− S cannot be colored.
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Heawood (1890) showed that every planar graph is5-colorable (the five color theorem) using an
argument earlier by Kempe (1879) who gave a flawed proof of the four color theorem. [Vizing, 1976]
and [Erd̋os et al., 1980] conjectured that planar graphs are5-choosable. [Voigt, 1993] and [Mirzakhani,
1996] constructed examples of planar graphs which are not4-choosable. [Thomassen, 1994] proved the
conjecture, giving another entirely different proof of the five coloring theorem. For good introductions to
topological graph theory from combinatorial perspectives, see [Mohar and Thomassen, 2001,Bonnington
and Little, 1995].

Theorem 5.4 ( [Thomassen, 1994]).Every planar graph is5-choosable.

Proof. Consider a plane graphG. Keep adding edges so that every bounded face is a triangle, the outer
face is a cycleC = (v1, . . . , vm) (in clock-wise order), while keeping the planarity ofG. Doing so
does not reduce the choice number ofG. We will show that all such plane graphs are5-choosable by
inductively showing the following statement:

Supposev1 andvm have been assigned with two different colors,v2, . . . , vm−1 have
color lists of size3, and the rest of the vertices have lists of size5. Then it is possible to
extend this coloring to a proper list coloring ofG.

The statement is trivially true for|V (G)| = 3, sinceG is just the triangleC. Suppose|V (G)| ≥ 4.
If C has a chord(vi, vj) ∈ E(G), where1 ≤ i ≤ j − 2 ≤ m− 2, and(vi, vj) 6= (v1, vm). Then, we

can apply induction first on the plane graph whose unbounded face isv1, . . . , vi, vj , . . . , vm; and then on
the plane graph whose unbounded face isvi, vi+1, . . . , vj .

Otherwise, letv1, u1, . . . , up, v3 be the neighbors ofv2, such thatv1, u1, . . . , up, v3, . . . , vm is the
unbounded face ofG − {v2}. Choose two colors{c1, c2} from the list (of size three ofv2) other than
the assigned color ofv1. Removec1 andc2 (if any) from the lists (of size5) of u1, . . . , up. Then, our
induction hypothesis ensures thatG−{v2} is still list colorable. Moreover, none ofu1, . . . , up gets either
c1 or c2. It is possible forv3 to getc1 or c2, in which case we assignv2 with c2 or c1, respectively.

The edge version is somewhat more interesting. We can define the concepts oflist edge-coloring,
k-edge-choosable, andedge-choosabilityχ′l(G) in the same fashion. The outstanding open problem is
the so-calledlist coloring conjecture, observed by many researchers, including Vizing, Gupta, Albertson,
Collins, and most likely appeared first in print in [Bollobás and Harris, 1985].

Conjecture 5.5 (List Coloring Conjecture). For any graphG, we haveχ′l(G) = χ′(G).

For simple graphsG, if the conjecture is true, then we getχ′l(G) ≤ ∆(G) + 1. There have been a
series of results aiming at showing this bound:χ′l(G) < c∆(G), c > 11/6 and large∆(G) [Bollobás
and Harris, 1985],χ′l(G) < (1 + o(1))∆(G) [Kahn, 1996], plus a few minor improvements [Häggkvist
and Janssen, 1997,Molloy and Reed, 2000].

The List Coloring Conjecture forG = Kn,n is related to (partial)Latin squares: given ann by n
matrix where each entry has a list ofn symbols, then it is possible to assign to each entry a symbol
from its list such that symbols on the same row or same column are distinct. This is known as theDinitz
problemor Dinitz conjecture(1979). In 1993, Galvin found a proof of the list coloring conjecture for
bipartite graphs, settling Dinitz problem as a special case. The proof is not published until 1995 [Galvin,
1995].

We need to set a few things up before proving Galvin’s theorem. We have seen how path lengths in
orientations relate to graph coloring. There is different relation. In a listingv1, . . . , vn of vertices of a
graphG for greedy coloring, let us orient edges from higher indexed to lower indexed vertices. Then, the
setS1 of vertices which got colored1 satisfies the following conditions: (a)S1 is independent, (b) each
vertexv ∈ V − S1 has an out-edge pointing intoS1. The setS2 of vertices which got colored2 satisfies
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the same conditions with respect toG − S1. Note also that the greedy algorithm produces ak-coloring
if the out-degree of each vertex is less thank.

