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Approximation algorithms based on LP relaxation

There are two fundamental approximation algorithm design techniques based on linear programming:
(a) LP-relaxation and rounding, and (b) the primal-dual method. In this lecture note, we will discuss the
former.

The idea of LP-relaxation and rounding is quite simple. We first formulate an optimization problem
as aninteger program(IP), which is like a linear program (LP) with integer variables. Then, we solve
the LP for an optimal solution, say*. Fromx*, we construct a feasible solutioa® to the IP. This
construction step is often calledunding Rounding can be done deterministically or randomly with
some probability distribution. In the latter approach is taken, we obtaimtidomized roundinghethod.

Let costx?) and costx*) denote the objective values »f* andx*, respectively. LebpPT(IP) and
OPT(LP) denote the optimal values of the the IP and the LP, respectively. (NoteoH®fi.P) =
cos{x*).) Suppose we are working on a minimization problem, then the performance ratio of this
algorithm can be obtained by observing that

cost{x?)

cosi(x4)
= cos(x*)

cos(x?) < oPT(LP)

X OPT(LP) <

X OPT(IP).
Consequently, any upper bound of the ra%%é((’;—f)) is an approximation ratio for this algorithm. The
ratio is also referred to as thategrality gap

The previous paragraph describes how typically things go. However, it is possible in principle to
prove approximation ratios better than the integrality grap by delving deeper into the structure of the
problem at hand.

1 Linear programs and linear integer programs

A linear integer programis similar to a linear program with an additional requirement that variables
are integers. TheNTEGER PROGRAMMING problem is the problem of determining if a given integer
program has a feasible solution. This problem is known tNiie-hard. Hence, we cannot hope to solve
general integer programs efficiently. However, integer programs can often be used to formulate a lot of
discrete optimization problems.

One of the most well-known NP-hard problems is the followingR7Ex COVER

Given a graph? = (V, E), |V| = n, |E| = m, find a minimum vertex cover, namely a
subsel” C V with size as small as possible such that for each églgeF, eitheri € C or
jeC.

Let us see how we can formulateE¥TEX COVER as an integer program. Suppose we are given a
graphG = (V, E) with n vertices anch edges. Foreache V = {1,...,n}, letz; € {0,1} be a
variable which isl if ¢ belongs to the vertex cover, afdbtherwise; then, the problem is equivalent to
solving the following (linearjnteger program

min r1+z2+ -+,
subjectto z; +z; > 1, Vije E, D)
z; €{0,1}, VieV.
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The objective function basically counts the number of vertices in the vertex cover. Each inequality
x;+x; > 1,ij € Erequires each edge to have at least one of its end points in the vertex cover. Actually,
the formulation above is somewhat too strict. Suppose we relax it a little bit:

min i +xo+---+x),
subjectto z; +z; > 1, Vije€FE,
;> 0,x;,€Z YieV.

Then, this would still be equivalent to solving the vertex cover problem, since in an optimal solution to
the integer program above, none of thhecan be more thaih (why?).
The next problem is a generalized version of trerVEX COVER problem.

WEIGHTED VERTEX COVER
Given a graplG = (V, E), |V| = n, |E| = m, a weight functionv : V' — R. Find a vertex
coverC' C V for which ).~ w(i) is minimized.

Note that whenw = 1, the weighted version is the same as the non-weighted version. An equivalent
linear integer program can be written as

min w11 + waxg + « - + WpTy,
subjectto z; +x; > 1, VijeFE,
x; €{0,1}, VieV.

Note that if the weights were all non-negative, then we only have to require the variables to be non-
negative integers, just like in the case of normal vertex cover. An integer program (IP) as above is also
referred to as &1-integer program.

The next two problems are more general versions of tarex COVER and the WEIGHTED VER-
TEX COVER problems. Recall that we us$e] to denote the sdftl, ..., n}, for all positive integen, and
[0] naturally denote§.

SET COVER

Given a collectiors = {Sj,...,S,} of subsets ofm| = {1, ..., m}. Find a sub-collection

C ={S; | i € J} with as few members as possible (i|d] as small as possible) such that

Uies Si = [m].
Similar to VERTEX COVER, we use d1-variablez; to indicate the inclusion of; in the cover. For each
i€ {1,...,m}, we need at least one of tt$ containing: to be picked. The integer program is then

min 1+ +tx,
subjectto > a;>1, Vi€ [m],
j:S;52i

zj € {0,1}, Vj € [n].

