CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Spring 2005 Last update: March 11, 2005

Approximation Algorithms Based on the Primal-Dual Method

The primal-dual methodor primal-dual schema) is another means of solving linear programs. The
basic idea of this method is to start from a feasible solugida the dual program, then attempt to find a
feasible solutiorx to the primal program that satisfies the complementary slackness conditions. If such
anx cannot be found, it turns out that we can find a begter terms of its objective value. Then, another
iteration is started.

The above idea can also be modified to design approximation algorithms. An approximate solution
to the primal IP and a feasible solution to the dual LP can be constructed simultaneously and improved
step by step. In the end, the approximate solution can be compared with the dual feasible solution to
estimate the approximation ratio. One of the key strengths of this method is that it often allows for a
combinatorial algorithm (based on the primal/dual view) which is very efficient.

1 Motivations: LP-algorithms for VERTEX COVERand SET COVER

Recall the (unweightedyERTEX COVER problem. Given a graply = (V, E), taking all vertices of
a maximal matching oz would give a vertex cover fo€z. This is a very efficien2-approximation
algorithm for the vertex cover problem.

The above algorithm runs much faster than the rounding algorithm we have seen. One might wonder
how this algorithm looks from the angle of linear programming. The answer is a surprisingly nice one.
Let us consider the linear relaxation of the integer program for vertex cover:

min > vey To
subjectto x, +xz, > 1, Yuv € F, Q)
Ty >0, YveV.

The dual program is

max § yU’U

weFE
subject to Z Yo <1, Yvev, (2)

u: WweE
Yo = 0, Yuv € E.

An integral feasible solution to (2) corresponds to a matching’ofBased on the idea of a maximal
matching in the view of this linear program, we define a feasible solgtitmbemaximalif there is no
feasible solutiory’ for whichy, , > vy, Yuv € E, and}" . cp Viw > D wver Yuo-

Now that we had the linear programming semantics of a maximal matching, the next question is:
what does it mean to take both vertices of the maximal matchings? Easy, this corresponds to setting
r, = 1 whenevery .y = 1.

Theorem 1.1. Lety be a maximal feasible solution {@), then the strategy of setting! = 1 whenever
> w: woeE Yuw = 1 gives a2-approximation to the/ERTEX COVERproblem.



Proof. We first show thak“ indeed defines a feasible vertex cover. If there is an edge E such that
bothz2 andz:} are0, then we must have

Z Jus < 1, and Z Yo < 1.
s: usek t: tvelR

But theng,, can be increased by an amount of

5:min{<1 Z gju5>,<1 Z @tv)},
s: useE t: tveE

contradicting the maximality of.
Secondly, we need to verify the approximation ratio2of This could be done easily using weak
duality. We knowy gives a lower bound on the optimal value for (1), which is a lower bound of the

optimal vertex cover:
Da <Y Y Gw =2 Ju <2-OPT
v

v u el uwveFE

O

This algorithm can be extended easily to the weighted case, while the matching idea does not extend
that well. Instead of solving the weighted case, let us see how this idea can be extendedewtheeD
SET COVER

The integer program fONVEIGHTED SET COVERIS as follows.

min W11 + -+ WpTn
subjectto > a; >1, Vi€ [m], 3
j:S]‘Ei

zj € {0,1}, Vj € [n].

We assume the weights; to be non-negative. An LP relaxation for (3) is

min W11 + -+ WpTn
subjectto »  a; >1, Vi€ [m], @
7:8531

x; >0, Vjein].
We then have the dual program for (4):

max Y1+ -+ Ym
subjectto >y <wj, Vj € [nl, (5)
i€s;
y; >0, Vie[m].

Combinatorially, to each sél; we associate a non-negative numpgand to each elementve associate

a non-negative humbey,. The primal constraints say that the sum of humbers corresponding to sets
containing an elemeritis at least one. The dual constraints say that the sum of numbers corresponding
to elements in a sef; is at most the weighty; of the set. A feasible solutiofi for (5) is said to be
maximalif there is no other feasible solutigri for whichy, > 3;,Vi € [m], and>_ v/ > > ;.

Theorem 1.2. Lety be a maximal feasible solution {6), then the strategy of settimg,4 = 1 whenever
Zz‘esj y; = wj gives anf-approximation to thevEIGHTED SET COVERproblem, where

f = max|{j |i € S;}.



Proof. It's easy to see that” is feasible can be shown in the same manner as Theorem 1.1. As for the
approximation ratio, we have
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Note that in this and the previous algorithms we wanted a maximal dual feasible sgutiore way
to get a maximal dual feasible solution is to solve the dual LP. An optimal solution is certainly maximal.

2 The primal-dual method applied to SET COVER

We can get away with solving the dual LP. All we wanted was a maximal dual feasible solution, while
solving the dual LP takes quite a bit of running time. In this section we present several approaches to get
such a solution. In fact, we will not even need to explicitly compute the maximal dual feasible solution
at all.

Let us consider the dual LP (5) for tieelGHTED SET COVERproblem. Certainly = 0 is a feasible
solution. One way to obtaigr is to find an appropriate componeptof y and increase it as much as
possible to turn one more of the inequalities into equality. When this is not possible anymore, we get a
maximal feasible solution for (5). The following algorithm implements this idea.

WSC-RIMAL-DUAL-A

1. y < 0 /I start with a feasible solution
2: J < ( // Nothing yet in the cover
3 [ —{1,...,m} [/l Elements yetto be covered
4: while I # () do
. Picki € I // and now try to increasg as much as possible
Ji — argmin{w; | j € [n],7 € S;}
y; < wj, Il this is the mosy; could be increased to
/I the dual constraint correspondingjtoshall become “binding” (becomes equality)
for eachj wherei € S; do
10: Wy — Wi — Wy,
11:  end for
122 J«—JU {jl}
13: I« I-S; [lthoseinS;, are already covered
14: end while
15: ReturnJ
The idea of the algorithm is very clear. We only need to show that the solytiboomputes is

feasible and maximal. Feasibility is maintained throughout as an invariant. To see maximality, consider
the solutiony which was returned by the algorithm. For eaghthere is some; which contains and
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the dual constraint corresponding tas binding. Thusg; cannot be increased without violating that
constraint.