Let D be an orientation of a graphG. For eachv ∈ V (D), let d+(v), d−(v),Γ+(v), andΓ−(v)
denote the out-degree, in-degree, set of neighborsv is pointing to, and set of neighbors pointing tov,
respectively. A setK ⊆ V (D) is called akernelof D if K is independent andΓ+(v) ∩K 6= ∅ for each
v ∈ V (D)−K.

Lemma 5.6. LetD be an orientation of a graphG, which has a list assignmentL(v) for eachv ∈ V (G).
Supposed+(v) < |L(v)| for all v ∈ V (D), and every induced subgraph ofD has a kernel. Then, there
is proper list coloring forG.

Proof. We show this by induction. For|V (G)| = 1, the assertion clearly holds. Suppose|V (G)| ≥ 2.
Let c be any color in someL(v), v ∈ V (D). Consider the subgraphH of D induced by the set of
vertices havingc in their color lists. LetU be a kernel ofH, andD′ = D−U . Removec from the color
lists of vertices ofD′. We claim thatD′ still satisfies the condition of the lemma. Consider any vertex
v ∈ V (D′). If v ∈ V (D) − V (H), thend+

D′(v) < |L(v)| as before, asc /∈ L(v). If v ∈ V (H) − U ,
then|L(v)| is reduced by one butd+

D′ is also reduced by at least one asv has an out-edge pointing into
U . Hence, there is a list coloring ofD′ which does not involvec. We can then color all vertices inU
with c.

Theorem 5.7 ( [Galvin, 1995]).Every bipartite graphG satisfiesχ′l(G) = χ′(G) = ∆(G).

Proof. The second equality is the content of König’s theorem. We show the first equality here. The idea
is to find an orientation ofL(G) satisfying the conditions of Lemma 5.6. Letc : E(G) → [k] be an edge
coloring ofG, wherek = χ′(G) = ∆(G).

SupposeG = (A ∪ B;E). We refer to vertices inA as theleft verticesandB as right vertices.
Thus edges may be adjacent on the left or on the right. Consider an orientationD of L(G), where
(e, e′) ∈ E(D) if eithere ande′ are adjacent on the left andc(e) > c(e′), or e ande′ are adjacent on the
right andc(e) < c(e′).

We first verify thatd+(e) < k, for all e ∈ V (D). If c(e) = i, then the number ofe′ incident toe on
the left withc(e′) < c(e) is at mosti−1, and the number ofe′ incident toe on the right withc(e′) > c(e)
is at mostk − i, for a total of at mostk − 1. Hence,d+(e) ≤ k − 1 < k.

Secondly, we show that every induced subgraph ofD has a kernel by induction on the size of the
induced subgraph. Consider a subsetS of V (D). The base case is trivial. We assume|S| ≥ 2. Let
D′ = D[S]. Define

U := {e | e = (u, v) ∈ S, c(e) ≤ c(e′),∀e′ = (u, v′) ∈ S.}

It is clear that for everye′ ∈ S − U , there is somee ∈ U such that(e′, e) ∈ E(D). Otherwisee′ would
have been inU . If U is a matching ofG, then we are done. Otherwise, there aree, e′ ∈ U which share
a common right end point. Without loss of generality, assumec(e) < c(e′), so that(e, e′) ∈ E(D′). By
induction hypothesis,D′ − {e} has a kernelU ′. If e′ ∈ U ′, thenU ′ is also a kernel ofD′. If e′ /∈ U ′,
then there is somee′′ ∈ U ′ such that(e′, e′′) ∈ E(D′). Clearlyc(e′) < c(e′′) ande′ ande′′ are incident
on the right. Which means(e, e′′) ∈ E(D′), andU ′ is also a kernel forD′.

Exercise 5.8 ( [Erd̋os et al., 1980]).Show thatKk,m is k-choosable if and only ifm < kk.

Exercise 5.9.Given color lists for vertices of a graphG such that|L(v)| ≥ d(v), for all v ∈ V (G). And,
there is somev0 such that|L(v0)| > d(v). Show that there is a proper list coloring forG.

Exercise 5.10.A total coloring of a graphG assigns a color to each vertex and each edge ofG, such
that elements ofV (G)∪E(G) have different colors when they are adjacent or incident. Show that every
graphG has a total coloring with at mostχ′l(G) + 2 colors.
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Exercise 5.11.Show thatχl(Km
2 ) = m.

