
CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Spring 2005 Last update: March 10, 2005

Approximation algorithms based on LP relaxation

There are two fundamental approximation algorithm design techniques based on linear programming:
(a) LP-relaxation and rounding, and (b) the primal-dual method. In this lecture note, we will discuss the
former.

The idea of LP-relaxation and rounding is quite simple. We first formulate an optimization problem
as aninteger program(IP), which is like a linear program (LP) with integer variables. Then, we solve
the LP for an optimal solution, sayx∗. Fromx∗, we construct a feasible solutionxA to the IP. This
construction step is often calledrounding. Rounding can be done deterministically or randomly with
some probability distribution. In the latter approach is taken, we obtain therandomized roundingmethod.

Let cost(xA) and cost(x∗) denote the objective values ofxA andx∗, respectively. LetOPT(IP) and
OPT(LP) denote the optimal values of the the IP and the LP, respectively. (Note thatOPT(LP) =
cost(x∗).) Suppose we are working on a minimization problem, then the performance ratio of this
algorithm can be obtained by observing that

cost(xA) ≤ cost(xA)
OPT(LP)

× OPT(LP) ≤ cost(xA)
cost(x∗)

× OPT(IP).

Consequently, any upper bound of the ratiocost(xA)
cost(x∗) is an approximation ratio for this algorithm. The

ratio is also referred to as theintegrality gap.
The previous paragraph describes how typically things go. However, it is possible in principle to

prove approximation ratios better than the integrality grap by delving deeper into the structure of the
problem at hand.

1 Linear programs and linear integer programs

A linear integer programis similar to a linear program with an additional requirement that variables
are integers. The INTEGER PROGRAMMING problem is the problem of determining if a given integer
program has a feasible solution. This problem is known to beNP-hard. Hence, we cannot hope to solve
general integer programs efficiently. However, integer programs can often be used to formulate a lot of
discrete optimization problems.

One of the most well-known NP-hard problems is the following: VERTEX COVER

Given a graphG = (V,E), |V | = n, |E| = m, find a minimum vertex cover, namely a
subsetC ⊆ V with size as small as possible such that for each edgeij ∈ E, eitheri ∈ C or
j ∈ C.

Let us see how we can formulate VERTEX COVER as an integer program. Suppose we are given a
graphG = (V,E) with n vertices andn edges. For eachi ∈ V = {1, . . . , n}, let xi ∈ {0, 1} be a
variable which is1 if i belongs to the vertex cover, and0 otherwise; then, the problem is equivalent to
solving the following (linear)integer program:

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.

(1)

1

The objective function basically counts the number of vertices in the vertex cover. Each inequality
xi +xj ≥ 1, ij ∈ E requires each edge to have at least one of its end points in the vertex cover. Actually,
the formulation above is somewhat too strict. Suppose we relax it a little bit:

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ≥ 0, xi ∈ Z ∀i ∈ V.

Then, this would still be equivalent to solving the vertex cover problem, since in an optimal solution to
the integer program above, none of thexi can be more than1 (why?).

The next problem is a generalized version of the VERTEX COVER problem.

WEIGHTED VERTEX COVER

Given a graphG = (V,E), |V | = n, |E| = m, a weight functionw : V → R. Find a vertex
coverC ⊆ V for which

∑
i∈C w(i) is minimized.

Note that whenw ≡ 1, the weighted version is the same as the non-weighted version. An equivalent
linear integer program can be written as

min w1x1 + w2x2 + · · ·+ wnxn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.

Note that if the weights were all non-negative, then we only have to require the variables to be non-
negative integers, just like in the case of normal vertex cover. An integer program (IP) as above is also
referred to as a01-integer program.

The next two problems are more general versions of the VERTEX COVER and the WEIGHTED VER-
TEX COVER problems. Recall that we use[n] to denote the set{1, . . . , n}, for all positive integern, and
[0] naturally denotes∅.

