CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Spring 2004 Scribe: Hung Q. Ngo

Lecture 1: Matchings on bipartite graphs

Some good texts on Graph Theory are [3, 12-14].

1 Basic Concepts

An undirected graplG = (V, E) consists of a finite st of verticesand a finite multi-set of unordered
pairsE of edges A loopis an edge of the forrfw, v). WhenE is a proper set (not a multi-sety, is said
to besimple WhenF is an ordered set, the graph is said tadirected

An edgee = (u,v) € E(G) is said to bencidentto v andv, while v andv areadjacent The
complementf a graphG, denoted by is the graph whose vertex set is the same as that, @ind two
vertices inG are adjacent iff they are not adjacentin

A walkis a sequence of vertices, . . . , vy wherev;v; 11 € E(G). A pathis a walk without repeated
vertex in the sequence. A path that starts withnd end withw is called a path from to v or a (u, v)-
path. The length of a path is the number of edges in the pathdiBtenced(u, v) between two vertices
uw andv is the minimum length ofu, v)-paths. Note thad(u,v) could be infinite. Acycleis a walk
which starts and ends at the same vertex and all the vertices in the middle do not repeat in the walk. An
n-cycleor a cycle of length is a cycle withn edges. Theirth of a graphG is the minimum length of
acycles.

Thedegreeds (v) of a vertexv is the number of edges incident#oA graph isregular if all vertices
have the same degree. We often is€r) andd(G) to denote the maximum and minimum degre&of
respectively. A graph is-regularif A(G) = 6(G) = k.

A subgraphG’ = (V', E’) of G = (V, E) is a graph such that’ C V andE’ C E. Aninduced
subgraphG’ = (V', E') of G = (V, E) is a subgraph such that for any, v’ € V', v/v' € E implies
u'v' € E'. WhenV' =V, G’ is said to be apanning subgrapbf G.

A graphd is connectedf there is a path between any two verticeginlt is disconnectedtherwise.

A componenbf a graph is a maximal connected induced subgrapltre@is a graph with no cycle. A
forestis a graph all of whose components are treespanning treef a graphG is a spanning subgraph
of G which is also a tree.

For any graph and a subsét”’ of V(G), we useG — V' to denote the graph obtained by removing
all vertices inV’ and the edges one of whose end points ifr'is For any subseE’ of edges, we use
G — E'todenotgV, E — E').

A subsetC of vertices is called aertex cutif G — C is not connected. A subsstof edges is said
to be anedge cuif G — S is disconnected. Theertex-connectivitpf G, denoted by:(G), is the size
of a minimum vertex cut. Similarly, thedge-connectivitydenoted by:'(G), is the size of a minimum
edge cut. If a vertex cut (edge cut) contains one vertex (edge) only, then the vertex (edge) ismatled a
vertex(cut edgeor bridge). A graph isk-connectedf k& < x(G), andk-edge-connecteifl k < x'(G).

An n-factor of a graphG is ann-regular subgraph afr. A matching ofG is a2-factor of G, and it
is said to beperfectif it contains all vertices of-.

A bipartite graphG is a graph whose vertex sé{ ) can be partitioned into two non-empty subsets
X andY'. This partition is often called thigipartition of V. The setsX andY are often called theolor
classeof G.



A vertex coloringof G is a mappingf from V' into some finite seC such thatuv € FE implies
f(u) # f(v). Elements ofC are called the colors. A graph kscolorableif there is a coloring with at
mostk colors. Thechromatic number (G) is the least such that is k-colorable. Anedge coloring
of G is a mappingf from E into some finite se€’ such that two edges df which are incident to the
same vertex have different colors. The concepts-efige-colorableand thechromatic indexy.(G) are
defined in the obvious way.

Thegenusof a graphG, denoted byy(G), is the smallest genus of an orientable surface onto which
G can be embedded so that no two edges interééid.said to beplanarif v(G) = 0.

Theline graphL(G) of a graphG = (V, E) is the graph whose vertex setisand whose edge set
is B/ whereeies € E'iff e; andey are incident to the same vertexdh

2 Introduction to matching theory

In this section, we assume all graphs are simple graphs for simplicity, although many results hold for
multi-graphs, too. Many parameters of a given gréphre of interest to us. We have see((G) and
Xe(G). Let’s visit some more.

The size of the largest matching in a graghcalled thematching numbeof G, is denoted by (G).
The corresponding matching is called tin@ximum matchingf G. For any matching// of GG, an M-
alternating pathis a path ofG which alternates between edgesiihand not inA/; an M -augmenting
pathis an M -alternating paths which starts and ends at edges nat.in

Exercise 2.1.Prove that a matching/ of a graphG is maximum iff there is nd\/-augmenting path.