Exercise 5.12 (Richardson’s theorem).Show that every directed graph without odd directed cycle has
a kernel.

Exercise 5.13.Show that every bipartite planar graph is3-choosable.

6 Perfect Graphs

A graphG is perfect if every induced subgraphH of G hasχ(H) = ω(H). (Recall thatω(H) is
the clique numberof H.) This concept dated back to the works in [Gallai, 1958, Gallai, 1959, Gallai,
1962, Hajnal and Surányi, 1958, Berge, 1960, Berge, 1966, Dirac, 1961]. The concept is closely related
to computational complexity and linear programming, but far from being understood. For example, even
though computing the chromatic number of a general graph is NP-hard [Karp, 1972], computing the
chromatic number of a perfect graph can be done in polynomial time as shown by [Grötschel et al.,
1981]. More information on perfect graphs and connections to optimization can be found in [Lovász,
1983,Berge and Chvátal, 1984,Lov́asz, 1994].

Berge (1960) made two conjectures on perfect graphs, called theweak perfect graph conjecture
and thestrong perfect graph conjecture. The weak perfect graph conjecture states thatG is perfect if
and only ifG is perfect. Lov́asz, then 22 year-old, proved the weak perfect graph conjecture [Lovász,
1972a, Lov́asz, 1972b], turning it into theperfect graph theorem. We shall prove the perfect graph
theorem later in this section.

The strong perfect graph conjecture was one of the most outstanding and challenging open problems
in graph theory, until Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas announced
a proof in May 2002. The four joint authors presented their work at a workshop held from October
30 to November 3, 2002 at the American Institute of Mathematics in Palo Alto, California. The proof
needs about 150 pages, and the paper is still under reviewed. Some sketches of the proof can be found
in [Cornúejols, 2002]. Graphs which have neitherC2k+1 nor C2k+1 (k ≥ 2) as induced subgraphs are
calledBerge graphs.

Conjecture 6.1 (Strong Perfect Graph Conjecture).A graph is perfect iff it is a Berge graph.

Relevant information on perfect graphs, including many open problems can be found at Chvátal’s per-
fect graph webpage:http://www.cs.rutgers.edu/˜chvatal/perfect/problems.html

Many classes of graphs are known to be perfect, includingbipartite graphs, chordal graphs(also
calledrigid circuit graphs, or triangulated graphs), comparability graphs, andinterval graphs. By the
perfect graph theorem, the complements of these graphs are also perfect.

Exercise 6.2.Determine the smallest imperfect graphG such thatχ(G) = ω(G).

Let us give a sample class of perfect graphs. A simple graph ischordal if every cycle of length4
or more has a chord. In other words, every induced cycle of a chordal graph is a triangle. A vertex
v of a graph issimplicial if G[Γ(v)] is a clique. Asimplicial elimination ordering(also calledperfect
elimination ordering) of a graphG is an orderingv1, . . . , vn of V (G) such thatvi is simplicial with
respect toG[{vi, . . . , vn}].

Lemma 6.3 ( [Voloshin, 1982, Farber and Jamison, 1986]).For every vertexv of a chordal graphG,
there is a simplicial vertex among the vertices farthest away fromv.

Proof. We induct on|V (G)|. If G is not connected, then we can apply induction on the component ofG
containingv. Thus, we can assumeG is connected.
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Claim: if S is a minimal separating set ofG, thenG[S] is a clique.
We can assume|S| ≥ 2. Consider anyu, v ∈ S. We show thatuv ∈ E(G). Supposeuv /∈ E(G).

Both u andv must have a neighbor in every component ofG − S. Let C1, C2 be two components of
G− S. For i = 1, 2, let Pi be a shortest path fromu to v in G[V (Ci) ∪ {u, v}]. ThenP1 andP2 form a
cycle of length at least4, in which the only possible chord isuv. This shows the claim.

Now, back to our lemma. Letd be the longest distance fromv. If d = 1, then we apply induction on
G− {v} and any vertexv′ ∈ V (G− v). A simplicial vertex ofG− {v} is also simplicial forG.

Assumed ≥ 2. Let A be the set of all vertices of distanced from v, B the set of vertices of distance
d−1 from v. ClearlyB is a separating set ofG. LetS be a minimal subset ofB which is also separating.
Then,S is a clique because of the previous claim. LetC be some component ofG[A] which is separated
from v by S. Note that vertices inC cannot have neighbors outside ofS ∪ V (C), and every vertex ofC
has a neighbor inS.