SET COVER

Given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m}. Find a sub-collection
C = {Si | i ∈ J} with as few members as possible (i.e.|J | as small as possible) such that⋃

i∈J Si = [m].

Similar to VERTEX COVER, we use a01-variablexj to indicate the inclusion ofSj in the cover. For each
i ∈ {1, . . . ,m}, we need at least one of theSj containingi to be picked. The integer program is then

min x1 + · · ·+ xn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

WEIGHTED SET COVER

Given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m}, and a weight function
w : S → R. Find a coverC = {Sj | j ∈ J} with minimum total weight.

Trivially, we have
min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

TRAVELING SALESMAN (TSP)

2

A salesman must visitn cities each exactly once and return to the originating city. Given the
time to go from cityi to city j is tij , find a tour which takes the shortest time.

This problem is slightly more difficult to formulate then the ones we have seen. Letxij be the01 variable
indicating if the salesman does go from cityi to city j. Obviously, we want the salesman to go intoi
exactly once and to go out ofj exactly once for each cityi, j. This condition alone, however, does
not ensure connectivity as we might form a few disjoint cycles. We also need constraints to ensure the
connectivity of our tour. This could be done by checking for each non-empty setS ⊂ [n] if there was at
least one edge leavingS. In summary, we have the following equivalent linear integer program:

min
∑

i6=j tijxij

subject to
∑

j:j 6=i xij = 1, ∀i ∈ [n],∑
i:i6=j xij = 1, ∀j ∈ [n],∑
i∈S,j /∈S xij ≥ 1, ∀S ⊂ [n], S 6= ∅

xij ∈ {0, 1}, ∀i, j ∈ [n], i 6= j.

Exercise 1(ASSIGNMENTPROBLEM). Formulate the following problem as an IP problem:

There aren processors andn tasks. Each processor might be more suitable to perform a
particular kind of task. Hence, there is a costwij associated if processori was to do taskj.
Find a one-to-one assignment of processors to tasks which minimizes the total cost.

Exercise 2(KNAPSACK). Formulate the following problem as an IP problem:

Given n items with valuesv1, . . . , vn, and weightsw1, . . . , wn, correspondingly. Find a
subsetS of items with total weight at most a givenW , such that the total value ofS is as
large as possible.

Exercise 3(INDEPENDENTSET). Formulate the following problem as an IP problem:

Given a graphG = (V,E), a weight functionw : V → R+, find an independent set of
maximum total weight; namely, a subsetP ⊆ V of vertices such that no pair of vertices in
P are adjacent and the sum

∑
i∈P w(i) is maximized.

Exercise 4. Given anm× n matrixA whose entries are either0 or 1, andw ∈ Zn, c ≥ ~0. As usual, we
use~0 to denote the all-0 vector, whose dimension is implicit in the (in)equality involved, and~1 to denote
the all-1 vector. The (weighted) SET COVER problem has the form

min
{

wT x | Ax ≥ ~1, x ∈ {0, 1}n
}

, (2)

while the INDEPENDENTSET problem in the previous exercise has the form

max
{

wT x | Ax ≤ ~1, x ∈ {0, 1}n
}

, (3)

(That is, if you do it correctly.)
In this problem, we shall see that the converse is also true:

(i) Given an integer program of the form (2), whereA is any 01-matrix, formulate a (weighted) SET

COVER instance which is equivalent to the program.

(ii) Given an integer program of the form (3), whereA is any 01-matrix, formulate an INDEPENDENT

SET instance which is equivalent to the program.

3

In both questions, show the “equivalence.” For example, in(i) you must show that the minimum
weighted set cover of the constructed set family corresponds to an optimal solution of the integer program
and vice versa.

Exercise 5(BIN PACKING). Formulate the following problem as an IP problem:

Given a set ofn items{1, . . . , n}, and their “size”s(i) ∈ (0, 1]. Find a way to partition the
set of items in to a minimum numberm of “bins” B1, . . . , Bm, such that∑

i∈Bj

s(i) ≤ 1, ∀j ∈ [m].

