
CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Spring 2005 Last update: March 11, 2005

Approximation Algorithms Based on the Primal-Dual Method

Theprimal-dual method(or primal-dual schema) is another means of solving linear programs. The
basic idea of this method is to start from a feasible solutiony to the dual program, then attempt to find a
feasible solutionx to the primal program that satisfies the complementary slackness conditions. If such
anx cannot be found, it turns out that we can find a bettery in terms of its objective value. Then, another
iteration is started.

The above idea can also be modified to design approximation algorithms. An approximate solution
to the primal IP and a feasible solution to the dual LP can be constructed simultaneously and improved
step by step. In the end, the approximate solution can be compared with the dual feasible solution to
estimate the approximation ratio. One of the key strengths of this method is that it often allows for a
combinatorial algorithm (based on the primal/dual view) which is very efficient.

1 Motivations: LP-algorithms for VERTEX COVERand SET COVER

Recall the (unweighted)VERTEX COVER problem. Given a graphG = (V,E), taking all vertices of
a maximal matching ofG would give a vertex cover forG. This is a very efficient2-approximation
algorithm for the vertex cover problem.

The above algorithm runs much faster than the rounding algorithm we have seen. One might wonder
how this algorithm looks from the angle of linear programming. The answer is a surprisingly nice one.
Let us consider the linear relaxation of the integer program for vertex cover:

min
∑

v∈V xv

subject to xu + xv ≥ 1, ∀uv ∈ E,
xv ≥ 0, ∀v ∈ V.

(1)

The dual program is
max

∑
uv∈E

yuv

subject to
∑

u: uv∈E

yuv ≤ 1, ∀v ∈ V,

yuv ≥ 0, ∀uv ∈ E.

(2)

An integral feasible solution to (2) corresponds to a matching ofG. Based on the idea of a maximal
matching in the view of this linear program, we define a feasible solutiony to bemaximalif there is no
feasible solutiony′ for whichy′uv ≥ yuv,∀uv ∈ E, and

∑
uv∈E y′uv >

∑
uv∈E yuv.

Now that we had the linear programming semantics of a maximal matching, the next question is:
what does it mean to take both vertices of the maximal matchings? Easy, this corresponds to setting
xv = 1 whenever

∑
u: uv∈E yuv = 1.

Theorem 1.1. Let ȳ be a maximal feasible solution to(2), then the strategy of settingxA
v = 1 whenever∑

u: uv∈E ȳuv = 1 gives a2-approximation to theVERTEX COVERproblem.

1

Proof. We first show thatxA indeed defines a feasible vertex cover. If there is an edgeuv ∈ E such that
bothxA

u andxA
v are0, then we must have∑

s: us∈E

ȳus < 1, and
∑

t: tv∈E

ȳtv < 1.

But thenȳuv can be increased by an amount of

δ = min

{(
1−

∑
s: us∈E

ȳus

)
,

(
1−

∑
t: tv∈E

ȳtv

)}
,

contradicting the maximality of̄y.
Secondly, we need to verify the approximation ratio of2. This could be done easily using weak

duality. We knowȳ gives a lower bound on the optimal value for (1), which is a lower bound of the
optimal vertex cover: ∑

v

xA
v ≤

∑
v

∑
u: uv∈E

ȳuv = 2
∑

uv∈E

ȳuv ≤ 2 · OPT.

This algorithm can be extended easily to the weighted case, while the matching idea does not extend
that well. Instead of solving the weighted case, let us see how this idea can be extended to theWEIGHTED

SET COVER.
The integer program forWEIGHTED SET COVERis as follows.

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

(3)

We assume the weightswj to be non-negative. An LP relaxation for (3) is

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ≥ 0, ∀j ∈ [n].

(4)

We then have the dual program for (4):

max y1 + · · ·+ ym

subject to
∑
i∈Sj

yi ≤ wj , ∀j ∈ [n],

yi ≥ 0, ∀i ∈ [m].

(5)

Combinatorially, to each setSj we associate a non-negative numberxj and to each elementi we associate
a non-negative numberyi. The primal constraints say that the sum of numbers corresponding to sets
containing an elementi is at least one. The dual constraints say that the sum of numbers corresponding
to elements in a setSj is at most the weightwj of the set. A feasible solution̄y for (5) is said to be
maximalif there is no other feasible solutiony′ for whichy′i ≥ ȳi,∀i ∈ [m], and

∑
y′i >

∑
ȳi.

Theorem 1.2. Let ȳ be a maximal feasible solution to(5), then the strategy of settingxA
j = 1 whenever∑

i∈Sj
yi = wj gives anf -approximation to theWEIGHTED SET COVERproblem, where

f = max
i
|{j | i ∈ Sj}|.

2

Proof. It’s easy to see thatxA is feasible can be shown in the same manner as Theorem 1.1. As for the
approximation ratio, we have

n∑
j=1

wjx
A
j ≤

n∑
j=1

∑
i∈Sj

yi

=
m∑

i=1

|{j : Sj 3 i}|yi

≤ f

m∑
i=1

yi

≤ f · OPT.

Note that in this and the previous algorithms we wanted a maximal dual feasible solutionȳ. One way
to get a maximal dual feasible solution is to solve the dual LP. An optimal solution is certainly maximal.

2 The primal-dual method applied to SET COVER

We can get away with solving the dual LP. All we wanted was a maximal dual feasible solution, while
solving the dual LP takes quite a bit of running time. In this section we present several approaches to get
such a solution. In fact, we will not even need to explicitly compute the maximal dual feasible solution
at all.

Let us consider the dual LP (5) for theWEIGHTED SET COVERproblem. Certainlyy = 0 is a feasible
solution. One way to obtain̄y is to find an appropriate componentyi of y and increase it as much as
possible to turn one more of the inequalities into equality. When this is not possible anymore, we get a
maximal feasible solution for (5). The following algorithm implements this idea.

WSC-PRIMAL -DUAL -A

1: y← 0 // start with a feasible solution
2: J ← ∅ // Nothing yet in the cover
3: I ← {1, . . . ,m} // Elements yet to be covered
4: while I 6= ∅ do
5: Pick i ∈ I // and now try to increaseyi as much as possible
6: ji ← arg min{wj | j ∈ [n], i ∈ Sj}
7: yi ← wji // this is the mostyi could be increased to
8: // the dual constraint corresponding toji shall become “binding” (becomes equality)
9: for eachj wherei ∈ Sj do

10: wj ← wj − wji

11: end for
12: J ← J ∪ {ji}
13: I ← I − Sji // those inSji are already covered
14: end while
15: ReturnJ

The idea of the algorithm is very clear. We only need to show that the solutiony it computes is
feasible and maximal. Feasibility is maintained throughout as an invariant. To see maximality, consider
the solution̄y which was returned by the algorithm. For eachȳi, there is someSj which containsi and

3

the dual constraint corresponding toj is binding. Thus,̄yi cannot be increased without violating that
constraint.