Let H = G[S ∪ V (C)]. If there is some vertex inV (C) of distance at least2 from a vertexu in
S, then we can apply induction onu andH to find a simplicial vertexw of H. The vertexw must be
in V (C), andw is also be a simplicial vertex ofG, as desired. Otherwise, we can assumeS andV (C)
are completely connected. IfC is complete, then any vertex ofC would do. Otherwise, we can apply
induction onH and anyu ∈ V (C) which has some vertex of distance at least2 away from it (inH). The
resulting simplicial vertex ofH must be inC.

Theorem 6.4 ( [Dirac, 1961]).A graph is chordal iff it has a perfect elimination ordering.

Proof. SupposeG is chordal. Applying Lemma 6.3 inductively we get a perfect elimination ordering
for G. Conversely, supposeG has such an ordering. Consider any cycleC of length at least4 in G. By
the time we “remove” the first vertexv from the cycle according to the perfect elimination ordering,v’s
neighbors form a clique, which meansC must have a chord.

Theorem 6.5 ( [Berge, 1960]).Chordal graphs are perfect.

Proof. Since every subgraph of a chordal graphG is also chordal, we only need to show thatχ(G) =
ω(G) for a particular chordal graphG. Sinceχ(G) ≥ ω(G), it is sufficient to find a coloring ofG with
as many colors as some clique ofG. By Theorem 6.4, there is a perfect elimination orderingv1, . . . , vn

for G. We apply greedy coloring on the sequencevn, . . . , v1. Let k = χ(G). Suppose some vertexvi

gets coloredk. Since the neighbor setΓ(vi) of vi in G[{vn, . . . , vi}] forms a clique,G[Γvi ∪ {vi}] is a
clique of sizek.

Exercise 6.6.Let G be a chordal graph. Show that

(a) G has at mostn maximal cliques, andG has exactlyn maximal cliques iffG has no edges.

(b) Every maximal clique ofG containing no simplicial vertex ofG is a separating set.

Exercise 6.7.Show thatG is chordal iff for every induced subgraphH of G we have

ω(H) = 1 + max
K⊆H

δ(K).

The number1 + maxK⊆H δ(K) is called theSzekeres-Wilf numberof H.

Exercise 6.8.Let nk(G) be the number ofk-cliques in a connected chordal graphG. Show that∑
k≥1

(−1)k−1nk(G) = 1.

(Hint: induction.)
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Exercise 6.9.Let e be an edge of a cycleC in a chordal graphG. Show that there is a triangle containing
e.

Exercise 6.10.Let Q be a maximal clique in a chordal graphG. Show that ifG−Q is connected, then
Q contains a simplicial vertex.

A transitive orientationD of a graphG is an orientation such thatxy, yz ∈ E(D) imply xz ∈ E(D).
A graph that has a transitive orientation (such as a bipartite graph) is called acomparability graph.

Theorem 6.11 ( [Berge, 1960]).Comparability graphs are perfect.

Proof. Let D be a transitive orientation of a comparability graphG, thenD is also an acyclic orientation.
Vertices on every directed path inD form a clique. By Theorem 3.1,χ(G) ≤ 1 + l(D) ≤ ω(G).

Exercise 6.12.A graphG is an interval graphif there exists a set of (closed) real intervals{Iv | v ∈
V (G)} such thatuv is an edge iffIu ∩ Iv 6= ∅. Let G be an interval graph. Show thatG is a chordal
graph andḠ is a comparability graph.

The following theorem settles the weak perfect graph conjecture by Berge, and thus it is called the
perfect graph theorem. It was shown by [Lovász, 1972b] in the context of normal hypergraphs.

Theorem 6.13 (Perfect Graph Theorem).A graph is perfect iff its complement is perfect.

[Lovász, 1972a] proved another characterization of perfect graph which also proves the weak perfect
graph conjecture. [Gasparian, 1996] found a simple and elegant proof of this theorem. We shall present
Gasparian’s proof.

Theorem 6.14 ( [Lov́asz, 1972a]).A graphG is perfect if and only if, for all induced subgraphsH of
G,

|V (H)| ≤ α(H) · ω(H).