WEIGHTED SET COVER
Given acollectior§ = {S1,..., S, } of subsets ofm] = {1, ..., m}, and a weight function
w:S — R. Find acoveC = {S; | j € J} with minimum total weight.

Trivially, we have

min W11 + -+ WpTn
subjectto > a; >1, Vi€ [m],
j:S]'Bi

zj € {0,1}, Vj € [n].

TRAVELING SALESMAN (TSP)



A salesman must visit cities each exactly once and return to the originating city. Given the
time to go from cityi to city j is t;;, find a tour which takes the shortest time.

This problem is slightly more difficult to formulate then the ones we have seew, L le¢ the01 variable
indicating if the salesman does go from cityo city j. Obviously, we want the salesman to go irto
exactly once and to go out gfexactly once for each city, j. This condition alone, however, does

not ensure connectivity as we might form a few disjoint cycles. We also need constraints to ensure the
connectivity of our tour. This could be done by checking for each non-empty sein| if there was at

least one edge leaving In summary, we have the following equivalent linear integer program:

min > iz tijij
subjectto Y. =1, Vi€ n,
Dy Tij = 1, vj € [n),
ZieS,j%Sxij >1, VS C [n],S #@
Tij € {O, 1}, Vi,j € [’I’L],’L 7& J-

Exercise 1(ASSIGNMENTPROBLEM). Formulate the following problem as an IP problem:

There aren processors and tasks. Each processor might be more suitable to perform a
particular kind of task. Hence, there is a cas}f associated if processomwas to do task.
Find a one-to-one assignment of processors to tasks which minimizes the total cost.

Exercise 2(KNAPSACK). Formulate the following problem as an IP problem:

Givenn items with values, ..., v,, and weightsw;, ..., w,, correspondingly. Find a
subsetS of items with total weight at most a givai, such that the total value ¢f is as
large as possible.

Exercise 3(INDEPENDENTSET). Formulate the following problem as an IP problem:

Given a graphG = (V, E), a weight functionw : V' — R, find an independent set of
maximum total weight; namely, a subgetC V of vertices such that no pair of vertices in
P are adjacent and the sum, . » w(7) is maximized.

Exercise 4. Given anm x n matrix A whose entries are eithéror 1, andw € Z", ¢ > 0. As usual, we
use0 to denote the all} vector, whose dimension is implicit in the (in)equality involved, arid denote
the all-1 vector. The (weighted) 8r CoVER problem has the form

min {me | Az > 1,z € {0, 1}”} , 2
while the INDEPENDENTSET problem in the previous exercise has the form
max{wa | Az < 1,z € {0, 1}"}, (3)

(That is, if you do it correctly.)
In this problem, we shall see that the converse is also true:

(i) Given an integer program of the form (2), whetds any 01-matrix, formulate a (weighted)es
CoveR instance which is equivalent to the program.

(i) Given an integer program of the form (3), wheddas any 01-matrix, formulate anNDEPENDENT
SET instance which is equivalent to the program.



In both questions, show the “equivalence.” For example(ijnyou must show that the minimum
weighted set cover of the constructed set family corresponds to an optimal solution of the integer program
and vice versa.

Exercise 5(BIN PACKING). Formulate the following problem as an IP problem:

Given a set ofr items{1, ..., n}, and their “size”s(i) € (0, 1]. Find a way to partition the
set of items in to a minimum numbet of “bins” By, ..., B,,, such that

> s(i) <1, Ve ml].

Z‘GBJ'

2 Relaxation and rounding

In generalyelaxationrefers to the action of relaxing the integer requirement of a linear IP to turn it into
an LP. For example, the LP corresponding to the IP (1) BRVEX COVER is

min T1+ X9+ -+ Xy
subjectto x; +x; > 1, Vij € FE, 4
0<x; <1, VieV.