A subsetU C V(G) is called avertex coverof G iff every edge ofG is incident to at least one
vertex inU. The size of any smallest vertex cover®@is called thevertex covering numbesf GG, and is
denoted by (G).

An edge covepf G is a set of edges whose set of end poinfg {§). The size of any smallest edge
cover ofG is denoted by(G), and is called thedge covering numberf G.

A set of vertices isndependenif there’s no edge between any two of them. The size of any maximum
independent set is called tirelependent numbearf G, and is denoted by (G).

This section, beside other things, relates the last four parameters in a very nice way.

2.1 General Results

Let us start with the so-called Gallai identities.
Theorem 2.2 (Gallai Identities, 1959 [7]).For any graphG, letn = V(G), then
(i) a(G)+71(GQ) =n.

(i) v(G)+ p(G) = nif G has no isolated vertex.

Proof. The basic idea of both proofs is to show that the left side is bodmd < the right hand side.

(i) Let C be a vertex cover of size(G). Then,V(G) — C'is an independent set of size— 7(G),
which impliesa(G) > n — 7(G). Conversely, for any independent detf sizea(G), V(G) — I
is a vertex cover, implying — a(G) > 7(G).

(i) Consider an edge covdr of minimum sizep(G). SinceL is minimal it has to be a union of
stars. The number of vertices in each star is one more than the numbé&r edges in the star,



ands < v(G) since taking an edge from each star forms a matching. This means + |L| <
v(G) +p(G).

Conversely, consider a maximum matchihfof sizev(G). The setU = V(G) — V(M) is an
independent set. For each vertextinpick an edge incident to it (no isolated vertex). Call the
set of edges”’. Clearly E’ along with E(M) form an edge cover off, which means(G) <
(n—2v(Q)) + v(G).

O

The following result also gives us some of intuition into seeing the relationship between these graph
parameters.

Theorem 2.3. We have
(i) A minimal edge cover is minimum iff it contains a maximum matching.
(i) A maximal matching is maximum iff it is contained in a minimum edge cover.

Proof. (i) We can assumé& does not have any isolated vertex, otherwise there is no edge cover.

For necessity, leL. be a minimum edge cover, which as we have noticed consists of a set of stars.
Since|L| = p(G) = n — v(G), the number of stars is exacthfG). This means the matching
obtained by taking one edge from each star has:giz8, i.e. it is a maximum matching.

For sufficiency, letl, be a minimal edge cover which contains a maximum matching. The fact

that L is minimal implies thatl is a collection of stars. Sé has exactly (G) stars, i.e.|L| =
n —v(G) = p(G). Hence,L has to be minimum.

(i) Let M be a maximum matching. Ldt be the edge cover obtained by taking an arbitrary edge
incident to each vertex df (G) — V(M) along with all edges oM. Clearly|L| = v(G) + n —
2v(G) = p(G). SoL is a minimum edge cover which contains.

Conversely, lef\l be any maximal matching which is contained in a minimum edge cbvéhe
edges ofM must come from different starts @f. Moreover,M’s maximality implies that each

star of L contributes at least an edge fof, so|M| = n — p(G) = v(G).
O

Exercise 2.4.Show that for any graptr, v(G) < 7(G) < 2v(G).

2.2 Bipartite Graphs

Many practical problems can be formulated in terms of matching problems on bipartite graphs. In this
section we restrict our attention to bipartite graphs only.

Theorem 2.5 (Konig’'s Minimax Theorem, 1931 [11]). If G is bipartite, thenr (G) = v(G).

This theorem is also referred to as thérkg-Egenary theorem as Egeavy came up with the same
resultin [5]. We usd’¢(X) to denote the set of neighbors &fin a graphGG. We shall drop the subscript
G when there’s no confusion.

Theorem 2.6 (P. Hall, 1935 [9]).Let G = (A, B; E) be a bipartite graph. Theid: has a complete
matching fromA into B if and only if

ID(X)| > |X|,VX C A.



Theorem 2.7 (Frobenius, 1917 [6])Let G = (A, B; E) be a bipartite graph. Theii has a perfect
matching if and only ifA| = | B| and

N(X)] > [X],¥X C A.

Frobenius’ Theorem is often called thdarriage Theorem It is interesting to note that all three
theorems are equivalent, and the proof of their equivalences isn’t so hard to find.