Note that we did not have to computey at all. In algorithm WSC-PRIMAL -DUAL -A, removing all
occurrences ofy would not effect its result. The algorithm runs inO(mn), which is very fast.

Exercise 1. Consider the following primal-dual algorithm to compute an approximate solution to the
WEIGHTED SET COVERproblem:

WSC-PRIMAL -DUAL -B

1: J ← ∅
2: I ← {1, . . . ,m}
3: k ← 0
4: while I 6= ∅ do

5: jk ← arg min
{

wj

|Sj |
: j ∈ [n]

}
// NOTE: the fraction is∞ if Sj = ∅

6: S ← Sjk
; r ← wjk

|S|
; J ← J ∪ {jk}; I ← I − S

7: for j ← 1 to n do
8: wj ← wj − |Sj ∩ S|r
9: Sj ← Sj − S

10: end for
11: end while
12: ReturnJ

(i) In words, explain what the algorithm does.

(ii) Show that the algorithm is anf -approximation algorithm to theWEIGHTED SET COVERproblem,
wheref is the usual suspect.

Exercise 2. Consider the following integer program, which is equivalent toWEIGHTED SET COVER:

min w1x1 + · · ·+ wnxn

subject to
n∑

j=1

|Sj ∩ S|xj ≥ |S|, ∀S ⊆ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

(6)

(i) Prove that this program is equivalent to theWEIGHTED SET COVERproblem. Equivalence means
every optimal solution toWEIGHTED SET COVERcorresponds to an optimal solution of (6) and
vice versa.

(ii) Write down its LP relaxation and the LP’s dual program.

(iii) Design an approximation algorithm using the primal-dual method similar to the one presented in
the lecture. Your algorithm should have approximation factorf , as usual.

You should briefly describe the idea and write down the pseudo code. Also, what’s the running
time of your method?

Exercise 3. Consider theHITTING SET problem, in which we are given a universe setU with weighted
elements, and a collection of subsetsT1, . . . , Tk of U . The problem is to find a minimum-weight subset
A of U which hits everyTi, namelyA ∩ Ti 6= ∅, for all i ∈ [k].

• Write an integer program formulation of this problem. Also write the dual linear program of the
relaxed version of the IP.

4

• Devise a primal-dual approximation algorithm for this problem.

• What’s your approximation ratio and running time?

3 An LP-algorithm for the GENERAL COVERproblem

The integer program for theGENERAL COVERproblem has the following form

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, ∀i ∈ [m].
xj ∈ {0, 1}, ∀j ∈ [n],

(7)

whereaij , bi, cj are all non-negative integers. Since we can remove an inequality ifbi = 0, we can
assume thatbi > 0,∀i ∈ [n]. Moreover, ifcj = 0 then we can setxj = 1 and remove the column
corresponding toj without effecting the objective function as well as feasible solutions. Thus, we can
also assume thatcj > 0,∀j ∈ [n]. Lastly, for each rowi we must have

∑
j aij ≥ bi, otherwise the

problem is clearly infeasible.
The relaxed LP version for (7) is

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, ∀i ∈ [m].
0 ≤ xj ≤ 1, ∀j ∈ [n],

(8)

Note that wecannot remove thexj ≤ 1 constraints as inWEIGHTED VERTEX COVERandWEIGHTED

SET COVERcounterparts (why?).
As before, the rounding approach for this problem requires solving a linear program (either the dual

or the primal), which has large running time in the worst case. We attempt here to develop more efficient
algorithms to solve this problem.

Let’s first write down the dual LP of (8). To each constraint
∑n

j=1 aijxj ≥ bi we associate a dual
variableyi, and to each constraint−xj ≥ −1 we associate a variablezj . The dual LP is then

max b1y1 + · · ·+ bmym − (z1 + · · ·+ zn)
subject to a1jy1 + · · ·+ amjym − zj ≤ cj , ∀j ∈ [n].

yi, zj ≥ 0, ∀i ∈ [m], j ∈ [n] ,
(9)

Each feasible solution to (9) has the form(y, z). (To be very rigorous, we should have written(yT , zT)T .)
In order to mimic the LP-algorithm forWEIGHTED VERTEX COVERandWEIGHTED SET COVER, we first
need to define what a maximal solution to (9) is. The concept of a maximal solution(ȳ, z̄) should be
defined so that, if we set

xA
j = 1, whenever

m∑
i=1

aij ȳi − z̄j = cj , (10)

then we get a feasible solutionxA to the primal program. Let us analyze what kind of(ȳ, z̄) would make
xA feasible. Let

J :=
{
j | xA

j = 1
}

=

{
j |

m∑
i=1

aij ȳi − z̄j = cj

}
.

Suppose after the assignment (10)xA is not feasible. This means there is some rowi for which∑
j∈J

aij < bi.

5

Since we have assumed that
∑

j aij ≥ bi, it must be the case thatJ 6= [n]. Let J̄ = [n] − J 6= ∅. In
order to fix this miscue, we must turn one or morexA

j , j ∈ J̄ to be1. In other words, we want one or
morej ∈ J̄ such that

m∑
i=1

aij ȳi − z̄j = cj .

This can be done by increasinḡyi by some small amountδ so as to turn one or more of the following
inequalities

m∑
i=1

aij ȳi − z̄j < cj , j ∈ J̄

into equality. Firstly, to keep the feasibility of(ȳ, z̄), the equalities corresponding toj ∈ J must still be
maintained. This is easy as forj ∈ J , we have

cj =
m∑

i=1

aij ȳi − z̄j =
m∑

i=1

aij ȳi + aijδ − (z̄j + aijδ).

In other words, we only need to increasez̄j by aijδ to maintain those equalities. The numberδ can be
determined by

δ = min
{

cj − (
∑m

i=1 aij ȳi − z̄j)
aij

| j ∈ J̄ , aij > 0
}

.