Obviously if the LP version is infeasible, then the IP version is also infeasible. This is the first good
reason to do relaxation. Now, suppases an optimal solution to the LP problem. We know thétcan
be found in polynomial time. We shall construct a feasible solutitrio the IP problem as follows. Let

a_ J1 ifap>1/2
‘ 0 ifxf <1/2.

You should check that* is definitely feasible for the IP. This technique of constructing a feasible
solution for the IP from the LP is calledunding We have just seen the second advantage of doing
relaxation. The third is that an optimal value for the LP provides a lower bound for the optimal value
of the IP (why?). Using this fact, one can derive the approximation ratio of the feasible salttion
Let opT(IP) be the optimal value for the IP instancepT(LP) be the optimal value for the LP, and
Cost(x*) be the cost of the feasible solutiert for the IP, then we have

OPT(IP) > OPT(LP)

= a1+ 4
L A L 4
> gai et g
1
= §C’ost(x‘4).

In other words, the cost of the approximatiort is at most twice the optimal. We thus have2a
approximation algorithm to solve theB®TEX COVER problem. Since it is impossible, unless=PNP,

to have an exact polynomial time algorithm to solverRf Ex COVER, an algorithm giving a feasible so-
lution within twice the optimal is quite satisfactory. The exact same technique works forgherWeD
VERTEX COVER problem, when the weights are non-negative. Thus, we also haaparoximation
algorithm for the WEIGHTED VERTEX COVER problem. (Note, again, that when we say “approximation
algorithm,” it automatically means a polynomial-time approximation algorithm. There would be no point
approximating a solution if it takes exponentially long.)



Theorem 2.1. There is an approximation algorithm to solve tAé&EIGHTED VERTEX COVER problem
with approximation ratic.

Obviously, one would like to reduce the rafido be as close td as possible. However, no approxi-
mation algorithm with a constant ratio less tteais known to date. It is possible thais the best we can
hope for. It has been shown that approximating/@HTED VERTEX COVER to within 10v/5 — 21 [4].

To this end, let us attempt to use the relaxation and rounding idea to find approximation algorithms
for the WEIGHTED SET COVER problem. In fact, we shall deal with the following much more general
problem called the ENERAL COVER problem:

min cixr + ... 4+ cpTp
subject to a;1z1 + ... + aprn, > b, i€ [m} (5)
xj € {07 l}a vj e [’I’L]’

wherea;;, b;, c; are all non-negative integers. Since we can remove an inequalify= 0, we can
assume thab; > 0,V: € [n]. Moreover, ifc; = 0 then we can set; = 1 and remove the column
corresponding tg without effecting the objective function as well as feasible solutions. Thus, we can
also assume that > 0,V; € [n]. Lastly, we assume that a feasible solution exists, na@lwij > b;,
forall i € [m].

The relaxed LP version for (5) is

min cixy + ... 4+ cpxy
SUbjeCt to ajpzr + ... + appxTn > by, 1€ [m} (6)
0<z; <1, VjE[TL],

Let x* be an optimal solution to the LP version. How would we rowrido getx4 as in the \ERTEX
COVER case? Firstly, the rounding must ensure thdtis feasible, namely they must satisfy each of
the inequalitiesy;1z1 + - - - + aipxn > b;. Secondly, we do not want to “over-round,” such as assigning
everything tol, which would give a feasible solution but it does not give a very good approximation.
Consider an inequality such as

3] + das + x5 + 2z > 4, (7)

which z* satisfies. If we were to round some of th¢ up to 1, and the rest down t0, we must
pick the ones whose coefficients sum updtor more; for instance, we could round up to 1 and

the rest to0, or z7 andzj; to 1 and the rest td). The difficulty with this idea is that there might
be an exponential number of ways to do this, and we also have to do this consistently throughout all
inequalitiesa; 1 + - - - + aimx, > b;. We cannot round] to 0 in one inequality, and ta in another
inequality. Fortunately, some information about whichto round is contained in the actual values of
thez?. Consider inequality (7) again. The sum of all coefficients ofithés 10. If all 2 were at most
1/10, then the left hand side is at mokt Hence, there must be sorm? which are at least/10. If
x> 1/10, and we round it up td, then we'd be fine. However, if; andz are the only ones which
are> 1/10, then rounding them up tb is not sufficient. Fortunately, that cannot happen, because if
xy, x5 < 1/10 andzi, = > 1/10, then

3 4
T4 4z P2 < —+ —+14+2< 4.
31’1+ $2+$3+ $4< 10"‘ 10"‘ +2<

Thus,the sum of the coefficients of th? which are at least /(a;; + - - - + a;,,) has to be at least;.
This is an informal proof. We will give a rigorous proff later.
The analysis above leads to the following rounding strategy. Let

n
f = max E ai; | ,
i=1..m -
J=1
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and set
A
S =

then we have an approximation ratio pf You should map this rounding back to the rounding of the
VERTEX COVER problem to see the analogy.