Proof of the equivalence ofdfig’s Minimax, Frobenius, and P. Hall's Theoremdle shall show a cir-
cular implication.

e Konig = Hall. Necessity is obvious. For sufficiency, assume that forXallC A we have
IT(X)| > | X|. LetC be a vertex cover such thgt| = 7(G) (which is< |A| sinceA is a vertex
cover). If|C| = |A|, then we are done since that would medh = v(G). Assume|C| < |A].
Then, since

D(A-C)| 2 |A-C|=|A]-|AnC| > [BNC]
there is an edge frod — C' to B — C, contradicting the fact thaf is a vertex cover.

e Hall = Frobenius. This is immediate. Frobenius’ Theorem is clearly a special case of Hall's
Theorem.

e Frobenius=- Konig. The fact that(G) < 7(G) is obvious since each edge of an matching needs
at least one vertex to cover it. We use Frobenius’ theorem to show sufficiencyg: lheta vertex
cover of G of minimum sizer(G). To show|C| < v(G), we only need to find a matchiny/
of G so that|C| = |M]|. This matchingM | shall be formed by take the union of two matchings
M; from AN Cinto B — C andM; from BN C into A — C. The constructions of these two
sub-matchings are symmetric. Firstly, for evefyC AN C, |T'(X)| > |X|, because otherwise
we could replaceX by I'(X') for a smaller vertex cover. Note that this impliesnC| < |B — C|.

Add dummy vertices tdA N C| to make its size equéB — C|, connect all dummy vertices to all
vertices in|B — C|, and we get Frobenius’ conditions satisfied. This implies there is a complete
matching fromA N C into B — C, which is ouri;.

O

Given the previous proof, we only need to show one theorem to get the rest. We show one proof
(among many) of P. Hall's theorem here, leaving the independent proofs of the other two theorems as
exercises.

A Proof P. Hall's Theorem This is a “proof from the book” [1], courtesy of the great mathematician Paul
Erdos. Necessity is obvious. We show sufficiency by induction4jn When|A| = 0, 1, the theorem
trivially holds. Supposé¢A| > 2.

Suppose foralX C A, we havel'(X)| > |X|. Letabbe an edge ofr. LetG' = G —a—b, then,G’
is a bipartite graph with color classd$andB’. ForanyX’' C A’, we havel'¢/(X')| > [Tg(X')|—1 >
| X’| — 1, so that|T'¢»(X’)| > |X’| in G'. Induction hypothesis implies there is a complete matching
from A’ into B’, which along withab forms a complete matching from into B.

Now, suppose there is aki C A so that|['(X)| = | X|. Let G; be the subgraph af induced by
XUTI'(X),andGy = G — X —T'(X). Let A;, B; (i = 1,2) be the color classes respectively. It is easy
to verify thatG; andG» satisfy the matching conditions, implying there is complete matching afito
B;. These two matchings together form a complete matching fanto B that we are looking for. [J



Exercise 2.8.Prove Theorem 2.5 independent of the other two theorems.
Exercise 2.9.Prove Theorem 2.7 independent of other two theorems.

Exercise 2.10.Show that ifG is bipartite, then

p(G) = a(G)
Exercise 2.11 (System of Distinct Representatives).et S = {Si,...,S5,} be a collection of sets.
A System of Distinct Representatives (SDR)®fis a set ofn distinct elements, ..., s, such that

s; € S;, Vi. Show thatS has an SDR iff for every, 0 < k& < n, the union of any: of the setsSy, ..., .S,
has cardinality at leagt

Exercise 2.12.Suppose the elements8f= {51,...,S,} all have size: > 1, and further suppose that
no element is contained in more tharsets. Show that there existSDR’s such that for any the k
representatives df; are distinct and thus together form the Set

Exercise 2.13.Let G = (A, B; E) be a bipartite graph. SupposeC A, T' C B, and that there is a
matching fromS into B and one frondl” into A. Show that there is then a matchingGhcovering both
S andT.

A doubly stochastic matriis a real, non-negative square matrix whose row and column sums are
all 1. A permutation matrixs a0l-matrix where there is exactly oriein each row and oné in each
column. Apermutation sebf a permutation matrix is a subset of. entries ofA with no two from the
same row or the same column.

Lemma 2.14. Every doubly stochastic matrix has a permutation set of non-zero entries.

Proof. Let A be a doubly stochastic matrix. L&t = (U, V; E) be a bipartite graph constructed from
A as follows. The set8/ andV represent the rows and columns 4f respectively. There is an edge
(u,v) € E, whereu € U,v € V, if and only if the entrya,,, is not zero. A permutation set of then
corresponds to a perfect matching(@f We shall apply Frobenius theorem here.

Let X C U be any subset of rows of the mattk We want to verify thatl'(X)| > | X|, namely
the numbett of differentcolumns ofA with non-zero entries iX is at least X |. Note that the sum of
non-zero entries iX is at mostk, and is equal t¢X'|. Hence,|X| < k as desired. O

Exercise 2.15 (Birkhoff — von Neumann Theorem).Show that any doubly stochastic matrxcan be
written as a convex combination of permutation matrices, namely

A=a1 P+ -+ apPy,
wherea; > 0 andP, is a permutation matrix for all ande:0 a; = 1. Also show thak < n? —n+1.