2 Relaxation and rounding

In general,relaxationrefers to the action of relaxing the integer requirement of a linear IP to turn it into
an LP. For example, the LP corresponding to the IP (1) of VERTEX COVER is

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
0 ≤ xi ≤ 1, ∀i ∈ V.

(4)

Obviously if the LP version is infeasible, then the IP version is also infeasible. This is the first good
reason to do relaxation. Now, supposex∗ is an optimal solution to the LP problem. We know thatx∗ can
be found in polynomial time. We shall construct a feasible solutionxA to the IP problem as follows. Let

xA
i =

{
1 if x∗i ≥ 1/2
0 if x∗i < 1/2.

You should check thatxA is definitely feasible for the IP. This technique of constructing a feasible
solution for the IP from the LP is calledrounding. We have just seen the second advantage of doing
relaxation. The third is that an optimal value for the LP provides a lower bound for the optimal value
of the IP (why?). Using this fact, one can derive the approximation ratio of the feasible solutionxA.
Let OPT(IP) be the optimal value for the IP instance,OPT(LP) be the optimal value for the LP, and
Cost(xA) be the cost of the feasible solutionxA for the IP, then we have

OPT(IP) ≥ OPT(LP)
= x∗1 + · · ·+ x∗n

≥ 1
2
xA

1 + · · ·+ 1
2
xA

n

=
1
2
Cost(xA).

In other words, the cost of the approximationxA is at most twice the optimal. We thus have a2-
approximation algorithm to solve the VERTEX COVER problem. Since it is impossible, unless P= NP,
to have an exact polynomial time algorithm to solve VERTEX COVER, an algorithm giving a feasible so-
lution within twice the optimal is quite satisfactory. The exact same technique works for the WEIGHTED

VERTEX COVER problem, when the weights are non-negative. Thus, we also have a2-approximation
algorithm for the WEIGHTED VERTEX COVER problem. (Note, again, that when we say “approximation
algorithm,” it automatically means a polynomial-time approximation algorithm. There would be no point
approximating a solution if it takes exponentially long.)

4

Theorem 2.1. There is an approximation algorithm to solve theWEIGHTED VERTEX COVER problem
with approximation ratio2.

Obviously, one would like to reduce the ratio2 to be as close to1 as possible. However, no approxi-
mation algorithm with a constant ratio less than2 is known to date. It is possible that2 is the best we can
hope for. It has been shown that approximating WEIGHTED VERTEX COVER to within 10

√
5− 21 [4].

To this end, let us attempt to use the relaxation and rounding idea to find approximation algorithms
for the WEIGHTED SET COVER problem. In fact, we shall deal with the following much more general
problem called the GENERAL COVER problem:

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, i ∈ [m].
xj ∈ {0, 1}, ∀j ∈ [n],

(5)

whereaij , bi, cj are all non-negative integers. Since we can remove an inequality ifbi = 0, we can
assume thatbi > 0,∀i ∈ [n]. Moreover, ifcj = 0 then we can setxj = 1 and remove the column
corresponding toj without effecting the objective function as well as feasible solutions. Thus, we can
also assume thatcj > 0,∀j ∈ [n]. Lastly, we assume that a feasible solution exists, namely

∑
j aij ≥ bi,

for all i ∈ [m].
The relaxed LP version for (5) is

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, i ∈ [m].
0 ≤ xj ≤ 1, ∀j ∈ [n],

(6)

Let x∗ be an optimal solution to the LP version. How would we roundx∗ to getxA as in the VERTEX

COVER case? Firstly, the rounding must ensure thatxA is feasible, namely they must satisfy each of
the inequalitiesai1x1 + · · ·+ ainxn ≥ bi. Secondly, we do not want to “over-round,” such as assigning
everything to1, which would give a feasible solution but it does not give a very good approximation.
Consider an inequality such as