Note that we did not have to compugeat all. In algorithm WSC-RIMAL -DUAL-A, removing all
occurrences of would not effect its result. The algorithm runsd@r{mn), which is very fast.

Exercise 1. Consider the following primal-dual algorithm to compute an approximate solution to the
WEIGHTED SET COVERproblem:

WSC-RIMAL-DUAL-B

1. J—0

22 I —{1,...,m}

3 k<0

4: while I # () do

5. jr « argmin {f;ﬂ :j € [n]} /I NOTE: the fraction isx if S; =0
J

6: S — S, r%%; J—JU{jph [—1-S

7. forj«— 1tondo

8: w; — wj — [S;NS|r

9: Sj<—Sj—S

10:  end for

11: end while

12: ReturnJ

(i) In words, explain what the algorithm does.

(i) Show that the algorithm is afi-approximation algorithm to th&EIGHTED SET COVERproblem,
wheref is the usual suspect.

Exercise 2. Consider the following integer program, which is equivalenVElGHTED SET COVER
min wW1x1 + -+ WpTy

subjectto » "|S; N S|z > [S], VS C [m), (6)
j=1
zj € {0,1}, Vj € [n].

(i) Prove that this program is equivalent to th&€IGHTED SET COVERproblem. Equivalence means
every optimal solution tavEIGHTED SET COVERcorresponds to an optimal solution of (6) and
vice versa.

(i) Write down its LP relaxation and the LP’s dual program.
(iii) Design an approximation algorithm using the primal-dual method similar to the one presented in
the lecture. Your algorithm should have approximation fagtas usual.

You should briefly describe the idea and write down the pseudo code. Also, what's the running
time of your method?

Exercise 3. Consider thedITTING SET problem, in which we are given a universe &ewith weighted
elements, and a collection of subs@&ts. .., T of U. The problem is to find a minimum-weight subset
A of U which hits everyT;, namelyA N T; # 0, for all i € [k].

o Write an integer program formulation of this problem. Also write the dual linear program of the
relaxed version of the IP.



e Devise a primal-dual approximation algorithm for this problem.

e What's your approximation ratio and running time?

3 An LP-algorithm for the GENERAL COVERproblem
The integer program for theENERAL COVERproblem has the following form

min cixr + ... 4+ cpzg
subjectto a;1z1 + ... + apmrn, > b, Vi€ [m] )
z; € {0,1}, V€ [n],

wherea;;, b;, c; are all non-negative integers. Since we can remove an inequality=f 0, we can
assume thab; > 0,Vi € [n]. Moreover, ifc; = 0 then we can set; = 1 and remove the column
corresponding tg without effecting the objective function as well as feasible solutions. Thus, we can
also assume that; > 0,Vj € [n]. Lastly, for each rows we must have) _; a;; > b;, otherwise the
problem is clearly infeasible.

The relaxed LP version for (7) is

min cixr + ... 4+ cprn
subjectto a;1z1 + ... + apmr, > b, Vi€ [m] (8)
ngjgl, VjE[n],

Note that wecannot remove ther; < 1 constraints as iWEIGHTED VERTEX COVERaNdWEIGHTED
SET COVERcounterparts (why?).

As before, the rounding approach for this problem requires solving a linear program (either the dual
or the primal), which has large running time in the worst case. We attempt here to develop more efficient
algorithms to solve this problem.

Let’s first write down the dual LP of (8). To each constrairj?:1 a;jr; > b; we associate a dual
variabley;, and to each constraintz; > —1 we associate a variablg. The dual LP is then

subjectto aijy1 + -+ amiym — 25 < ¢, Vj€n] )
vi,zj > 0, Yie[ml],jen],

Each feasible solution to (9) has the fofsn z). (To be very rigorous, we should have writtgr ', z7)7".)

In order to mimic the LP-algorithm fovEIGHTED VERTEX COVERandWEIGHTED SET COVER we first
need to define what a maximal solution to (9) is. The concept of a maximal solgtia) should be
defined so that, if we set

m
1, whenever ) a1 — % = cj, (10)
i—1

4

L

then we get a feasible solutiori' to the primal program. Let us analyze what kind fz) would make
x4 feasible. Let
J = {j|$34:1}: {]| Zaijinj:Cj}.
i=1

Suppose after the assignment (%8)is not feasible. This means there is some idar which

Zaij < bz‘.

jeJ



Since we have assumed the}; a;; > b;, it must be the case that # [n]. LetJ = [n] —J # 0. In
order to fix this miscue, we must turn one or m@l]éj € J to bel. In other words, we want one or

morej € J such that
m
Z QY — Zj = Cj-
=1

This can be done by increasigg by some small amourit so as to turn one or more of the following
inequalities

Zaijgi —zj <¢j, j € J

=1
into equality. Firstly, to keep the feasibility ¢f}, z), the equalities corresponding foc J must still be
maintained. This is easy as fpre J, we have

m m
¢ = Z%@i —zZj = Z%‘ﬂi + aijd — (2 + aij0).
i=1 i=1

In other words, we only need to increageby a;;0 to maintain those equalities. The numberan be

determined by
5 — min { ¢j = (2oit1 %i¥i = %)
aij

|j€j,a¢j >0}.
(This ¢ is well defined aijej a;; > 0.) After this increase, the objective function of the dual program

is increased by
bz5 — Z az-jé,
=
which is a positive amount.