Theorem 2.2. The rounding strategy above gives an approximation algorithm foGtheERAL COVER
problem with approximation ratio at mogt

Proof. We first show that:# is indeed feasible for IP-GC (the integer program for tteNGRAL COVER
problem). Suppose” is not feasible, then there is some rovor which

A A
a1 xy + -+ ainT, < b;.

Z aijgbi—l.

>/t

This is the same as

If Z aij > 0, then

j:ac;f<1/f

n
Zaij;: Z aijT; + Z aijr; < Z a;; +1 < by,
j=1

jar>1/f jt<1/f ja>1/f

which is a contradiction. On the other hand, wheE a;; = 0, we get

Juy<1/f
n
* * *
E ajjT; = E aijT; + E aijx; = E a;; < b —1,
Jj=1 Juai>1/f Juai<1/f Juai>1/f

which again is a contradiction to the feasibility of.
For the performance ratio, notice that

cos(z?) = Zn: cj:L';-4 < icj(fx;) = f oPT(LP-GC) < f oPT(IP-GC)
j=1 j=1

O]

Exercise 6. Describe the ratigf for the WEIGHTED SET COVER problem in terms ofn, n and the set
collectionS.

Exercise 7. Suppose we apply the rounding strategy above to tieANTED SET COVER problem.
However, instead of rounding the > 1/f up to1, we round all positiver up to1. Show that we still
have anf-approximation algorithm.Hint : consider the primal complementary slackness condition.)

3 Randomized Rounding

Randomized rounding refers to the strategy of rounding fractional variables randomly according to some
probability distribution. We want the result to be an expectedly good solution (with some performance
ratio) with high probability (say> 1/2). We can run the algorithm independently many times to increase
this probability to be as large as we want.



3.1 WEIGHTED SET CoVER (WSC)

In the WSC problem, we are given a collectiSn= {51, ..., S,} of subsets ofm| = {1,...,m},
whereS; is of weightw; € Z*. The objective is to find a sub-collectigh= {S; | i € J} with least
total weight such thdtJ. . ; S; = [m]. The corresponding integer program is

ieJ
min WL + -+ WaTy
subjectto »  a;>1, Vi€ [m],
25531

zj € {0,1}, Vj e [n].

And, relaxation gives the following linear program:

min wW1T1 + - + WpZy
subjectto > a; >1, Vi€ [m],
j:S;21

0<z; <1 Vje]ln].

Suppose we have an optimal solutishof the LP. To obtainx”, a sensible rounding strategy is to round
7 to 1 with probabilityz7, namely

Prot[xf =1] = 7j.
It follows that .

E[cos(x™)] = wja} = oPT(LP).
j=1
What we really want is to find the probability that' is feasible and cog*) < p - OPT. If this

probability at least some positive constant, theis an approximation ratio of this algorithm. (If the
probability is small, we can run the algorithm independently a few times.) We can estimate the desired
probability as follows.

Prol x* is feasible and cogt?) < p-op1] = 1 — Prob x“ is not feasible and cost?) > p - opT]
> 1 — Prox* is not feasible— Probcos(x*) > p - opT].

Let us first estimate the probability that! is not feasible. Consider any element [m], and
suppose the inequality constraint correspondingiso

i+, > 1
We will refer to this as théth constraint. Then, the probability that this constraint is not satisfied'by
is
k—(x% 4+t )\" NN 1
* * J1 J
(l—le)...(l—xjk)<< - k) <<1_k> §;.