(This δ is well defined as
∑

j∈J̄ aij > 0.) After this increase, the objective function of the dual program
is increased by

biδ −
∑
j∈J

aijδ,

which is a positive amount.
In this entire process, we have increased the vector(ȳ, z̄) and also the objective function of the dual

program. Hence, if(ȳ, z̄) were to be maximal in the sense that there is no other feasible vector(y, z)
which gives strictly larger dual objective value andyi ≥ ȳi,∀i, andzj ≥ z̄j ,∀j, thenxA has to be
feasible.

For our purposes, the definition above of the maximal dual feasible solution is not sufficient yet. It
must satisfy another property for the analysis of the approximation ratio (our favoritef) to go through.
We want, as in theWEIGHTED SET COVERcase,

cjx
A
j ≤

m∑
i=1

aij ȳi − z̄j . (11)

This is certainly true whenj ∈ J , but it may not be true whenj ∈ J̄ , i.e. when
∑m

i=1 aij ȳi − z̄j < cj .
We need to maintain the property that

∑m
i=1 aij ȳi − z̄j ≥ 0 for this analysis to go through.

To this end, let’s assume that (11) holds true for allj. We have

n∑
j=1

cjx
A
j ≤

n∑
j=1

(
m∑

i=1

aij ȳi − z̄j

)

≤
m∑

i=1

 n∑
j=1

aij

 ȳi

≤ f

m∑
i=1

ȳi.

6

In the WEIGHTED SET COVERcase, the sum
∑m

i=1 ȳi was precisely the objective value of the dual
feasible solution̄y, which was at most the optimal value ofWEIGHTED SET COVER. Here, the objective
value of the dual feasible solution(ȳ, z̄) is

∑m
i=1 ȳibi −

∑n
j=1 z̄j . Thus, for this proof to go through we

also want
m∑

i=1

ȳi ≤
m∑

i=1

ȳibi −
n∑

j=1

z̄j .

If that was the case, we can continue with the analysis:

n∑
j=1

cjx
A
j ≤ f

 m∑
i=1

ȳibi −
n∑

j=1

z̄j


≤ f · OPT.

The analysis above leads to the following definition and theorem.

Definition 3.1 (Maximal dual feasible solution). A feasible solution(ȳ, z̄) of (9) is said to bemaximal
if it satisfies

1. There is no other feasible solution(y, z) for which y ≥ ȳ, z ≥ z̄, and
∑m

i=1 yibi −
∑n

j=1 zj >∑m
i=1 ȳibi −

∑n
j=1 z̄j .

2.
∑m

i=1 aij ȳi − z̄j ≥ 0, for all j ∈ [n].

3.
∑m

i=1 ȳi ≤
∑m

i=1 ȳibi −
∑n

j=1 z̄j .

Theorem 3.2. Suppose(ȳ, z̄) is a maximal feasible solution to(9), then the strategy of setting

xA
j = 1, whenever

m∑
i=1

aij ȳi − z̄j = cj

gives anf approximation algorithm to theGENERAL COVERproblem, wheref = maxi
∑

j aij .

The following exercise shows one of the ways to find a maximal solution.

Exercise 4. Let (y∗, z∗) be an optimal solution to (9), is it true that(y∗, z∗) is maximal? Explain your
conclusion.

4 A primal-dual algorithm for GENERAL COVER

The analysis provided in the previous section actually gives rise to an efficient algorithm which finds
a dual feasible solution, in much the same way as the primal-dual algorithms forWEIGHTED VERTEX

COVER and WEIGHTED SET COVER. We start from(y, z) = (0, 0), which is certainly feasible and
maintain the following conditions as invariants (beside the obvious onesyi ≥ 0, zj ≥ 0):

cj ≥
m∑

i=1

aijyi − zj ≥ 0,∀j ∈ [n], (12)

and
n∑

j=1

zj ≤
m∑

i=1

yi(bi − 1). (13)

The algorithm stops when the first criterion for the maximality of(y, z) is reached. We first give a slow
version, which is more convenient to prove the algorithm’s correctness.

GC-PRIMAL -DUAL -A1

7

1: y← 0, z← 0 // start with a feasible solution
2: J ← ∅ // nothing in the cover yet
3: I ← {1, . . . ,m} // rows yet to be covered (satisfied)
4: while I 6= ∅ do
5: Pick i ∈ I // and now try to increaseyi as much as possible

6: j̄ ← arg min
{

cj−
Pm

i=1 aijyi+zj

aij
| j ∈ J̄ , aij > 0

}
7: δ ← min

{
cj−

Pm
i=1 aijyi+zj

aij
| j ∈ J̄ , aij > 0

}
// δ could be0 in a few iterations

8: yi ← yi + δ // this is the mostyi could be increased to
9: // the dual constraint corresponding toj̄ shall become “binding” (becomes equality)

10: for eachj ∈ J do
11: zj ← zj + aijδ // maintain the fact that

∑m
i=1 aijyi − zj = cj ,∀j ∈ J

12: end for
13: J ← J ∪ {j̄} // or xA

j̄
← 1 for that matter

14: R← {r ∈ I |
∑

j∈J arj ≥ br} // R may be empty in some iteration
15: I ← I −R // constraints corresponding toR are satisfied
16: end while
17: ReturnJ

Theorem 4.1. Algorithm GC-PRIMAL -DUAL -A1 computes a maximal dual feasible solution(y, z),
and returns a solutionJ which gives rise to anf -approximation algorithm for theGENERAL COVER

problem.

Proof. We first show that conditions (12) and (13) are invariant throughout the execution of the algo-
rithm. If you want to be extremely rigorous, an inductive proof could be used, but the algorithm needs to
be rewritten a little bit to accommodate such proof.

The fact that
∑m

i=1 aijyi − zj ≤ cj , for j ∈ J̄ , trivially holds asδ was carefully chosen to keep it
true. Whenj ∈ J ,

∑m
i=1 aijyi − zj = cj before the increase ofyi in the iteration and it is obviously still

true after each iteration as we have increasedzj by an appropriate amount.
To see that

∑m
i=1 aijyi − zj ≥ 0, we only have to notice thatzj = 0 for all j ∈ J̄ . Hence, when

j ∈ J we have
∑m

i=1 aijyi − zj = cj ≥ 0, while if j ∈ J̄ we have
∑m

i=1 aijyi − zj =
∑m

i=1 aijyi ≥ 0.
Next, assume that (13) holds before each iteration; we shall show that it still holds after each iteration.