In this entire process, we have increased the vegtoz) and also the objective function of the dual
program. Hence, ify,z) were to be maximal in the sense that there is no other feasible gctay
which gives strictly larger dual objective value apd > @;, Vi, andz; > Zz;,Vj, thenz* has to be
feasible.

For our purposes, the definition above of the maximal dual feasible solution is not sufficient yet. It
must satisfy another property for the analysis of the approximation ratio (our faydritego through.
We want, as in th@/EIGHTED SET COVERCase,

m
le‘;‘ < Z QijYi — Zj- (1)
=1

This is certainly true wheri € J, but it may not be true whep € J, i.e. when}_" | a;;y; — zj < ¢;.
We need to maintain the property that” , a;;y; — z; > 0 for this analysis to go through.
To this end, let's assume that (11) holds true forjalWe have

n n m
Z ijf < Z (Z aijYi — Zj>
j=1 j=1 \i=1

m n

Z Zaz’j Yi

i=1 \j=1

IN

m
Y

=1

IN
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In the WEIGHTED SET COVERcase, the sum}_", §; was precisely the objective value of the dual
feasible solutiory, which was at most the optimal value WEIGHTED SET COVER Here, the objective
value of the dual feasible solutid, z) is > ;" | ;b — Z;‘L:I Zj. Thus, for this proof to go through we
also want

i=1 i=1 j=1
If that was the case, we can continue with the analysis:

Zij]A < f Z?Jz‘bi - 25]‘
j=1 i=1 j=1
< f-OPT
The analysis above leads to the following definition and theorem.
Definition 3.1 (Maximal dual feasible solution)A feasible solutiony, z) of (9) is said to banaximal
if it satisfies
1. Thn?re_is no otger ieasible solutién, z) for whichy > g, z > z, and}_;" | yib; — Z?Zl zj >
> iy Yibi — Zj:l 2
2. Z:il a;j¥; — zj > 0, forall j € [n].
3.2l ¥ < 3 mibi — 2o 7
Theorem 3.2. Supposey, z) is a maximal feasible solution {®), then the strategy of setting

1, whenever a;y; — % = ¢
=1

4

Zj

gives anf approximation algorithm to the ENERAL COVERproblem, wheref = max; Zj ajj.
The following exercise shows one of the ways to find a maximal solution.

Exercise 4. Let (y*,z*) be an optimal solution to (9), is it true th@t*, z*) is maximal? Explain your
conclusion.

4 A primal-dual algorithm for GENERAL COVER

The analysis provided in the previous section actually gives rise to an efficient algorithm which finds
a dual feasible solution, in much the same way as the primal-dual algorithmgEiGrHTED VERTEX
COVER and WEIGHTED SET COVER We start from(y,z) = (0,0), which is certainly feasible and
maintain the following conditions as invariants (beside the obvious gnes), z; > 0):

cj > Zaijyi —2z; > 0,Yj € [n], (12)
i—1
and . .
>z <Y yilbi—1). (13)
j=1 i=1

The algorithm stops when the first criterion for the maximality pfz) is reached. We first give a slow
version, which is more convenient to prove the algorithm’s correctness.

GC-PrIMAL-DuUAL-A1



1. y «— 0,z < 0 // start with a feasible solution

2. J 0 /I nothing in the cover yet

3: I —{1,...,m} [/lrows yetto be covered (satisfied)

4: while I # () do

5. Picki € I // and now try to increasg; as much as possible

Ci— D i GigYit2; |je T ay > 0}

6: }Hargmin{ -
ij

7. 8« min '%_Z%w | j € J,aij > 0} /1 5 could be0 in a few iterations
8. y; «— y; + 6/l thisis the mosy; could be increased to

9:  // the dual constraint correspondingstshall become “binding” (becomes equality)
10: for eachj € J do

11: zj < zj + a;;0 [/ maintain the fact tha} ;" | a;;y; — zj = ¢j,Vj € J

12:  end for

130 J— JU{j} Il or 24"« 1 for that matter

14 Re<{rel|3 c;ar > b}/l Rmaybeemptyinsome iteration

5. I «—I—R /I constraints corresponding fo are satisfied
16: end while

17: ReturnJ

Theorem 4.1. Algorithm GC-PRIMAL -DUAL-A1 computes a maximal dual feasible solutign z),
and returns a solution/ which gives rise to arf-approximation algorithm for the&SENERAL COVER
problem.

Proof. We first show that conditions (12) and (13) are invariant throughout the execution of the algo-
rithm. If you want to be extremely rigorous, an inductive proof could be used, but the algorithm needs to
be rewritten a little bit to accommodate such proof.

The fact thaty """ | a;;y; — z; < ¢;, for j € J, trivially holds ass was carefully chosen to keep it
true. Wheny € J, ", a;5y; — z; = ¢; before the increase of in the iteration and it is obviously still
true after each iteration as we have increasely an appropriate amount.

To see thab !, a;;y; — z; > 0, we only have to notice that; = 0 for all j € J. Hence, when
j € Jwehaved ", a;jyi — z; = ¢; > 0, while if j € J we haved} " | a;y; — 2 = ey aijyi > 0.

Next, assume that (13) holds before each iteration; we shall show that it still holds after each iteration.
The left hand side of (13) is increased by, ; a;;d, while the right hand side was increased (by—
1)6. Before each iteration] consists precisely of the rowswith Z]EJ arj < b, — 1. In particular
Zjej a;; < b; — 1, yielding the desired result.

Lastly, we check the maximality of the final solutigf, z). Suppose there is another dual feasible
solution(y, z) for whichy > y andz > z. Let J be the set returned by the algorithm. The idea is that
increasing any of thg; would force too much increase on thg j € J, to the point that the objective



value is reduced. In equations, we have

m n m n
Dwi—gbi—> (z-5) < > > - %j)
=1 7j=1 =1 jeJ j:l
m n
= > > aiilyi - ~ %)
jeJ i=1 3:1
= Z <Z Qi5Y; — Z azg%) Z 5])
JjeJ Jj=1
m n
< > (Zj +tei— Y aijﬂi) =) (z - %)
jeJ i—1 =1
n
= > (z—%) - (3
jeJ j=1
- Y3
jed
< 0.