3x∗1 + 4x∗2 + x∗3 + 2x∗4 ≥ 4, (7)

which x∗ satisfies. If we were to round some of thex∗i up to 1, and the rest down to0, we must
pick the ones whose coefficients sum up to4 or more; for instance, we could roundx∗2 up to 1 and
the rest to0, or x∗1 and x∗3 to 1 and the rest to0. The difficulty with this idea is that there might
be an exponential number of ways to do this, and we also have to do this consistently throughout all
inequalitiesai1x1 + · · · + ainxn ≥ bi. We cannot roundx∗1 to 0 in one inequality, and to1 in another
inequality. Fortunately, some information about whichx∗j to round is contained in the actual values of
thex∗j . Consider inequality (7) again. The sum of all coefficients of thex∗j is 10. If all x∗j were at most
1/10, then the left hand side is at most1. Hence, there must be somex∗j which are at least1/10. If
x∗2 ≥ 1/10, and we round it up to1, then we’d be fine. However, ifx∗3 andx∗4 are the only ones which
are≥ 1/10, then rounding them up to1 is not sufficient. Fortunately, that cannot happen, because if
x∗1, x

∗
2 < 1/10 andx∗3, x

∗
4 ≥ 1/10, then

3x∗1 + 4x∗2 + x∗3 + 2x∗4 <
3
10

+
4
10

+ 1 + 2 < 4.

Thus,the sum of the coefficients of thex∗j which are at least1/(ai1 + · · · + ain) has to be at leastbi.
This is an informal proof. We will give a rigorous proff later.

The analysis above leads to the following rounding strategy. Let

f = max
i=1..m

 n∑
j=1

aij

 ,

5

and set

xA
j =

{
1 if x∗j ≥ 1

f

0 if x∗j < 1
f ,

then we have an approximation ratio off . You should map this rounding back to the rounding of the
VERTEX COVER problem to see the analogy.

Theorem 2.2.The rounding strategy above gives an approximation algorithm for theGENERAL COVER

problem with approximation ratio at mostf .

Proof. We first show thatxA is indeed feasible for IP-GC (the integer program for the GENERAL COVER

problem). SupposexA is not feasible, then there is some rowi for which

ai1x
A
1 + · · ·+ ainxA

n < bi.

This is the same as ∑
j:x∗

j≥1/f

aij ≤ bi − 1.

If
∑

j:x∗
j <1/f

aij > 0, then

n∑
j=1

aijx
∗
j =

∑
j:x∗

j≥1/f

aijx
∗
j +

∑
j:x∗

j <1/f

aijx
∗
j <

∑
j:x∗

j≥1/f

aij + 1 ≤ bi,

which is a contradiction. On the other hand, when
∑

j:x∗
j <1/f

aij = 0, we get

n∑
j=1

aijx
∗
j =

∑
j:x∗

j≥1/f

aijx
∗
j +

∑
j:x∗

j <1/f

aijx
∗
j =

∑
j:x∗

j≥1/f

aij ≤ bi − 1,

which again is a contradiction to the feasibility ofx∗.
For the performance ratio, notice that

cost(xA) =
n∑

j=1

cjx
A
j ≤

n∑
j=1

cj(fx∗j) = f OPT(LP-GC)≤ f OPT(IP-GC).

Exercise 6. Describe the ratiof for the WEIGHTED SET COVER problem in terms ofm, n and the set
collectionS.

Exercise 7. Suppose we apply the rounding strategy above to the WEIGHTED SET COVER problem.
However, instead of rounding thex∗j ≥ 1/f up to1, we round all positivex∗j up to1. Show that we still
have anf -approximation algorithm. (Hint : consider the primal complementary slackness condition.)

3 Randomized Rounding

Randomized rounding refers to the strategy of rounding fractional variables randomly according to some
probability distribution. We want the result to be an expectedly good solution (with some performance
ratio) with high probability (say≥ 1/2). We can run the algorithm independently many times to increase
this probability to be as large as we want.