Thus, Profx4 is not feasiblg < m/e. This is a very bad bound sinee is large. We can get a better
bound by setting:;-4 to be0 with lower probability. Lett be a number to be determined, andas;ét: 0
probability (1 — a:j)t. (This is equivalent to running the previous strategy independémtdynds, and
setz?! = 0 only whenz#* = 0 in all rounds.) In this case,

Probx“ does not satisfy constraiiit< (1/e)’.

Thus, the probability that is not a feasible solution is at masi(1/¢)t. Whent is large,m(1/e)t gets
as small as we want.



Secondly, we estimate the probability that ¢ast) > p - OPT. In one round, we have shown that
E[cos(x?)] = oPT(IP) < oPT. Hence, witht rounds we have [Eos(x*)] < t- opPT. Markov
inequality gives

Elcostx?)] _t-opT ¢

Probcostx”?) > p- oPT] < < —_——
q (X) p ] p-OPT = p-OPT p

Remark 3.1. Let X be a random variable iR*, anda be a positive number, Markov inequality says
that ProlpX > a] < #

Consequently,
Probix" is feasible and cogt) < p- OPT(IP)] > 1 — m(1/e)! — ;.

We can pickt = 0(lgm) andp = 4t so thatl — m(1/e)t — % > 1. In other words, this algorithm

gives a solution with approximation rati®(lgm) with probability at leasti/2. We can then run the
algorithm a few times until the solution is feasible. The expected number of r@naisl the expected
approximation ratio i®©(lg m).

Exercise 8. Suppose we run the above randomized rounding algorithm with only one round (instead of
t rounds). Prove that, with positive probability the resultiiysatisfies at least half of the constraints at
cost at mosO(oPT(IP)).

Exercise 9. Give a randomized rounding algorithm for th&@ERAL COVER problem with approxima-
tion ratioO(lgm).

Exercise 10.Given a graph& and and propek-coloring of G (i.e. a coloring using: colors such that
two adjacent vertices have different colors). We want to solve tiEeGNTED VERTEX COVER ONG.
Devise a polynomial timé2 — 2/k)-approximation algorithm to solve this problem.

3.2 A simple randomized algorithm for MAX -3SAT

A conjunctive normal forn{CNF) formula is a boolean formula om variablesX = {z1,...,z,}
consisting ofn clauses’1, . .., C,,. Each clause is a subsetlivérals, which are variables and negations
of variables. A clause can be viewed as the sum (optReof the literals. A clause is satisfied by a truth
assignment : X — {TRUE, FALSE} if one of the literals in the clause TRUE.

Consider integerg > 2. A k-CNF formulais a CNF formula in which each clause is of size at most
k. An Ek-CNF formulais a CNF formula in which each clause is of size exaktly

Given a CNF formula, the Max -SAT problem is to find a truth assignment satisfying the maximum
number of clauses ip. If ¢ is of the form X-CNF, for Xe {k, Ek}, then we get the corresponding
MAX-XSAT problems.

Exercise 11.Show that the problem of deciding iPaCNF formula is satisfiable is in P, but Ak -2SAT
is NP-Hard (i.e. its decision versionI§P-complete).

Exercise 12. State the decision version of Mk -E3SAT and show that it iNP-complete.
Theorem 3.2. There exists aB/7-approximation algorithm foMAX -E3SAT.

Proof. Lety be an B-CNF formula withm clause<’, . . ., Cy,. LetS,, be the random variable counting
the number of satisfied clausesg@by randomly setting:; independently to b&rRUE with probability
1/2. Since the probability that a clauég is satisfied is7/8, by linearity of expectation 5] = 7m/8.
This number clearly is within a fact@/8 of the optimal value. Hence, this simple randomized algorithm



achieves (expected) approximation ratjy. We can derandomize this algorithm by a method known as
conditional expectationThe basic idea is as follows.

Consider a fixed € [n]. Letay,...,ar € {TRUE, FALSE} bek boolean values. Let’ be a formula
obtained by setting; = a;, i < j, and discarding alt clauses that are already satisfied. Then, it is easy
to see that

E[Sy | z; =a;,1 <i < k] =E[Sy] +c.