The left hand side of (13) is increased by
∑

j∈J aijδ, while the right hand side was increased by(bi −
1)δ. Before each iteration,I consists precisely of the rowsr with

∑
j∈J arj ≤ br − 1. In particular∑

j∈J aij ≤ bi − 1, yielding the desired result.
Lastly, we check the maximality of the final solution(ȳ, z̄). Suppose there is another dual feasible

solution(y, z) for whichy ≥ ȳ andz ≥ z̄. Let J be the set returned by the algorithm. The idea is that
increasing any of theyi would force too much increase on thezj , j ∈ J , to the point that the objective

8

value is reduced. In equations, we have

m∑
i=1

(yi − ȳi)bi −
n∑

j=1

(zj − z̄j) ≤
m∑

i=1

(yi − ȳi)

∑
j∈J

aij

− n∑
j=1

(zj − z̄j)

=
∑
j∈J

m∑
i=1

aij(yi − ȳi)−
n∑

j=1

(zj − z̄j)

=
∑
j∈J

(
m∑

i=1

aijyi −
m∑

i=1

aij ȳi

)
−

n∑
j=1

(zj − z̄j)

≤
∑
j∈J

(
zj + cj −

m∑
i=1

aij ȳi

)
−

n∑
j=1

(zj − z̄j)

=
∑
j∈J

(zj − z̄j)−
n∑

j=1

(zj − z̄j)

= −
∑
j∈J̄

(zj − z̄j)

≤ 0.

Since we do not have to compute explicitly vector(y, z), the previous algorithm can be rewritten as
follows.

GC-PRIMAL -DUAL -A2

1: J ← ∅
2: I ← {1, . . . ,m}
3: while I 6= ∅ do
4: Pick i ∈ I // and now try to increaseyi as much as possible

5: j̄ ← arg min
{

cj

aij
| j ∈ J̄ , aij > 0

}
6: δ ← min

{
cj

aij
| j ∈ J̄ , aij > 0

}
7: for eachj ∈ J̄ do
8: cj ← cj − aijδ
9: end for

10: J ← J ∪ {j̄}
11: for eachr ∈ I do
12: br ← br − arj̄

13: end for
14: for eachr ∈ I do
15: if br ← 0 then
16: I ← I − {r}
17: end if
18: end for
19: end while
20: ReturnJ

Exercise 5. In words, explain how algorithm GC-PRIMAL -DUAL -A2 works as compared to algorithm
GC-PRIMAL -DUAL -A1.

9

Exercise 6. Recall the following algorithm forWEIGHTED SET COVER:

WSC-PRIMAL -DUAL -B

1: J ← ∅
2: I ← {1, . . . ,m}
3: k ← 0
4: while I 6= ∅ do

5: jk ← arg min
{

wj

|Sj |
: j ∈ [n]

}
// NOTE: the fraction is∞ if Sj = ∅

6: S ← Sjk
; r ← wjk

|S|
; J ← J ∪ {jk}; I ← I − S

7: for j ← 1 to n do
8: wj ← wj − |Sj ∩ S|r
9: Sj ← Sj − S

10: end for
11: end while
12: ReturnJ

(i) Write the pseudo-code for an approximation algorithm which uses the same idea to solve the
GENERAL COVERproblem.

(ii) Prove the correctness of your algorithm.

5 A brief introduction to network flows

A flow networkis a directed graphD = (V,E) with two distinguished verticess andt called thesource
and thesink, respectively. Moreover, each arc(u, v) ∈ E has a certaincapacityc(u, v) ≥ 0 assigned
to it. If (u, v) /∈ E (including pairs of the form(u, u)), we assumec(u, v) = 0. In this note, we shall
restrict ourselves to the case wherecapacities are all rational numbers. Some of the capacities might
be∞.

Let G = (V,E) be a graph or a digraph. LetX be a proper non-empty subset ofV . Let X̄ := V −X,
then the pair(X, X̄) forms a partition ofV , called acut of G. The set of edges ofG with one end point
in each ofX andX̄ is called anedge cutof G, denoted by[X, X̄]. WhenG is a directed graph, let

δ+(X) = {(u, v) | u ∈ X, v /∈ x},
δ−(X) = {(u, v) | u /∈ X, v ∈ x}.

A source/sink cutof a networkD is a cut(S, T) with s ∈ S andt ∈ T . (Note that, implicitlyT = S̄.)
A flow for a networkD = (V,E) is a functionf : V × V → R, which assigns a real number to each

pair (u, v) of vertices. A flowf is called afeasible flowif it satisfies the following conditions:

(i) 0 ≤ f(u, v) ≤ c(u, v),∀(u, v) ∈ E. These are thecapacity constraints. (If a capacity is∞, then
there is no upper bound on the flow value on that edge.)

(ii) For all v ∈ V − {s, t}, the total flow intov is the same as the total flow out ofv, namely∑
u:(u,v)∈E

f(u, v) =
∑

w:(v,w)∈E

f(v, w). (14)

These are called theflow conservation law.

10

Thevalueof a flowf for D, denoted by val(f), is the net flow out of the source:

val(f) :=
∑

u:(s,u)∈E

f(s, u)−
∑

v:(v,s)∈E

f(v, s).

For notational conveniences, for every two subsetsX, Y ⊆ V , define

f(X, Y) :=
∑
x∈X

∑
y∈Y

f(x, y).

For every proper and non-empty subsetS ⊆ V we definef+(S) to be the net flow leavingS andf−(S)
to be the net flow enteringS, namely

f+(S) := f(S, S̄), (15)

f−(S) := f(S̄, S). (16)

If S = {w} for some vertexw ∈ V , we writef+(w) andf−(w) instead off+({w}) andf−({w}),
respectively. The flow conservation law (14) now readsf+(v) = f−(v),∀v ∈ V − {s, t}. And, the
value off is nothing butf+(s)− f−(s).

With the conservation law held at all vertices other than the source and the sink, it is intuitively clear
that the net flow into the sink is also val(f).

Exercise 7. The value of a flowf is equal to the net flow into the sink:

val(f) = f−(t)− f+(t).

Definition 5.1 (The Maximum Flow problem). Themaximum flow problemis the problem of finding a
feasible flow with maximum value, given a networkD (and the capacities on the edges).

Exercise 8. Formulate the maximum flow problem as a linear program.