6

3.1 WEIGHTED SET COVER (WSC)

In the WSC problem, we are given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m},
whereSj is of weightwj ∈ Z+. The objective is to find a sub-collectionC = {Si | i ∈ J} with least
total weight such that

⋃
i∈J Si = [m]. The corresponding integer program is

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

And, relaxation gives the following linear program:

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

0 ≤ xj ≤ 1 ∀j ∈ [n].

Suppose we have an optimal solutionx∗ of the LP. To obtainxA, a sensible rounding strategy is to round
x∗j to 1 with probabilityx∗j , namely

Prob[xA
j = 1] = x∗j .

It follows that

E[cost(xA)] =
n∑

j=1

wjx
∗
j = OPT(LP).

What we really want is to find the probability thatxA is feasible and cost(xA) ≤ ρ · OPT. If this
probability at least some positive constant, thenρ is an approximation ratio of this algorithm. (If the
probability is small, we can run the algorithm independently a few times.) We can estimate the desired
probability as follows.

Prob[xA is feasible and cost(xA) ≤ ρ · OPT] = 1− Prob[xA is not feasible and cost(xA) > ρ · OPT]
≥ 1− Prob[xA is not feasible]− Prob[cost(xA) > ρ · OPT].

Let us first estimate the probability thatxA is not feasible. Consider any elementi ∈ [m], and
suppose the inequality constraint corresponding toi is

xj1 + · · ·+ xjk
≥ 1.

We will refer to this as theith constraint. Then, the probability that this constraint is not satisfied byxA

is

(1− x∗j1) . . . (1− x∗jk
) ≤

(
k − (x∗j1 + · · ·+ x∗jk

)
k

)k

≤
(

1− 1
k

)k

≤ 1
e
.

Thus, Prob[xA is not feasible] ≤ m/e. This is a very bad bound sincem is large. We can get a better
bound by settingxA

j to be0 with lower probability. Lett be a number to be determined, and setxA
j = 0

probability (1 − x∗j)
t. (This is equivalent to running the previous strategy independentlyt rounds, and

setxA
j = 0 only whenxA

j = 0 in all rounds.) In this case,

Prob[xA does not satisfy constrainti] ≤ (1/e)t.

Thus, the probability thatxA is not a feasible solution is at mostm(1/e)t. Whent is large,m(1/e)t gets
as small as we want.

7

Secondly, we estimate the probability that cost(xA) > ρ · OPT. In one round, we have shown that
E[cost(xA)] = OPT(IP) ≤ OPT. Hence, witht rounds we have E[cost(xA)] ≤ t · OPT. Markov
inequality gives

Prob[cost(xA) > ρ · OPT] <
E[cost(xA)]

ρ · OPT
≤ t · OPT

ρ · OPT
=

t

ρ
.

Remark 3.1. Let X be a random variable inR+, anda be a positive number, Markov inequality says
that Prob[X ≥ a] ≤ E[X]

a .

Consequently,

Prob[xA is feasible and cost(xA) ≤ ρ · OPT(IP)] ≥ 1−m(1/e)t − t

ρ
.

We can pickt = θ(lg m) andρ = 4t so that1 − m(1/e)t − t
ρ ≥ 1

2 . In other words, this algorithm
gives a solution with approximation ratioΘ(lg m) with probability at least1/2. We can then run the
algorithm a few times until the solution is feasible. The expected number of runs is2, and the expected
approximation ratio isΘ(lg m).

Exercise 8. Suppose we run the above randomized rounding algorithm with only one round (instead of
t rounds). Prove that, with positive probability the resultingxA satisfies at least half of the constraints at
cost at mostO(OPT(IP)).

Exercise 9.Give a randomized rounding algorithm for the GENERAL COVER problem with approxima-
tion ratioO(lg m).

Exercise 10.Given a graphG and and properk-coloring ofG (i.e. a coloring usingk colors such that
two adjacent vertices have different colors). We want to solve the WEIGHTED VERTEX COVER on G.
Devise a polynomial time(2− 2/k)-approximation algorithm to solve this problem.