O

Since we do not have to compute explicitly vectgr z), the previous algorithm can be rewritten as
follows.

GC-PrRIMAL-DUAL-A2

1. J«—0

22 [ —{1,...,m}

3: while I # () do

4. Picki € I/l and now try to increasg, as much as possible

5. argmin{% |j€J, a; > 0}
(5<—min{% ‘j S j,aij >O}
for eachj € J do

Cj < Cj — aijé

end for
100 J«— JU{j}
11: for eachr € I do

12: b, «— b, — a;j

13: end for

14: for eachr € I do
15: if b, < 0 then
16: I—1-{r}
17: end if

18: end for

19: end while

20: ReturnJ

Exercise 5. In words, explain how algorithm GCHMAL -DUAL-A2 works as compared to algorithm
GC-PRIMAL-DUAL-AL.



Exercise 6. Recall the following algorithm fowWEIGHTED SET COVER

WSC-RIMAL-DUAL-B

1.J—0

22 I —{1,...,m}

3 k<0

4: while I # () do

5; jk<—argmin{|1§j|: je [n]} /I NOTE: the fraction isx if S; = 0
J

6: S — S r%%; J—JU{jph [—1-5

7. for j «— 1tondo

8: w; — wj — [S;NS|r

9: Sj<—Sj—S

10:  end for

11: end while

12: ReturnJ

(i) Write the pseudo-code for an approximation algorithm which uses the same idea to solve the
GENERAL COVERproblem.

(i) Prove the correctness of your algorithm.

5 A brief introduction to network flows

A flow networkis a directed grap® = (V, E') with two distinguished verticesandt called thesource
and thesink respectively. Moreover, each afe,v) € F has a certairtapacityc(u,v) > 0 assigned
toit. If (u,v) ¢ E (including pairs of the form{u, v)), we assume(u,v) = 0. In this note, we shall
restrict ourselves to the case whespacities are all rational numbers Some of the capacities might
becc.

LetG = (V, E) be a graph or a digraph. L&t be a proper non-empty subsetiof Let X := V — X,
then the paif X, X) forms a partition ofi/, called acutof G. The set of edges af with one end point
in each ofX and X is called aredge cubf G, denoted by.X, X]. WhenG is a directed graph, let

(X)) = {(wv)|ue X,v¢al,
0 (X) = {(u,v) |ué¢ X,v ez}

A source/sink cudf a networkD is a cut(S, T) with s € S andt € T. (Note that, implicitly7 = S.)
A flowfor a networkD = (V, E) is a functionf : V' x V' — R, which assigns a real number to each
pair (u,v) of vertices. A flowf is called afeasible flowf it satisfies the following conditions:

() 0 < f(u,v) < c(u,v),¥(u,v) € E. These are theapacity constraints(If a capacity isoo, then
there is no upper bound on the flow value on that edge.)

(i) Forallv € V —{s,t}, the total flow intov is the same as the total flow out@fnamely

Yo fwv)= > f,w). (14)

u:(u,v)EE w:(v,w)EE

These are called tHéow conservation law

10



Thevalueof a flow f for D, denoted by vdlf), is the net flow out of the source:
val(f):= > flsu)= Y fv,s).
u:(s,u)EE vi(v,s)EE
For notational conveniences, for every two subséty” C V, define

FXY) =3 ) fl,y).

zeX yeyY

For every proper and non-empty subSet V' we definef ™ (S) to be the net flow leaving and f~(S)
to be the net flow entering, namely
RS = £(5,9), (15)
f7(8) = [f(5,9). (16)
If S = {w} for some vertexv € V, we write f*(w) and f~ (w) instead off* ({w}) and f~ ({w}),
respectively. The flow conservation law (14) now regdgv) = f~(v),Yv € V — {s,t}. And, the
value of f is nothing butf*(s) — f~(s).
With the conservation law held at all vertices other than the source and the sink, it is intuitively clear
that the net flow into the sink is also Vdl).

Exercise 7. The value of a flowf is equal to the net flow into the sink:
val(f) = f(t) — f+(0).

Definition 5.1 (The Maximum Flow problem) The maximum flow probleris the problem of finding a
feasible flow with maximum value, given a netwatk(and the capacities on the edges).

Exercise 8. Formulate the maximum flow problem as a linear program.

Given a source/sink cytS, T'), thecapacityof the cut, denoted by c&f, T') is the total capacity of
edges leaving:

caps,T) := Z c(u,v).
ueSweT,
(u,v)EE

A cut with minimum capacity is called minimum cut
Exercise 9. Given a source/sink cytS, T') and a feasible flowf for a networkD, show that

val(f) = f7(S) = f7(S) = f~(T) = f7(D).

Theorem 5.2(Weak duality for flow networks)For every source/sink cyif, 7'] and any feasible flovf
for a networkD = (V, E), we have
val(f) < caps,T).

Due to the weak duality property, a feasible flgiwvith value equal to the capacity of some cut
[S,T] is amaximum flowThe cut is then aninimum cut Similar to linear programs, strong duality also
holds for flow networks (which is a special case of linear programming). This fact is the content of the
max-flow min-cut theorem.

Theorem 5.3(Max-flow min-cut) Let f be a feasible flow of a netwoitl, then f is a maximum flow if
and only if there is some source/sink ¢8it7’] with val( f) = cap(S, T")

Another fact crucial to many optimization problems is as follows.

Theorem 5.4 (Integrality theorem) If the finite capacities are all integers, and the maximum flow is
bounded, then there is a maximum flgvwn which f (u, v) andval( f) are all integers.