Given a source/sink cut(S, T), thecapacityof the cut, denoted by cap(S, T) is the total capacity of
edges leavingS:

cap(S, T) :=
∑

u∈S,v∈T,
(u,v)∈E

c(u, v).

A cut with minimum capacity is called aminimum cut.

Exercise 9. Given a source/sink cut(S, T) and a feasible flowf for a networkD, show that

val(f) = f+(S)− f−(S) = f−(T)− f+(T).

Theorem 5.2(Weak duality for flow networks). For every source/sink cut[S, T] and any feasible flowf
for a networkD = (V,E), we have

val(f) ≤ cap(S, T).

Due to the weak duality property, a feasible flowf with value equal to the capacity of some cut
[S, T] is amaximum flow. The cut is then aminimum cut. Similar to linear programs, strong duality also
holds for flow networks (which is a special case of linear programming). This fact is the content of the
max-flow min-cut theorem.

Theorem 5.3(Max-flow min-cut). Letf be a feasible flow of a networkD, thenf is a maximum flow if
and only if there is some source/sink cut[S, T] with val(f) = cap(S, T)

Another fact crucial to many optimization problems is as follows.

Theorem 5.4 (Integrality theorem). If the finite capacities are all integers, and the maximum flow is
bounded, then there is a maximum flowf in whichf(u, v) andval(f) are all integers.

11

6 Optimization problems formulated asSET COVER

There are quite a few optimization problems that can be formulated as a (weighted)SET COVERproblem.
To simplify notations, we will recap theSET COVERproblem using a simpler set of notations.

Recall that in theSET COVERproblem, we are given a universe setU , and a collectionC of subsets of
U . Implicitly, let m = |U | andn = |C|. Each setS in C is weighted with a non-negative integer weight
wS . The corresponding integer program is

min
∑

S∈C wSxS

subject to
∑
S3i

xS ≥ 1, ∀i ∈ U,

xS ∈ {0, 1}, ∀S ∈ C.

(17)

It turns out that many optimization problems follow the same setting. In the following problems, implic-
itly we assume all weights are non-negative integers.

Consider the SHORTESTs-t PATH PROBLEM, in which we need to find a shortest path between two
verticess andt of a graphG = (V,E). Let the universeU be the set of alls-t cuts. For each edge
(u, v) ∈ E, let Suv be the set of all cuts inU that contain(u, v). Let C be the collection of allSu,v. If E
is weighted, then the weight ofSu,v is the weight of(u, v). Then, by the max-flow min-cut theorem and
the integrality theorem for flow networks, it is easy to see that SHORTESTs-t PATH is equivalent to the
SET COVERproblem onU andC (weighted or not). The basic idea is to pick a minimum-weight set of
edges that “cover” alls-t cuts!

Similarly, in theMINIMUM SPANNING TREE problem we need a minimum-weight set of edges that
cover all cuts in a graphG.

The GENERALIZED STEINER TREEproblem is defined as follows. Given an edge-weighted undi-
rected graphG = (V,E) andm pairs of vertices(sj , tj), j ∈ [m]. Find a minimum-weight subset of
edgesC ⊆ E such thatsj andtj are connected in(V,C), for eachj ∈ [m]. In this problem, we wantC
to cover allsj-tj cuts.

In the FEEDBACK VERTEX SET problem, we are given an undirected graphG = (V,E) with
weighted vertices. The goal is to find a minimum-weight subsetC of vertices so that every cycle in
G contains some vertex inC. Thus, we wantC to cover all cycles ofG.

The MINIMUM -COST ARBORESCENCE PROBLEM, also called theMINIMUM -COST BRANCHING

PROBLEM is defined as follows. Given a directed, edge-weighted graphG = (V,E) with a special
vertexr called the root. Find a minimum-cost spanning tree where edges are directed away fromr. In
this case, we want the edges of the tree to cover allr-directed cuts.

Many of the problems above can be formulated with the following integer program. We assume that
an edge-weighted graphG = (V,E) is given, and edgee is weighted withwe ∈ Z+.

min
∑

e∈E wexe

subject to
∑

e∈δ(X)

xe ≥ f(X), ∅ 6= X ⊂ V,

xe ∈ {0, 1}, ∀e ∈ E.

(18)

Hereδ(X) = [X, X], andf : 2V → Z+ is a function that counts how many edges must crossδ(X) in a
feasible solution. In theSHORTESTs-t PATH problem, for instance, eachs-t cut must be crossed at least
once. Other problems follow the same trend, except for theFEEDBACK VERTEX SETproblem.

A very general problem of this type is called theSURVIVABLE NETWORK DESIGN PROBLEM, also
called theGENERALIZED STEINER PROBLEM. We are given an edge-weighted graphG = (V,E). For
each pairu, v of vertices, there is a non-negative integermuv. We must find a least-cost subsetC of
edges such that in(V,C) there areruv edge disjoint paths joiningu andv, for each pairu, v. In this case,
we wantf(X) = max

u∈X,v/∈X
muv for each subsetX of vertices.

12

We shall see how the primal-dual method helps design approximation algorithms for problems for-
mulated as (18) for several classes of functionsf .

7 A closer look at the algorithm for SET COVER

The dual linear program of the relaxed version of (17) is

max
∑

i∈U yi

subject to
∑
i∈S

yi ≤ wS , ∀S ∈ C,

yi ≥ 0, ∀i ∈ U.

(19)

The basic primal-dual approximation algorithm for theSET COVERproblem can be summarized as fol-
lows. PRIMAL-DUAL BASIC

1: y← 0
2: C ← ∅
3: while C is not a coverdo
4: Choose an uncovered elementk
5: Increaseyk until ∃S :

∑
i∈S yi = wS

6: Add S into C
7: end while
8: ReturnC (call it C̄)

Recall that, from the linear programming viewxA
S = 1 only when

∑
i∈S yi = wS (we sayS is saturated).

Note that there might be saturated setsS which are not inC̄ (xA
S 6= 1). Our analysis goes as follows

cost(xA) =
∑
S∈C̄

wSxA
S =

∑
S∈C̄

(∑
i∈S

yi

)
=
∑
i∈U

|{S : S ∈ C̄, i ∈ S}|yi.

For any collectionC of subsets ofU , and anyi ∈ U , let g(C, i) = |{S : S ∈ C, i ∈ S}|. If there was an
α such thatg(C̄, i) ≤ α wheneveryi > 0, then we have

cost(xA) =
∑
i∈U

g(C̄, i)yi ≤ α
∑
i∈U

yi ≤ α · OPT.