Exercise 6.15.Show that Theorem 6.14 implies Theorem 6.13

Before showing these theorems, let us try to find out as much as possible the properties of perfect
graphs and their complements. Letθ = θ(G) be the minimum size of a partition ofV (G) into V1, . . . , Vθ

such thatG[Vi] is a clique, for alli = 1, . . . , θ. Then,χ(G) = θ(Ḡ) andω(G) = α(Ḡ). The relations
χ(G) ≥ ω(G) andθ(G) ≥ α(G) are obvious, since every color class of a coloring ofG intersects a
clique at at most one vertex, and since everyVi in a clique partition intersects an independent set at at
most one vertex. Thus, in order to show that a graphG is perfect, we only need to showχ(H) ≤ ω(H)
for every induced subgraphH of G; in other words, we can show that there is anω(H)-coloring forH.

Suppose we want to show the perfect graph theorem by induction. At the induction step, ifG is
perfect butḠ is not, thenḠ is a graph all of whose proper induced subgraphs are perfect, butḠ itself is
imperfect. In other words,̄G is a minimal imperfect graph. What can we say about a minimal imperfect
graph? Clearly,χ(Ḡ) > ω(Ḡ), butχ(H) ≤ ω(H) for every proper induced subgraphH of Ḡ. Let S be
any independent set of̄G, then

ω(Ḡ− S) = χ(Ḡ− S) ≥ χ(Ḡ)− 1 > ω(Ḡ)− 1.

Hence,ω(Ḡ− S) = ω(Ḡ). Consequently, we get the following lemma.

Lemma 6.16. Every independent set of a minimal imperfect graph misses at least one maximum clique.

Let v be a vertex of a perfect graphG. Let G ◦ v be the graph obtained fromG by duplicatingv,
namelyG ◦ v is obtained fromv by creating another copyv′ of v, wherev′ is adjacent to every neighbor
of v, andvv′ ∈ E(G ◦ v). (Basically, we replacedv by an edgevv′.) The next lemma is a crucial
observation by Lov́asz.
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Lemma 6.17. If G is perfect andv ∈ V (G), thenG ◦ v is perfect.

Proof. We induct on|V (G)|. The base case is trivial. Consider a perfect graphG of size at least2,
andv ∈ V (G). Let G′ = G ◦ v, with the extra vertexv′. Every proper induced subgraphH ′ of G′

is either isomorphic to an induced subgraph ofG or equal toH ◦ v for some induced subgraphH of
G. Thus,χ(H ′) = ω(H ′) by induction hypothesis. We only need to show thatχ(G′) ≤ ω(G′). Let
ω = ω(G) = χ(G). It is easy to see that

ω = ω(G) ≤ ω(G′) ≤ χ(G′) ≤ χ(G) + 1 = ω + 1.

Hence, we can assumeω(G′) = ω; otherwise, we would be done. This means thatv is not part of any
maximum clique inG. Let’s color G with ω colors. Supposev gets coloredc. Let S be the set of
all vertices which got coloredc excludingv. Any ω-clique ofG must intersectS and missv. Hence,
χ(G − S) = ω(G − S) < ω, which means we can colorG − S with at mostω − 1 colors, then color
S ∪ {v′} with one additional color for a total of at mostω color. This showsχ(G′) ≤ ω as desired.

A proof of Theorem 6.13.We only need to show that ifG is perfect, thenḠ is also perfect. Again,
induction is the most natural tool for dealing with perfect graphs. For the induction step, it is sufficient
to prove thatω(Ḡ) = χ(Ḡ). Assume otherwise, then̄G is a minimal imperfect graph, which means that
every independent set of̄G misses at least one maximum clique ofḠ. In other words, every clique ofG
misses at least one maximum independent set ofG.

We finish the proof by a counting argument. LetK be the collection of all cliques ofG, andI be the
collection of all maximum independent sets ofG. Then, for everyK ∈ K, there is someIK ∈ I such
thatK ∩ IK = ∅.

To this end, create a graphG′ from G by duplicating each vertexv tv times, where

tv = |{K ∈ K | v ∈ IK}|.

(Note thattv > 0.) By Lemma 6.17,G′ is a perfect graph. It is easy to see that for someK0 ∈ K, we
have

ω(G′) =
∑

v∈K0

tv =
∑

v∈K0

|{K ∈ K | v ∈ IK}| =
∑
K∈K

|IK ∩K0| ≤ |K| − 1.