Theorem 2.16 (Konig’s Line Coloring Theorem, 1916 [10]). For every bipartite graphG, x.(G) =
A(G). Herex.(G) is the chromatic index afF, i.e. x.(G) is the minimum integer so thatya (G)-edge-
coloring of G exists, and\(G) is the maximum degree of all verticesGh

Proof. G can be embedded ina-regular bipartite graph by adding dummy vertices and edgeginto
(how?). We only need to show that evéryregular bipartite (multi-) graph is-edge-colorable.
Suppos€? is k-regular. It is easy to verify P. Hall's matching condition 6 henceG contains a
perfect matching. Color all edges of this matching with one color, then remove thenGfngmobtain
a(k — 1)-regular bipartite graph. Repeat this prockssnes and we are done. O



Theorem 2.17 (de Werra (1971, 1975) [2])Let k& be any positive integer an@ be a bipartite graph.
Then,G can be written as the union d@f edge-disjoint spanning subgraphis, . .., Gy such that for
eachv € V(G):

VG(U)

’ J <dg,(v) < [

dck(v)-‘ Vi, 1<i<k.

Proof. Build a bipartite grapiG’ from G by splitting each vertex € V(G) into LdGT(”)j of degreek,

and possibly one more vertex of degrég(v) — deGT(”)J. The graph’ has maximum degrele and
thus by Theorem 2.16 is-colorable. The sets of same-color edges are matchifgs. ., My, of G’.

Now, “collapsing”G’ back toG, and letG; be the graph formed by edges bf; after collapsing. It is
obvious that for each, we must have

VG(U)

k J <dg,(v) < [dc(v)

w,vmgigk.
O

Exercise 2.18.Show that Konig's Line Coloring Theorem is equivalent to de Werra’s Theorem.

Exercise 2.19 (Gupta, 1967 [8]) Show that ifG is a bipartite graph with minimum degrée= 6(G),
thenG is the union oy edge-disjoint edge-covers.

It is even more interesting to know that they are all equivalent to the celebrated Dilworth’s theorem.
Since Dilworth’s theorem requires the language of posets, | won't discuss these results but mention them
here for those who have deeper background on posets.

Theorem 2.20 (Dilworth, 1950 [4]). In any finite poset, the size of any largest antichain equals the size
of any smallest chain decomposition.

Exercise 2.21.Show that Theorem 2.20 is equivalent to Theorem 2.5.
Exercise 2.22.State and prove a “dual” version of Dilworth’s theorem.

Exercise 2.23.Two network routerd? and.S are connected by fibers. Thejth fiber can accommodate
up ton; different wavelengths] < j < f.

A setC of connections are routed througR, S). Each connection i€’ is to be carried on a pre-
assigned wavelength. There aredifferent wavelengths. I, there arem; connections on théth
wavelengthl < i < w.

We are to route the connectionst@hthrough(R, S), namely each connection @i is assigned to one
of the f fibers such that no two connections with the same wavelength are assigned on the same fiber,
and that theith fiber does not get assigned to more tharconnections.

Supposen; > --- > my, andn; < --- < ny. Show that the routing can be done if and only if, for

all k, andl, where0 < k < w, 0 <1 < f, it holds thatk(f — 1) + -5y n; > S0 m,.

Exercise 2.24 (Common System of Distinct Representatived)et ¥ = { X1, ..., X,,} be a collection
of sets. A set of distinct elemeni§ = {1, ...,z,,} is called asystem of distinct representativesX’
if there exists a one-to-one mapping X — X such thate; € ¢(x;),Vi=1...m.

Let A= {A4,...,A,}andB = {By,..., B,,} be two collections of subsets pf] = {1,...,n},
m < n. A common system of distinct representatives (CSDR) is &'set{sy, .. ., s, } of m (different)
elements such that represents bothl andB. (Note that the one-to-one mappings fréhto A and B
do not need to be the same.)

Show that4 and5 have a CSDR if and only if

(UA1> N (U Bj) > |I| +|J] —m, forall I,.J C [m)].

iel jeJ



Exercise 2.25.Let m, k be positive integers. L&t = (A, B; E) be a bipartite (multi) graph satisfying
the following conditions: (a) all vertices iA have degree, (b) all vertices inB have degreenk.

Show that we can color the edges®@fwith m colors such that vertices iA are incident to edges
with different colors, and vertices iB are incident to exactly edges of each color.
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