We thus have proved the following theorem.

Theorem 7.1. Let C̄ be the collection returned byPRIMAL-DUAL BASIC. Let α be any number such
that, for eachi ∈ U , yi > 0 impliesg(C̄, i) ≤ α. Then,PRIMAL-DUAL BASIC is anα-approximation
algorithm forSET COVER.

For theSET COVERproblem,α can be chosen to be the maximum number of appearances of an
element in the given collection. The situation is not as simple for other problems.

7.1 Be particular in choosing the uncovered elementk

Consider theFEEDBACK VERTEX SETproblem on a graphG = (V,E). We want to cover the universe
of cycles ofG with vertices inV . For a collection of vertices̄C and some cyclei, g(C̄, i) is the number
of vertices ofC̄ in the cycle. The rough bound isn, because a cycle may contain as many asn vertices.
This is a very bad approximation ratio.

13

Fortunately, to obtain a ratio ofα we only needg(C̄, i) ≤ α whenyi > 0, i.e. when cyclei is
chosen at some point during the execution ofPRIMAL-DUAL BASIC. Thus, if we try our best to pick
small cycles, we would have a better approximation. Further more, not all vertices in a chosen cycle will
be inC̄ at the end. Hence,g(C̄, i) can still be smaller than the length of cyclei.

To this end, one needs to be creative to take advantage of the above observations. We will limit the set
of vertices which have the potential to be in the final cover. We shall refer to them asinterestingvertices.
If we never pick a uninteresting vertex to be in the cover, theng(C̄, i) is the number of interesting vertices
on cyclei, which can potentially be smaller than the size of this cycle.

All vertices of degree1 are not interesting. If there was a pathP of G, all of whose internal vertices
have degree2, then only a least-weight internal vertexv needs to be interesting among all internal ver-
tices, because a cycle containingv will contain all of P . Consequently, if at each step of the algorithm
we can somehow choose an uncovered cycle containing a small number of interesting vertices, then have
would be able to improve the approximation ratio. A result of Erdős and Ṕosa in 1962 tells us how to do
this.

Theorem 7.2(Erdős-Ṕosa [7]). Let G′ = (V ′, E′) be a graph with no degree-1 vertex in which each
degree-2 vertex is adjacent to two vertices of degrees at least3. Then,G′ has a cycle of length at most
4 lg |V ′|. Moreover, this cycle can be found in polynomial time.

Exercise 10.Consider a graphG with no degree-1 vertex in which each degree-2 vertex is adjacent to
two vertices of degrees at least3. Let H be the graph obtained fromG by shortcutting all vertices of
degree2, namely for each vertexv ∈ V (G) whose only two neighbors isu andw, we removev and
connectu andw with an edge. (Note thatH now has only vertices with degree more than2.)

1. Suppose we build a breadth-first tree starting from some vertexr of H. Prove that by the time we
reach depthlg |V (H)|, we will have discovered a cycle of length at most2 lg |V (H)|.

2. Prove Erd̋os-Pośa theorem.

This theorem suggests the following algorithm forFEEDBACK VERTEX SET(FVS).

FVS-1

1: y← 0
2: C ← ∅
3: Let G′ be a graph obtained fromG by removing all uninteresting vertices.
4: while G′ is not emptydo
5: Choose cyclek in G′ of length at most4 lg |V (G′)|
6: // note that this cycle corresponds uniquely to a cycle in the original graphG
7: Increaseyk until there is some saturated vertexv
8: Add v into C
9: Removev from G′ and then all uninteresting vertices fromG′

10: end while
11: ReturnC (call it C̄)

The following theorem is now immediate from the above analysis.

Theorem 7.3. AlgorithmFVS-1 is a4 lg n-approximation algorithm forFEEDBACK VERTEX SET.

A 2-approximation for this problem can be obtained with a different integer programming formula-
tion.

14

7.2 Refining the final solution

Consider thes-t SHORTEST PATHproblem and how algorithmPRIMAL-DUAL BASIC applies to it. In
this case, we want to pick a minimum-weight subset of edges which cover alls-t cutsδ(X).

Consider a typical iteration of the algorithm with the current setC of edges chosen so far. Ifs andt
is not connected in(V,C), then there will be a number of “uncovered” cuts to choose from. A sensible
approach is to choose a minimal cut that containss, i.e. we choseδ(X) whereX is the set of vertices of
the connected component of(V,C) that containss. It is not difficult to see that this strategy corresponds
to Dijkstra’s algorithm for theSINGLE SOURCE SHORTEST PATHproblem.

Exercise 11.Prove that the strategy above corresponds to Dijkstra’s algorithm.

Unfortunately, this algorithm produces redundant edges, which are in a shortest path tree rooted at
s. Hence, it makes sense to remove redundant edges from the final solutionC̄. For some problems, it is
better to remove redundant elements in the reverse order of their addition. This step is called thereverse
deletion stepand is illustrated in the following refinement of the basic algorithm.

PRIMAL-DUAL WITH REVERSE DELETION

1: y← 0
2: C ← ∅
3: j ← 0
4: while C is not a coverdo
5: j ← j + 1
6: k ← UNCOVERED-ELEMENT(C) // we can adapt this procedure for different problems
7: Increaseyk until ∃S :

∑
i∈S yi = wS

8: Refer toS asSj and add it intoC
9: end while

10: C̄ ← REVERSE DELETE(C)

REVERSE DELETE(C)

1: for j = |C| downto 1 do
2: if C − {Sj} is feasiblethen
3: removeSj from C
4: end if
5: end for
6: ReturnC

Fix ak for whichyk > 0. As before we would like to estimate an upper bound forg(C̄, k). The situ-
ation becomes a little bit more complicated because of the reverse deletion. For notational conveniences,
let k(C) = UNCOVERED-ELEMENT(C), where we assume a deterministic strategy of choosing ak given
aC.

At the point where we are about to increaseyk, the current solution isC = {S1, . . . , Sj−1} for some
j andk = k(C) is not in any of these sets. Thus,

g(C̄, k) = g
(
C̄ ∪ C, k(C)

)
.

The collectionA = C̄ ∪ C is a minimal augmentationof C in the sense that removing any set from
A − C will result in an infeasible solution. This follows from the reverse deletion step. The following
theorem follows readily.

Theorem 7.4. If for any iteration of algorithmPRIMAL-DUAL WITH REVERSE DELETION with its in-
feasible solutionC,

max
A : min. aug. ofC

g(A, k(C)) ≤ β

15

then the algorithm has approximation ratioβ.