11



6 Optimization problems formulated asSET COVER

There are quite a few optimization problems that can be formulated as a (weighatedpVvERproblem.
To simplify notations, we will recap theeT covERproblem using a simpler set of notations.

Recall that in theSET COVERproblem, we are given a universe g&tand a collectior® of subsets of
U. Implicitly, let m = |U| andn = |C|. Each sefS in C is weighted with a non-negative integer weight
wg. The corresponding integer program is

min ESeC WeTY
subject to ng >1, Viel, (17)
EEY
zs €{0,1}, VS eC.
It turns out that many optimization problems follow the same setting. In the following problems, implic-
itly we assume all weights are non-negative integers.

Consider the BORTESTs-t PATH PROBLEM, in which we need to find a shortest path between two
verticess andt of a graphG = (V, E). Let the universé/ be the set of alk-¢ cuts. For each edge
(u,v) € E, letS,, be the set of all cuts ity that containu, v). LetC be the collection of alb,, ,,. If E
is weighted, then the weight &, ,, is the weight of(u, v). Then, by the max-flow min-cut theorem and
the integrality theorem for flow networks, it is easy to see tha&abSTESTs-t PATH is equivalent to the
SET COVERproblem onU andC (weighted or not). The basic idea is to pick a minimum-weight set of
edges that “cover” al§-t cuts!

Similarly, in theMINIMUM SPANNING TREE problem we need a minimum-weight set of edges that
cover all cuts in a grapty.

The GENERALIZED STEINER TREEproblem is defined as follows. Given an edge-weighted undi-
rected grapiG = (V, E') andm pairs of verticeSs;,t;), j € [m]. Find a minimum-weight subset of
edgesC' C E such thats; andt; are connected iV, C), for eachj € [m]. In this problem, we want’
to cover alls;-t; cuts.

In the FEEDBACK VERTEX SET problem, we are given an undirected graph= (V, E) with
weighted vertices. The goal is to find a minimum-weight suldsetf vertices so that every cycle in
G contains some vertex ifi. Thus, we wantC to cover all cycles of-.

The MINIMUM -COST ARBORESCENCE PROBLEMalso called theviINIMUM -COST BRANCHING
PROBLEM is defined as follows. Given a directed, edge-weighted gi@pk (V, E') with a special
vertexr called the root. Find a minimum-cost spanning tree where edges are directed away from
this case, we want the edges of the tree to cover-ditected cuts.

Many of the problems above can be formulated with the following integer program. We assume that
an edge-weighted gragh = (V, E) is given, and edge is weighted withw, € Z*.

min EeEE WeTe
subject to Z ze > f(X), 0#XCV, (18)
e€d(X)

z. € {0,1}, VeeE.

Hered§(X) = [X, X],andf : 2" — Z* is a function that counts how many edges must c6038) in a
feasible solution. In theHORTESTs-t PATH problem, for instance, eacht cut must be crossed at least
once. Other problems follow the same trend, except foFHEDBACK VERTEX SETproblem.

A very general problem of this type is called thBRVIVABLE NETWORK DESIGN PROBLEM also
called theGENERALIZED STEINER PROBLEM We are given an edge-weighted gragh= (V, E). For
each pairu, v of vertices, there is a non-negative integey,. We must find a least-cost subgétof
edges such that ifV/, C) there are,,, edge disjoint paths joining andwv, for each paiw, v. In this case,

we wantf(X) = max m,, for each subseX of vertices.
ueX,vg X

12



We shall see how the primal-dual method helps design approximation algorithms for problems for-

mulated as (18) for several classes of functigns

7

A closer look at the algorithm for SET COVER

The dual linear program of the relaxed version of (17) is

max iy Yi
subjectto » y; <wg, VS€C, (19)
ies
yi >0, VieU.

The basic primal-dual approximation algorithm for theT coveRrproblem can be summarized as fol-
lows. PRIMAL-DUAL BASIC

1
2
3
4
5:
6
7
8

y—0

C—0

while C'is not a covedo
Choose an uncovered elemént
Increasey, until 35 : >,y = ws
Add S intoC

: end while

ReturnC (call it C)

Recall that, from the linear programming vien@ =1 onIyﬁwhenZieS y; = wg (we says is saturated.
Note that there might be saturated s&twhich are not inC' (z4 # 1). Our analysis goes as follows

cos{(z?) = Z wsrh = Z <Zyl> = Z H{S:SeC,iec S}y

seC SecC \ieS ieU

For any collectiorC' of subsets ot/, and anyi € U, letg(C,:) = [{S : S € C,i € S}|. If there was an
a such thay(C, i) < o whenevery; > 0, then we have

cos(z?) = Zg(é,i)yi < aZyi < - OPT.
icU icU

We thus have proved the following theorem.

Theorem 7.1. Let C be the collection returned byRIMAL-DUAL BASIC. Leta be any number such
that, for eachi € U, y; > 0 impliesg(C,i) < a. Then,PRIMAL-DUAL BASIC is an a-approximation
algorithm forSET COVER

For theseT covERproblem,a can be chosen to be the maximum number of appearances of an

element in the given collection. The situation is not as simple for other problems.

7.1 Be particular in choosing the uncovered element

Consider theeEEDBACK VERTEX SETproblem on a grapl = (V, E)). We want to cover the universe
of cycles ofG with vertices inV. For a collection of vertice§' and some cyclé, g(C, i) is the number
of vertices ofC' in the cycle. The rough boundig because a cycle may contain as many asrtices.
This is a very bad approximation ratio.
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Fortunately, to obtain a ratio af we only needg(C,i) < o« wheny; > 0, i.e. when cycle is
chosen at some point during the executiorr@iMAL-DUAL BASIC. Thus, if we try our best to pick
small cycles, we would have a better approximation. Further more, not all vertices in a chosen cycle will
be inC at the end. Hence,(C, ) can still be smaller than the length of cyéle

To this end, one needs to be creative to take advantage of the above observations. We will limit the set
of vertices which have the potential to be in the final cover. We shall refer to therteasstingvertices.
If we never pick a uninteresting vertex to be in the cover, #ign i) is the number of interesting vertices
on cyclei, which can potentially be smaller than the size of this cycle.