Hence, giveruy, ..., a; we can easily compute[E, | z; = a;,1 < i < k| in polynomial time.
Now, for k£ > 1, notice that

E[S¢‘$Z:al,1glgk‘—1]

1 1
= iE[S¢|xi:ai,1§i§k¢fl, :Ek:TRUE]JrgE[Sw]zi:ai,lgigkfl, Xy, = FALSE]

The larger of the two expectations on the right hand side is at l¢&st|&; = a;, 1 < ¢ < k—1]. Hence,
we can setr; to beTRUE or FALSE one by one, following the path that leads to the larger expectation, to
eventually get a truth assignment which satisfies as many claus¢S ds-E7m /8. O

3.3 Randomized rounding andMAX -SAT
3.3.1 The straightforward randomized algorithm

Consider the VEIGHTED MAX-SAT problem in which a formul& consists ofm clause<, ..., C,,
weightedws, ..., w, € Z*. Letz,...,z, be the variables antj denote the length of clausg;.
Suppose we follow the previous section and set each variable t®rbe with probability 1/2, and
derandomized this algorithm, then what is the approximation ratio?
Let I; denote the random variable indicating the evigtij is satisfied, i.e.

7 1 if Cj is satisfied

7710 otherwise.
Let S, be the cost (weight) of a random assignment ard(¢) be the cost of an optimal assignment,
thenS, = w;1;. We have

ElS] = 3wy Protlly = 1] = w1 - (1/2)%) 2 ;lej > JoPT(6).

In other words, with derandomization using the method of conditional expectation, we can get a (deter-
ministic) approximation algorithm for kx -SAT with approximation rati@.

Exercise 13. Consider the following algorithm for Mx-SAT: let  be any truth assignment antibe
its complement, i.e7’(z;) is the negation of (x;). Compute the cost of bothandr’, then output the
better assignment. Show that this i8-approximation algorithm.

Exercise 14.Let Fo = {0,1}. Arithmetics overF; is done modul®. Consider a system of: lin-

ear equations on variables oveif,. The LINEAR EQUATIONS OVERF, problem is the problem of

finding an assignment to variables that satisfies as many equations as possible. Give a randomized algo-
rithm for this problem with approximation ratizy then derandomize it using the method of conditional
expectation.



3.3.2 Arandomized algorithm with a biased coin

The approximation rati@ as done above is not nearly as goo&As we had for Max-3SAT. Perhaps
this is due to the fact that Mx-SAT is not as symmetrical as Ak-3SAT. Thus, our “rounding proba-
bility” should not bel /2. This observation suggest us to set each variabt&teE with some probability
¢ to be determined. Due to symmetry (of a variable and its negation), we only need to cgnsid¢p
(thusqg > 1 — q).

Letn; andp; be the number of negated variables and non-negated variables in €lauben

E[So) =) w;(1—¢q" (1 —q)").

j=1
To get a good approximation ratio, we want all fffe(1 — ¢)?s to be as small as possible. This product
is large for small clauses, especially the clauses with only one single literal. Let us consider them first.

e If singleton clauses contain no negations of variables, then it is easy to se@iflat- ¢)’7 <
max{1 — ¢, ¢*}, for all j. To minimize themax, we pickq such thatl — ¢ = ¢?, i.e. ¢ ~ 0.618.
In this case, we have

1
E[Ss] > ;OPT(QS)-
(Note that this is slightly better than the rafig

o If there is noi such that botlr; andz; are clauses, then by swapping labels of samendz;, we
can obtain the same bound.

e The situation comes down to the case when thererauch that bothr; and z; are clauses.
Firstly, note that two clauses of the forfa:;} (or of the form{z;}) can be combined into one
(whose weight is the total weight). Consequently, we can assume tfedz;) does not appear
in two singleton clauses. Secondlygif andz; are both clauses, we can assume that the weight of
thex;-clause is at least the weight of the-clause, otherwise we swap andz;. Thirdly, assume
the rest of the singleton clauses contain only hon-negated variables. Define

N ={j|C; ={z;}, for somei}.

Then,

oPT(¢ i Z w;.

JEN
And,

ijl—q (I—g)P)+ ijl—q >quj—quj>q OPT(¢).