Exercise 12.Suppose we applyPRIMAL-DUAL WITH REVERSE DELETION to thes-t SHORTEST PATH

problem, using the rule of picking a minimal cut containings each time. Show that theβ = 1 satisfies
Theorem 7.4. In other words, the algorithm returns an optimal solution.

Exercise 13. In theMINIMUM -COST ARBORESCENCEproblem, we are given a directed edge-weighted
graphG = (V,E) and a root vertexr. The goal is to find a minimum-cost tree rooted atr all of whose
edges are directed away fromr.

This problem can be viewed as a special case of WEIGHTED SET COVER in the following sense: for
each subsetX of V − {r}, we want the minimum-cost set of edges to coverδ−(X), whereδ−(X) =
{(u, v) | u /∈ X, v ∈ X}. (Here,(u, v) coversδ−(X) iff (u, v) ∈ δ−(X).)

Suppose we applyPRIMAL-DUAL WITH REVERSE DELETION to this problem.

(a) Consider an infeasible set of edgesC in some iteration of the algorithm and the graphG′ = (V,C).
Show that there is a strongly connected component ofG′ with vertex setX such thatr /∈ X, and
C ∩ δ−(X) = ∅.

(b) Describe how to find this component in polynomial time.

(c) Let UNCOVERED-ELEMENT(C) returnδ−(X) with X found as in (a). Apply Theorem 7.4 to show
that this algorithm has approximation ratio1, i.e. it returns an optimal solution.

7.3 Increasing simultaneously multiple dual variables

A MINIMUM SPANNING TREE (MST) instance can be view as aSET COVERinstance where the edges
need to cover all non-trivial cuts in the graph. Prim’s algorithm for MST can be thought of as a special
case ofPRIMA-DUAL BASIC. However, Kruskal’s algorithm is different. Kruskal’s algorithm corre-
sponds to increasing all dual variables simultaneously at the same rate until some edge becomes satu-
rated. This idea is summarized in the following more general form of the primal dual method.

GENERAL PRIMAL-DUAL

1: y← 0
2: C ← ∅
3: j ← 0
4: while C is not a coverdo
5: j ← j + 1
6: νj ← UNCOVERED-ELEMENTS(C) // pick a subset of uncovered elements
7: Increase allyk at the same rate,k ∈ νj until ∃S :

∑
i∈S yi = wS

8: Refer toS asSj and add it intoC
9: end while

10: C̄ ← REVERSE DELETE(C)

Let l be the total number of iterations. Letεj be the amount by which each variable inνj was
increased. It is clear that, at the end we have

∑
k∈U

yk =
l∑

j=1

|νj |εj .

16

Following our usual analysis, we have

cost(xA) =
∑
i∈U

g(C̄, i)yi

=
∑
i∈U

g(C̄, i)
∑

j:νj3i

εj

=
l∑

j=1

∑
i∈νj

g(C̄, i)

 εj

Let ν(C) denoteUNCOVERED-ELEMENTS(C). The following theorem follows naturally.

Theorem 7.5. If for any iterationj of algorithmGENERAL PRIMAL-DUAL with infeasible solutionC,

max
A : min. aug. ofC

∑
i∈ν(C)

g(A, i) ≤ γ|ν(C)|

then the algorithm has approximation ratioγ.

We shall apply this algorithm to get a2-approximation for theGENERALIZED STEINER TREEprob-
lem. Recall that we have an edge-weighted graphG = (V,E) andm pairs of vertices(sj , tj) and we
need to find a minimum-cost set of edges covering allsj-tj cuts. In this algorithm,ν(C) = UNCOVERED-
ELEMENTS(C) is the set of all cutsδ(X) whereX is a connected component of(V,C) for which
|X ∩ {sj , tj}| = 1 for somej.

Theorem 7.6. The algorithm forGENERALIZED STEINER TREEas described above has approximation
ratio 2.

Proof. Consider an infeasible solutionC. The graph(V,C) has several connected components. IfA is
a minimal augmentation ofC, then the graph(V,A) is a forest if we view the connected components of
(V,C) as vertices. LetT denote this forest.

The forestT has two types of vertices: thered vertices correspond to the connected componentsX
whereδ(X) ∈ ν(C), and the rest arebluevertices. LetR denote the set of red vertices andB the set of
blue vertices. We then have|ν(C)| = |R|. Ignoring the blue vertices with degree0, we have∑

i∈ν(C)

g(A, i) =
∑
v∈R

degT (v)

= 2|E(T)| −
∑
v∈B

degT (v)

≤ 2(|R|+ |B|)−
∑
v∈B

degT (v)

≤ 2(|R|+ |B|)− 2|B|
= 2|ν(C)|.

The last inequality follows because no blue vertex has degree one, otherwiseA is not a minimal augmen-
tation ofC.

Exercise 14. Many of the problems we have discussed can be formulated with the following integer
program. We assume that an edge-weighted graphG = (V,E) is given, and edgee is weighted with
we ∈ Z+.

min
∑

e∈E wexe

subject to
∑

e∈δ(X)

xe ≥ f(X), ∅ 6= X ⊂ V,

xe ∈ {0, 1}, ∀e ∈ E.

(20)

17

Hereδ(X) = [X, X], andf : 2V → Z+ is a function that counts how many edges must crossδ(X) in a
feasible solution.

The dual of the LP relaxation of the above program is

max
∑

∅6=X⊂V

f(X)yX

subject to
∑

X:e∈δ(X)

yX ≤ we, e ∈ E,

yX ≥ 0, ∀X, ∅ 6= X ⊂ V.

(21)

In this problem, we shall develop an approximation algorithm for this general setting wheref is
a special class of function. To solve this problem, you must understand thoroughly the algorithm we
developed for the GENERALIZED STEINER TREEproblem, which will be a special case of this problem.

We assume thatf has the following properties:

• f(X) ∈ {0, 1}, for all X ⊆ V . In other words,f is a01-function. This problem is thus a special
case of our SET COVER problem in which each cutδ(X) with f(X) = 1 has to be covered.

• f(V) = 0. This is natural sinceδ(V) = ∅.

• f(X) = f(X) for all subsetsX of V . This is also natural, sinceδ(X) = δ(X) in an undirected
graph.