All vertices of degred are not interesting. If there was a patof G, all of whose internal vertices
have degreg, then only a least-weight internal vertexheeds to be interesting among all internal ver-
tices, because a cycle containingvill contain all of P. Consequently, if at each step of the algorithm
we can somehow choose an uncovered cycle containing a small number of interesting vertices, then have
would be able to improve the approximation ratio. A result ofdsrdnd Bsa in 1962 tells us how to do
this.

Theorem 7.2(Erd6s-Posa [7]) Let G’ = (V’, E’) be a graph with no degreg-vertex in which each
degree2 vertex is adjacent to two vertices of degrees at I&asthen,G’ has a cycle of length at most
41g|V’|. Moreover, this cycle can be found in polynomial time.

Exercise 10.Consider a graplix with no degreet vertex in which each degrekvertex is adjacent to
two vertices of degrees at least Let H be the graph obtained froid by shortcutting all vertices of
degree2, namely for each vertex € V(G) whose only two neighbors ig andw, we removev and
connectu andw with an edge. (Note thall now has only vertices with degree more ttzan

1. Suppose we build a breadth-first tree starting from some veréx?. Prove that by the time we
reach depthg |V (H)|, we will have discovered a cycle of length at ma$g |V (H)|.

2. Prove Erés-Poé theorem.

This theorem suggests the following algorithm f@EDBACK VERTEX SET(FVS).

FVS-1
1.y«—0
2. C 0
3: Let G’ be a graph obtained frod by removing all uninteresting vertices.
4: while G’ is not emptydo
5. Choose cyclé: in G’ of length at mosti 1g |V (G')]
6: // note that this cycle corresponds uniquely to a cycle in the original geaph
7. Increasey, until there is some saturated vertex
8: AddvintoC
9:  Removev from G’ and then all uninteresting vertices fra@
10: end while

11: ReturnC (call it C)
The following theorem is now immediate from the above analysis.

Theorem 7.3. Algorithm FVS-1is a4 lg n-approximation algorithm fOFEEDBACK VERTEX SET.

A 2-approximation for this problem can be obtained with a different integer programming formula-
tion.

14



7.2 Refining the final solution

Consider thes-t SHORTEST PATHproblem and how algorithrRRIMAL-DUAL BASIC applies to it. In
this case, we want to pick a minimum-weight subset of edges which cover alits§(X).

Consider a typical iteration of the algorithm with the currentSeif edges chosen so far. dfandt
is not connected iV, C'), then there will be a number of “uncovered” cuts to choose from. A sensible
approach is to choose a minimal cut that contairiee. we chosé (X ) whereX is the set of vertices of
the connected component @f, C') that contains. It is not difficult to see that this strategy corresponds
to Dijkstra’s algorithm for theSINGLE SOURCE SHORTEST PATiroblem.

Exercise 11.Prove that the strategy above corresponds to Dijkstra’s algorithm.

Unfortunately, this algorithm produces redundant edges, which are in a shortest path tree rooted at
s. Hence, it makes sense to remove redundant edges from the final sdlutiear some problems, it is
better to remove redundant elements in the reverse order of their addition. This step is cakwdntte
deletion ste@nd is illustrated in the following refinement of the basic algorithm.

PRIMAL-DUAL WITH REVERSE DELETION

1. y«—0

2. C 0

3370

4: while C'is not a covedo

5 j«—j+1

6: k< UNCOVERED-ELEMENT(C) // we can adapt this procedure for different problems
7. Increasey, until 35 : Y . gy = ws

8: RefertoS asS; and add it intaC

9: end while

10: C' + REVERSE DELETHC)

REVERSE DELETEC)
1: for j = |C| downto 1 do
2. if C —{S;} is feasiblethen
3 removesS; from C
4.  endif
5: end for
6: ReturnC
Fix ak for whichy, > 0. As before we would like to estimate an upper boundji@r, k). The situ-
ation becomes a little bit more complicated because of the reverse deletion. For notational conveniences,
let £(C') = UNCOVERED-ELEMENT(C), where we assume a deterministic strategy of choosingieen
acC.
At the point where we are about to increagethe current solution i€' = {5,..., 5;_1} for some
j andk = k(C) is not in any of these sets. Thus,

g(C k) = g(C_' ucC, k(C))

The collectionA = C U C is aminimal augmentatiof C in the sense that removing any set from
A — C will result in an infeasible solution. This follows from the reverse deletion step. The following
theorem follows readily.

Theorem 7.4. If for any iteration of algorithmPRIMAL-DUAL WITH REVERSE DELETIONWith its in-
feasible solutiorC,

<
A miﬁ.l%l}fg. ong(A’ k‘(C)) <8
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then the algorithm has approximation ratib

Exercise 12. Suppose we applyRIMAL-DUAL WITH REVERSE DELETIONtO thes-t SHORTEST PATH
problem, using the rule of picking a minimal cut containingach time. Show that the = 1 satisfies
Theorem 7.4. In other words, the algorithm returns an optimal solution.

Exercise 13.In theMINIMUM -COST ARBORESCENCHroblem, we are given a directed edge-weighted
graphG = (V, E) and a root vertex. The goal is to find a minimum-cost tree rooted-atl of whose
edges are directed away fram

This problem can be viewed as a special case af&TED SET COVERn the following sense: for
each subseX of V' — {r}, we want the minimum-cost set of edges to cave(X ), wherej~(X) =
{(u,v) |u ¢ X,v e X}. (Here,(u,v) coverss™ (X) iff (u,v) € §~(X).)