JEN JEN JEN

3.3.3 Arandomized algorithm with different biased coins based on linear programming

The above randomized algorithms do not deal well with small-size clauses. In this section, we borrow
the idea from the randomized-algorithm foESCOVER, using linear programming to determine the
rounding probability of each variable.
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An integer program for Mx-SAT can be obtained by considering the followibityvariables: (a)
y; = 1iff x; = TRUE; and (b)z; = 1iff C} is satisfied. We then have the following integer program

max w121 + 0+ Wi 2n
subject to Z Yi + Z (1 —wi) > 2, Vj € [m],
i:xiEC’j ’i:iiECj

yi,zj € {0,1}, Vie[n],j e [m]

and its relaxed version

ax W21 + 0+ Wp2p
subjectto Z i + Z —y) >z, Vj€[ml],
i:x; €0y 1:2,€C

0<y; <1 \V/’L'G[TL},
0<z <1 Vjeml.

Mimicking the rounding strategy fore" COVER, we obtain an optimal solutiofy*,

program, and rounga; = TRUE with probabilityy;. Then,

E[Ss) = Y wi|1—= ] =) ] v

7j=1 i:.Z’iEC']' i'j}iGC'

m _Z 1_3/1 Z yz

1 i:x; €05 :2;€C;
g wj —

— l

J=1

Y

= > u+ Y. -
m i:x; €05 :Z;€C;
= ij 1-— I
=1 !
m 7 l;
> > wi(1- [1 - l]]
=1 !
m lJ
> ij (1— [1—” )Z*
j=1 !
. 119 o= .
> mjln 1-— l—lj} Zwyz]
7j=1
1
> (1 - ) OPT(¢).
€
(We have used the fact that the functipfx) = (1 — (1 — 2/1;)"

above the segment through the end points.) We have just proved

z*) for the linear

i is concave when € [0, 1], thus it lies

Theorem 3.3. The LP-based randomized rounding algorithm above has approximationerégio— 1).

Note thate/(e — 1) ~ 1.58, while 1/q ~ 1/0.618 = 1.62. Thus, this new algorithm is slightly better

than the one with a biased coin.
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Exercise 15. Describe how to use the method of conditional expectation to derandomize the algorithm
above.

Exercise 16. Let g(y) be any function such that — 4=v < g(y) < 4Y~!,vy € [0,1]. Suppose we
set eachr; = TRUE with probability g(y;), where(y*, z*) is an optimal solution to the linear program.
Show that this strategy givesig3-approximation algorithm for Mx-SAT.

3.3.4 The "best-of-two” algorithm

Note that the rounding algorithm in the previous section works fairly well if clauses are of small sizes.
For instance, it; < 2 for all j, then the approximation ratio would have begil — (1 —1/2)%) = 4/3.

On the other hand, the straightforward randomized algorithm works better when clauses are large. It just
makes sense to now combine the two: run both algorithms and report the better assignmﬁbarm;t

5¢2> (which are random variables) denote the corresponding costs. Then, it is easy to see the following

Y

E[max{S}, S3}] El(S§+53)/2]

i O AU P 119) .
N N I N ST PR R
AT 2l ) "2 L)
7=1

3m
> 12w

j=1

3
> Z0F>T(¢>).

v

Thus, the BEST-OF-TWO algorithm has performance ratig3.

Historical Notes

Texts on Linear Programming are numerous, of which | recommend [3] and [15]. For Integer Program-
ming, [18] and [15] are suggested. Recent books on approximation algorithms include [2,8,13,17]. For
linear algebra, see [9, 16]. See [1, 14] for randomized algorithms, derandomization and the probabilistic
methods.

The 8/7-approximation algorithm for Mx-E3SAT follows the line of Yannakakis [19], who gave
the first4/3-approximation for Mix-SAT. A 2-approximation for M\x-SAT was given in the seminal
early work of Johnson [10]. Johnson’s algorithm can also be interpreted as a derandomized algorithm,
mostly the same as the one we presented. The LP-based randomized algorithm and the best-of-two
algorithm for Max-SAT are due to Goemans and Williamson [6]. The algorithm with a biased coin is
due to Lieberherr and Specker [12].

Later, Karloff and Zwick [11] gave am®/7-approximation algorithm for Mx-3SAT based on
semidefinite programming. This approximation ratio is optimal as shownastad [7]. The condi-
tional expectation method was implicit in Ersland Selfridge [5].
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