3.2 A simple randomized algorithm for MAX -3SAT

A conjunctive normal form(CNF) formula is a boolean formula onn variablesX = {x1, . . . , xn}
consisting ofm clausesC1, . . . , Cm. Each clause is a subset ofliterals, which are variables and negations
of variables. A clause can be viewed as the sum (or theOR) of the literals. A clause is satisfied by a truth
assignmenta : X → {TRUE, FALSE} if one of the literals in the clause isTRUE.

Consider integersk ≥ 2. A k-CNF formulais a CNF formula in which each clause is of size at most
k. An Ek-CNF formulais a CNF formula in which each clause is of size exactlyk.

Given a CNF formulaϕ, the MAX -SAT problem is to find a truth assignment satisfying the maximum
number of clauses inϕ. If ϕ is of the form X-CNF, for X∈ {k, Ek}, then we get the corresponding
MAX -XSAT problems.

Exercise 11.Show that the problem of deciding if a2-CNF formula is satisfiable is in P, but MAX -2SAT
is NP-Hard (i.e. its decision version isNP-complete).

Exercise 12.State the decision version of MAX -E3SAT and show that it isNP-complete.

Theorem 3.2. There exists an8/7-approximation algorithm forMAX -E3SAT.

Proof. Letϕ be an E3-CNF formula withm clausesC1, . . . , Cm. LetSϕ be the random variable counting
the number of satisfied clauses ofϕ by randomly settingxi independently to beTRUE with probability
1/2. Since the probability that a clauseCj is satisfied is7/8, by linearity of expectation E[Sϕ] = 7m/8.
This number clearly is within a factor7/8 of the optimal value. Hence, this simple randomized algorithm

8

achieves (expected) approximation ratio8/7. We can derandomize this algorithm by a method known as
conditional expectation. The basic idea is as follows.

Consider a fixedk ∈ [n]. Leta1, . . . , ak ∈ {TRUE, FALSE} bek boolean values. Letϕ′ be a formula
obtained by settingxi = ai, i ≤ j, and discarding allc clauses that are already satisfied. Then, it is easy
to see that

E[Sϕ | xi = ai, 1 ≤ i ≤ k] = E[Sϕ′] + c.

Hence, givena1, . . . , ak we can easily compute E[Sϕ | xi = ai, 1 ≤ i ≤ k] in polynomial time.
Now, for k ≥ 1, notice that

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1]

=
1
2

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1, xk = TRUE] +
1
2

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1, xk = FALSE]

The larger of the two expectations on the right hand side is at least E[Sϕ | xi = ai, 1 ≤ i ≤ k−1]. Hence,
we can setxi to beTRUE or FALSE one by one, following the path that leads to the larger expectation, to
eventually get a truth assignment which satisfies as many clauses as E[Sϕ] = 7m/8.

3.3 Randomized rounding andMAX -SAT

3.3.1 The straightforward randomized algorithm

Consider the WEIGHTED MAX -SAT problem in which a formulaφ consists ofm clausesC1, . . . , Cm

weightedw1, . . . , wm ∈ Z+. Let x1, . . . , xn be the variables andlj denote the length of clauseCj .
Suppose we follow the previous section and set each variable to beTRUE with probability 1/2, and
derandomized this algorithm, then what is the approximation ratio?

Let Ij denote the random variable indicating the event{Cj is satisfied}, i.e.

Ij :=

{
1 if Cj is satisfied

0 otherwise.

Let Sφ be the cost (weight) of a random assignment andOPT(φ) be the cost of an optimal assignment,
thenSφ = wjIj . We have

E[Sφ] =
m∑

j=1

wj Prob[Ij = 1] =
m∑

j=1

wj(1− (1/2)lj) ≥ 1
2

m∑
j=1

wj ≥
1
2

OPT(φ).

In other words, with derandomization using the method of conditional expectation, we can get a (deter-
ministic) approximation algorithm for MAX -SAT with approximation ratio2.