Suppose we applyRIMAL-DUAL WITH REVERSE DELETIONtO this problem.

(a) Consider an infeasible set of edgém some iteration of the algorithm and the gragh= (V, C).
Show that there is a strongly connected componeiit’afith vertex setX such that ¢ X, and
CnNé (X)=0.

(b) Describe how to find this component in polynomial time.

(c) LetuNcovERED-ELEMENT(C) returnd— (X) with X found as in (a). Apply Theorem 7.4 to show
that this algorithm has approximation ratipi.e. it returns an optimal solution.

7.3 Increasing simultaneously multiple dual variables

A MINIMUM SPANNING TREE (MST) instance can be view ass&T COVERinstance where the edges

need to cover all non-trivial cuts in the graph. Prim’s algorithm for MST can be thought of as a special
case ofPRIMA-DUAL BASIC. However, Kruskal's algorithm is different. Kruskal’s algorithm corre-
sponds to increasing all dual variables simultaneously at the same rate until some edge becomes satu-
rated. This idea is summarized in the following more general form of the primal dual method.

GENERAL PRIMAL-DUAL
1. y«—0
2. C 0
3370

4: while C'is not a covedo

5 j«—j+1

6: 1vj + UNCOVERED-ELEMENTS(C) // pick a subset of uncovered elements

7. Increase all;, at the same raté;, € v; until 35 : Y. cy; = wg

8: RefertoS asS; and add it intaC

9: end while

10: C' + REVERSE DELETHC)

Let I be the total number of iterations. Lef be the amount by which each variable:ipn was
increased. Itis clear that, at the end we have

l

D uk=> Ivjles.

keU j=1
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Following our usual analysis, we have

cos(z?) = Zg(éz

icU

= > g(Ci) Y e
icU VRZED
1

= Z ZQ(C,Z) €j
Jj=1 \i€v;

Let v(C') denoteuNCOVERED-ELEMENTS(C). The following theorem follows naturally.

Theorem 7.5. If for any iterationj of algorithmGENERAL PRIMAL-DUAL with infeasible solutior”,

) <
A: miﬁ.l%fj{g. ofC 'GZ(:C) 9(A,i) < v|v(C)]

then the algorithm has approximation ratio

We shall apply this algorithm to get2aapproximation for thesSENERALIZED STEINER TREEpProb-
lem. Recall that we have an edge-weighted grépk- (V, E) andm pairs of verticegs;, t;) and we
need to find a minimum-cost set of edges coveringatl; cuts. In this algorithmy (C') = UNCOVERED-
ELEMENTS(C) is the set of all cut$(X) where X is a connected component 6V, C') for which
| X N {sj,t;}| =1 for somey.

Theorem 7.6. The algorithm forGENERALIZED STEINER TREEas described above has approximation
ratio 2.

Proof. Consider an infeasible solutiafi. The graph(V, C') has several connected componentsA 6
a minimal augmentation af', then the grapliV, A) is a forest if we view the connected components of
(V,C) as vertices. Lef’ denote this forest.

The forestI’ has two types of vertices: thred vertices correspond to the connected compon&nts
whered(X) € v(C), and the rest arbluevertices. LetR denote the set of red vertices aBdthe set of
blue vertices. We then haye(C')| = | R|. Ignoring the blue vertices with degréewe have

S oA = 3 degr(v)

iev(C) vER

= 2B(T)] - 3 degr(v)

veEB

< 2(|R|+|B|) = ) _ degr(v
veB
2(|R| +|B|) — 2|B|

= 2l(C)].

The last inequality follows because no blue vertex has degree one, othenigiset a minimal augmen-
tation of C. O

Exercise 14. Many of the problems we have discussed can be formulated with the following integer
program. We assume that an edge-weighted gt@ph (V, E) is given, and edge is weighted with
we € ZT.

min ZeEE WeZLe
subjectto Y =z > f(X), 0£XCV, (20)
e€d(X)

ze €{0,1}, Vee€FE.
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Hered§(X) = [X, X],andf : 2" — Z* is a function that counts how many edges must c6038) in a
feasible solution.
The dual of the LP relaxation of the above program is

max > F(X)yx
0£AXCV
subject to Z yx < We, ecE, (21)
X:e€d(X)
yx >0, VX,04 X CV.

In this problem, we shall develop an approximation algorithm for this general setting whsre
a special class of function. To solve this problem, you must understand thoroughly the algorithm we
developed for the GNERALIZED STEINER TREE problem, which will be a special case of this problem.

We assume that has the following properties:

e f(X) € {0,1}, forall X C V. Inother wordsf is a01-function. This problem is thus a special
case of our 8T CoVER problem in which each cui(X) with f(X) = 1 has to be covered.

e f(V)=0. Thisis natural sincé(V') = (.

e f(X) = f(X) for all subsetsX of V. This is also natural, sinc§ X) = §(X) in an undirected
graph.

e If X andY are two disjoint subsets df, thenf(X) = f(Y) = 0 implies f(X UY') = 0. This
means if§(X') andd(Y") do not have to be covered, then so déex UY').

A function f satisfying the above properties is calle@laproper function.

1. LetC be an infeasible subset of edgegb{with respect taf, of course). Prove that there is some
connected componend of (V, C') for which f(X) = 1. (Here, we us€X to also denote the set of
vertices of the connected componéns)

2. LetC be an infeasible subset of edgestaf Let X be a connected component@f, C'). LetY
be a subset of vertices such thath X # () andX Z Y. Prove thaC coversj(Y).

(Note: this means that we only have to worry about covering){h® for which Y contains one
or a few connected components(df, C').)