• If X andY are two disjoint subsets ofV , thenf(X) = f(Y) = 0 impliesf(X ∪ Y) = 0. This
means ifδ(X) andδ(Y) do not have to be covered, then so doesδ(X ∪ Y).

A functionf satisfying the above properties is called a01-proper function.

1. LetC be an infeasible subset of edges ofG (with respect tof , of course). Prove that there is some
connected componentX of (V,C) for whichf(X) = 1. (Here, we useX to also denote the set of
vertices of the connected componentX.)

2. LetC be an infeasible subset of edges ofG. Let X be a connected component of(V,C). Let Y
be a subset of vertices such thatY ∩X 6= ∅ andX 6⊆ Y . Prove thatC coversδ(Y).

(Note: this means that we only have to worry about covering theδ(Y) for which Y contains one
or a few connected components of(V,C).)

3. Consider the following algorithm for our problem.

PRIMAL-DUAL FOR 01-PROPER FUNCTION

1: y← 0; C ← ∅; j ← 0
2: while C is infeasibledo
3: j ← j + 1
4: Let νj be the set of allX which is a connected component of(V,C) andf(X) = 1
5: Increase allyX at the same rate,X ∈ νj , until ∃e :

∑
Z:e∈δ(Z)

yZ = we

6: Refer toe asej and add it intoC
7: end while
8: C ← REVERSE DELETE(C)

Prove that this is a2-approximation algorithm for our problem.

18

Historical Notes

The primal-dual method was proposed by Dantzig, Ford, and Fulkerson [4] to solve linear programs.
This method was motivated by the works of Egerváry [5] and Kuhn [15] on the so-called “Hungarian
algorithm” for the assignment problem (or the minimum cost bipartite perfect matching problem). The
primal-dual method is not effective as a method for solving linear programs in general. Its strength lies in
the fact that it can be used to “transform” a weighted optimization problem into a purely combinatorial
and unweighted optimization problem. Many fundamental combinatorial optimization algorithms are
either a special case of this method or can be understood in terms of it. For more details, consult standard
combinatorial optimization textbooks such as [3,10,16–19].

Bar-Yehuda and Even [2] gave the first truly primal-dual algorithm to approximate theVERTEX

COVER and theSET COVER problem, as presented in algorithm WSC-PRIMAL -DUAL -A. The LP-
algorithms for these problems were due to Hochbaum [12]. The algorithm for theGENERAL COVER

problem is by Hall and Hochbaum [11]. Chapter 3 of [13] is a good survey on covering and packing
problems.

The survey paper by Goemans and Williamson [9] and many chapters in Vazirani [20] discuss the
primal-dual method for approximation in more details.

The book by Ahuja, Magnanti and Orlin [1] contains extensive discussions on network flows, related
problems and applications.

The Max-Flow Min-Cut theorem was obtained independently by Elias, Feinstein, and Shannon [6],
Ford and Fulkerson [8]. The special case with integral capacities was also discovered by Kotzig [14].

References
[1] R. K. AHUJA, T. L. MAGNANTI , AND J. B. ORLIN, Network flows, Prentice Hall Inc., Englewood Cliffs, NJ, 1993.

Theory, algorithms, and applications.

[2] R. BAR-YEHUDA AND S. EVEN, A linear-time approximation algorithm for the weighted vertex cover problem, J. Algo-
rithms, 2 (1981), pp. 198–203.

[3] W. J. COOK, W. H. CUNNINGHAM , W. R. PULLEYBLANK , AND A. SCHRIJVER, Combinatorial optimization, Wiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1998. A Wiley-
Interscience Publication.

[4] G. B. DANTZIG , L. R. FORD, JR., AND D. R. FULKERSON, A primal-dual algorithm for linear programs, in Linear
inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N. J.,
1956, pp. 171–181.

[5] J. EGERVÁRY, Matrixok kombinatorikus tulajdonságairól, Mathematikaíes Fizikai Ĺapok, 38 (1931), pp. 19–28.

[6] P. ELIAS , A. FEINSTEIN, AND C. E. SHANNON, Note on maximal flow through a network, IRE Transactions on Infor-
mation Theory IT-2, (1956), pp. 117–199.

[7] P. ERDŐS AND L. PÓSA, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen, 9 (1962), pp. 3–
12.

[8] L. R. FORD, JR. AND D. R. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956), pp. 399–404.

[9] M. X. GOEMANS AND D. WILLIAMSON , The primal-dual method for approximation algorithms and its application
to network design problems, in Approximation Algorithms for NP-Hard Problems, D. Hochbaum, ed., PWS Publishing
Company, 1997, pp. 144–191.

[10] M. GRÖTSCHEL, L. LOVÁSZ, AND A. SCHRIJVER, Geometric algorithms and combinatorial optimization, vol. 2 of
Algorithms and Combinatorics, Springer-Verlag, Berlin, second ed., 1993.

[11] N. G. HALL AND D. S. HOCHBAUM, A fast approximation algorithm for the multicovering problem, Discrete Appl.
Math., 15 (1986), pp. 35–40.

19

[12] D. S. HOCHBAUM, Approximation algorithms for the set covering and vertex cover problems, SIAM J. Comput., 11
(1982), pp. 555–556.

[13] D. S. HOCHBAUM, ed.,Approximation Algorithms for NP Hard Problems, PWS Publishing Company, Boston, MA,
1997.

[14] A. KOTZIG, Súvislost’ a pravidelińa śuvislost’ koněcných grafov, Bratislava: Vysoḱa Škola Ekonomicḱa, (1956).

[15] H. W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist. Quart., 2 (1955), pp. 83–97.

[16] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial optimization: algorithms and complexity, Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1982.

[17] A. SCHRIJVER, Combinatorial optimization. Polyhedra and efficiency. Vol. A, vol. 24 of Algorithms and Combinatorics,
Springer-Verlag, Berlin, 2003. Paths, flows, matchings, Chapters 1–38.

[18] , Combinatorial optimization. Polyhedra and efficiency. Vol. B, vol. 24 of Algorithms and Combinatorics, Springer-
Verlag, Berlin, 2003. Matroids, trees, stable sets, Chapters 39–69.

[19] , Combinatorial optimization. Polyhedra and efficiency. Vol. C, vol. 24 of Algorithms and Combinatorics, Springer-
Verlag, Berlin, 2003. Disjoint paths, hypergraphs, Chapters 70–83.

[20] V. V. VAZIRANI , Approximation algorithms, Springer-Verlag, Berlin, 2001.

20