This is because|IK ∩K0| ≤ 1, ∀K ∈ K, andIK0 ∩K0 = ∅. On the other hand,

|V (G′)| =
∑

v∈V (G)

tv =
∑

v∈V (G)

|{K ∈ K | v ∈ IK}| =
∑
K∈K

|IK | = α(G) · |K|.

Thus,ω(G′) = χ(G′) ≥ |V (G′)|/α(G′) = |K|, a contradiction.

A proof of Theorem 6.14.Necessity is obvious. We show sufficiency by induction on|V (G)|. For the
induction step, supposeG is a graph of order at least2 such that|V (H)| ≤ α(H) · ω(H) for every
induced subgraphH of G. If G is not perfect, then by induction hypothesisG is a minimal imperfect
graph. Thus, every independent set inG misses some maximum clique ofG. Consequently, for any
vertexv ∈ V (G), we have

χ(G− v) = ω(G− v) = ω(G).

Letα = α(G) andω = ω(G). LetI0 = {v1, . . . , vα} be an independent set ofG. LetI(j−1)ω+1, . . . , Ijω

be the color classes of anω-coloring ofG− vj , for j = 1, . . . , α. We getαω + 1 independent sets from
I0 to Iαω. There is some maximum cliqueKi for which Ii ∩Ki = ∅, for eachi ≤ αω. It is easy to see
that |Ki ∩ Ij | ≤ 1. We claim that|Ki ∩ Ij | = 1, wheneveri 6= j. In fact, a stronger statement holds:
everyω-cliqueK is disjoint from at most oneIj . If K is disjoint fromI0, then it must intersect all other
Ij , since vertices ofK take allω colors in everyω-coloring ofG− vj . If K is not disjoint fromI0, then
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K intersectsI0 at somevj . In this case, vertices ofK getω colors in everyω-coloring ofG−vj′ , j′ 6= j.
For theω-coloring ofG− vj , vertices ofK − {vj} getsω − 1 colors, missing at most one color class.

Let n = |V (G)|. LetA be the(αω +1)×n matrix whoseith row is a characteristic vector ofIi. Let
B be then × (αω + 1) matrix whosejth column is a characteristic vector ofKj . Then,AB = J − I,
whereJ is the all-one matrix andI is the identity matrix. Since rank(A) ≥ rank(J− I) = ωα + 1 (it is
easy to see thatdet (J− I) = (n− 1)(−1)n−1), we haven ≥ ωα + 1, a contradiction.

Exercise 6.18.Show that the complement of every bipartite graph is perfect without using Theorems
6.13 and 6.14.

Exercise 6.19.Show thatω(G) ≤ χ(G) ≤ ω(G) + 1 if G is a line graph.

Exercise 6.20.Let G be a graph for which every induced subgraphH has the property that every maxi-
mal independent set ofH intersects every maximal clique ofH. Prove thatG is perfect. Prove also that
such graphsG are precisely the graphs with noP3 as an induced subgraph. (P3 is a path of length3.)

Exercise 6.21.Let G be a perfect graph. Prove that we can find a collectionI of independent sets and
a collectionK of cliques such thatV (G) = ∪I∈II = ∪K∈KV (K), and thatI ∩ K 6= ∅ for every pair
(I, K) ∈ I × K. (Hint: apply Lemma 6.17.)

Exercise 6.22.In the proof of Theorem 6.14, we basically replaced each vertexv by a clique of order
tv. Show that ifG is a perfect graph, then replacing each vertex ofG by a perfect graph yields another
perfect graph.

Exercise 6.23.Let G � v be the graph obtained fromG by duplicatingv, namelyG � v is obtained from
v by creating another copyv′ of v, wherev′ is adjacent to every neighbor ofv. Show that ifG is perfect
thenG � v is perfect for anyv ∈ V (G). (There is a short proof using Lemma 6.17 and Theorem 6.13.)
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[Erdős et al., 1980] Erd̋os, P., Rubin, A. L., and Taylor, H. (1980). Choosability in graphs. InProceedings of the West
Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress.
Numer., XXVI, pages 125–157, Winnipeg, Man. Utilitas Math.

[Farber and Jamison, 1986] Farber, M. and Jamison, R. E. (1986). Convexity in graphs and hypergraphs.SIAM J. Algebraic
Discrete Methods, 7(3):433–444.

[Gallai, 1958] Gallai, T. (1958). Maximum-minimum Sätzeüber Graphen.Acta Math. Acad. Sci. Hungar., 9:395–434.
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