3. Consider the following algorithm for our problem.

PRIMAL-DUAL FOR 01-PROPER FUNCTION
Ly«0;,C+0; j«0
2: while C'is infeasibledo
3 je—g+1
4:  Lety; be the set of allX which is a connected component(@f, C') and f(X) =1
5 Increase al x at the same rateY € v;, until Je : Z Yz = We
Z:e€6(2)
6: Refertoe ase; and add it intoC
7: end while
8: C « REVERSE DELETEC)

Prove that this is &-approximation algorithm for our problem.
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Historical Notes

The primal-dual method was proposed by Dantzig, Ford, and Fulkerson [4] to solve linear programs.
This method was motivated by the works of Egawv[5] and Kuhn [15] on the so-called “Hungarian
algorithm” for the assignment problem (or the minimum cost bipartite perfect matching problem). The
primal-dual method is not effective as a method for solving linear programs in general. Its strength lies in
the fact that it can be used to “transform” a weighted optimization problem into a purely combinatorial
and unweighted optimization problem. Many fundamental combinatorial optimization algorithms are
either a special case of this method or can be understood in terms of it. For more details, consult standard
combinatorial optimization textbooks such as [3, 10, 16—-19].

Bar-Yehuda and Even [2] gave the first truly primal-dual algorithm to approximate/giraEX
COVER and thesSeT COVER problem, as presented in algorithm WS@+RAL-DUAL-A. The LP-
algorithms for these problems were due to Hochbaum [12]. The algorithm fasBRERAL COVER
problem is by Hall and Hochbaum [11]. Chapter 3 of [13] is a good survey on covering and packing
problems.

The survey paper by Goemans and Williamson [9] and many chapters in Vazirani [20] discuss the
primal-dual method for approximation in more details.

The book by Ahuja, Magnanti and Orlin [1] contains extensive discussions on network flows, related
problems and applications.

The Max-Flow Min-Cut theorem was obtained independently by Elias, Feinstein, and Shannon [6],
Ford and Fulkerson [8]. The special case with integral capacities was also discovered by Kotzig [14].

References

[1] R. K. AHUJA, T. L. MAGNANTI, AND J. B. GRLIN, Network flows Prentice Hall Inc., Englewood Cliffs, NJ, 1993.
Theory, algorithms, and applications.

[2] R. BAR-YEHUDA AND S. EVEN, A linear-time approximation algorithm for the weighted vertex cover proplerlgo-
rithms, 2 (1981), pp. 198-203.

[8] W. J. Cook, W. H. CUNNINGHAM, W. R. PULLEYBLANK , AND A. SCHRIJVER, Combinatorial optimizationWiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1998. A Wiley-
Interscience Publication.

[4] G. B. DaNTZIG, L. R. FORD, JR., AND D. R. FULKERSON, A primal-dual algorithm for linear programsn Linear
inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N. J.,
1956, pp. 171-181.

[5] J. EGERVARY, Matrixok kombinatorikus tulajdorgairol, Mathematikaiés Fizikai Lapok, 38 (1931), pp. 19-28.

[6] P. ELIAS, A. FEINSTEIN, AND C. E. SHANNON, Note on maximal flow through a netwoiRE Transactions on Infor-
mation Theory IT-2, (1956), pp. 117-199.

[7]1 P. ERDOS AND L. POsA, On the maximal number of disjoint circuits of a graftubl. Math. Debrecen, 9 (1962), pp. 3—
12.

[8] L. R. FORD, JR. AND D. R. FULKERSON, Maximal flow through a networlCanad. J. Math., 8 (1956), pp. 399—-404.

[9] M. X. GOEMANS AND D. WILLIAMSON, The primal-dual method for approximation algorithms and its application
to network design problems Approximation Algorithms for NP-Hard Problems, D. Hochbaum, ed., PWS Publishing
Company, 1997, pp. 144-191.

[10] M. GROTSCHEL L. LovAsz, AND A. SCHRIJVER Geometric algorithms and combinatorial optimizatjorol. 2 of
Algorithms and Combinatorics, Springer-Verlag, Berlin, second ed., 1993.

[11] N. G. HALL AND D. S. HocHBAUM, A fast approximation algorithm for the multicovering probleDiscrete Appl.
Math., 15 (1986), pp. 35-40.

19



(12]

(13]

(14]
(15]

(16]

(17]

(18]

(19]

(20]

D. S. HocHBAUM, Approximation algorithms for the set covering and vertex cover prohl&t#sMm J. Comput., 11
(1982), pp. 555-556.

D. S. HocHBAuM, ed., Approximation Algorithms for NP Hard ProblemBWS Publishing Company, Boston, MA,
1997.

A. KoTziG, Shvislost' a pravidelii sivislost’ konénych grafoy Bratislava: Vysok Skola Ekonomick, (1956).
H. W. KuHN, The Hungarian method for the assignment prohldlaval Res. Logist. Quart., 2 (1955), pp. 83-97.

C. H. RPADIMITRIOU AND K. STEIGLITZ, Combinatorial optimization: algorithms and complexiBrentice-Hall Inc.,
Englewood Cliffs, N.J., 1982.

A. SCHRIJVER Combinatorial optimization. Polyhedra and efficiency. Valvél. 24 of Algorithms and Combinatorics,
Springer-Verlag, Berlin, 2003. Paths, flows, matchings, Chapters 1-38.

, Combinatorial optimization. Polyhedra and efficiency. Volv8. 24 of Algorithms and Combinatorics, Springer-
Verlag, Berlin, 2003. Matroids, trees, stable sets, Chapters 39—69.

, Combinatorial optimization. Polyhedra and efficiency. Valv@l. 24 of Algorithms and Combinatorics, Springer-
Verlag, Berlin, 2003. Disjoint paths, hypergraphs, Chapters 70-83.

V. V. VAZIRANI, Approximation algorithmsSpringer-Verlag, Berlin, 2001.

20