Exercise 13.Consider the following algorithm for MAX -SAT: let τ be any truth assignment andτ ′ be
its complement, i.e.τ ′(xi) is the negation ofτ(xi). Compute the cost of bothτ andτ ′, then output the
better assignment. Show that this is a2-approximation algorithm.

Exercise 14. Let F2 = {0, 1}. Arithmetics overF2 is done modulo2. Consider a system ofm lin-
ear equations onn variables overF2. The LINEAR EQUATIONS OVER F2 problem is the problem of
finding an assignment to variables that satisfies as many equations as possible. Give a randomized algo-
rithm for this problem with approximation ratio2, then derandomize it using the method of conditional
expectation.

9

3.3.2 A randomized algorithm with a biased coin

The approximation ratio2 as done above is not nearly as good as8/7 we had for MAX -3SAT. Perhaps
this is due to the fact that MAX -SAT is not as symmetrical as MAX -3SAT. Thus, our “rounding proba-
bility” should not be1/2. This observation suggest us to set each variable toTRUE with some probability
q to be determined. Due to symmetry (of a variable and its negation), we only need to considerq ≥ 1/2
(thusq ≥ 1− q).

Let nj andpj be the number of negated variables and non-negated variables in clauseCj , then

E[Sφ] =
m∑

j=1

wj(1− qnj (1− q)pj).

To get a good approximation ratio, we want all theqnj (1− q)pj to be as small as possible. This product
is large for small clauses, especially the clauses with only one single literal. Let us consider them first.

• If singleton clauses contain no negations of variables, then it is easy to see thatqnj (1 − q)pj ≤
max{1 − q, q2}, for all j. To minimize themax, we pickq such that1 − q = q2, i.e. q ≈ 0.618.
In this case, we have

E[Sφ] ≥ 1
q

OPT(φ).

(Note that this is slightly better than the ratio2.)

• If there is noi such that bothxi andx̄i are clauses, then by swapping labels of somexi andx̄i, we
can obtain the same bound.

• The situation comes down to the case when there arexi such that bothxi and x̄i are clauses.
Firstly, note that two clauses of the form{xi} (or of the form{x̄i}) can be combined into one
(whose weight is the total weight). Consequently, we can assume thatxi (andx̄i) does not appear
in two singleton clauses. Secondly, ifxi andx̄i are both clauses, we can assume that the weight of
thexi-clause is at least the weight of thex̄i-clause, otherwise we swapxi andx̄i. Thirdly, assume
the rest of the singleton clauses contain only non-negated variables. Define

N = {j | Cj = {x̄i}, for somei}.

Then,

OPT(φ) ≤
m∑

j=1

wj −
∑
j∈N

wj .

And,

E[Sφ] =
∑
j /∈N

wj(1− qnj (1− q)pj) +
∑
j∈N

wj(1− q) ≥ q

m∑
j=1

wj − q
∑
j∈N

wj ≥ q · OPT(φ).

3.3.3 A randomized algorithm with different biased coins based on linear programming

The above randomized algorithms do not deal well with small-size clauses. In this section, we borrow
the idea from the randomized-algorithm for SET COVER, using linear programming to determine the
rounding probability of each variable.

10

An integer program for MAX -SAT can be obtained by considering the following01-variables: (a)
yi = 1 iff xi = TRUE; and (b)zj = 1 iff Cj is satisfied. We then have the following integer program

max w1z1 + · · ·+ wmzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

yi, zj ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]

and its relaxed version

max w1z1 + · · ·+ wnzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

0 ≤ yi ≤ 1 ∀i ∈ [n],
0 ≤ zj ≤ 1 ∀j ∈ [m].

Mimicking the rounding strategy for SET COVER, we obtain an optimal solution(y∗, z∗) for the linear
program, and roundxi = TRUE with probabilityy∗i . Then,

E[Sφ] =
m∑

j=1

wj

1−
∏

i:xi∈Cj

(1− y∗i)
∏

i:x̄i∈Cj

y∗i



≥
m∑

j=1

wj

1−


∑

i:xi∈Cj

(1− y∗i) +
∑

i:x̄i∈Cj

y∗i

lj


lj


=
m∑

j=1

wj


1−


lj −

 ∑
i:xi∈Cj

y∗i +
∑

i:x̄i∈Cj

(1− y∗i)


lj



lj


≥
m∑

j=1

wj

(
1−

[
1−

z∗j
lj

]lj
)

≥
m∑

j=1

wj

(
1−

[
1− 1

lj

]lj
)

z∗j

≥ min
j

(
1−

[
1− 1

lj

]lj
)

m∑
j=1

wjz
∗
j

≥
(

1− 1
e

)
OPT(φ).

(We have used the fact that the functionf(x) = (1− (1− x/lj)lj is concave whenx ∈ [0, 1], thus it lies
above the segment through the end points.) We have just proved

Theorem 3.3. The LP-based randomized rounding algorithm above has approximation ratioe/(e− 1).

Note thate/(e−1) ≈ 1.58, while1/q ≈ 1/0.618 ≈ 1.62. Thus, this new algorithm is slightly better
than the one with a biased coin.

11

Exercise 15.Describe how to use the method of conditional expectation to derandomize the algorithm
above.

Exercise 16. Let g(y) be any function such that1 − 4−y ≤ g(y) ≤ 4y−1,∀y ∈ [0, 1]. Suppose we
set eachxi = TRUE with probabilityg(y∗i), where(y∗, z∗) is an optimal solution to the linear program.
Show that this strategy gives a4/3-approximation algorithm for MAX -SAT.

3.3.4 The “best-of-two” algorithm

Note that the rounding algorithm in the previous section works fairly well if clauses are of small sizes.
For instance, iflj ≤ 2 for all j, then the approximation ratio would have been1/(1− (1−1/2)2) = 4/3.
On the other hand, the straightforward randomized algorithm works better when clauses are large. It just
makes sense to now combine the two: run both algorithms and report the better assignment. LetS1

φ and
S2

φ (which are random variables) denote the corresponding costs. Then, it is easy to see the following

E[max{S1
φ, S2

φ}] ≥ E[(S1
φ + S2

φ)/2]

≥
m∑

j=1

wj

(
1
2

(
1− 1

2lj

)
+

1
2

(
1−

[
1− 1

lj

]lj
)

z∗j

)

≥ 3
4

m∑
j=1

wjz
∗
j

≥ 3
4

OPT(φ).

Thus, the BEST-OF-TWO algorithm has performance ratio4/3.

Historical Notes

Texts on Linear Programming are numerous, of which I recommend [3] and [15]. For Integer Program-
ming, [18] and [15] are suggested. Recent books on approximation algorithms include [2,8,13,17]. For
linear algebra, see [9,16]. See [1,14] for randomized algorithms, derandomization and the probabilistic
methods.

The8/7-approximation algorithm for MAX -E3SAT follows the line of Yannakakis [19], who gave
the first4/3-approximation for MAX -SAT. A 2-approximation for MAX -SAT was given in the seminal
early work of Johnson [10]. Johnson’s algorithm can also be interpreted as a derandomized algorithm,
mostly the same as the one we presented. The LP-based randomized algorithm and the best-of-two
algorithm for MAX -SAT are due to Goemans and Williamson [6]. The algorithm with a biased coin is
due to Lieberherr and Specker [12].

Later, Karloff and Zwick [11] gave an8/7-approximation algorithm for MAX -3SAT based on
semidefinite programming. This approximation ratio is optimal as shown by Håstad [7]. The condi-
tional expectation method was implicit in Erdős and Selfridge [5].

References
[1] N. A LON AND J. H. SPENCER, The probabilistic method, Wiley-Interscience Series in Discrete Mathematics and Opti-

mization, Wiley-Interscience [John Wiley & Sons], New York, second ed., 2000. With an appendix on the life and work
of Paul Erd̋os.

[2] G. AUSIELLO, P. CRESCENZI, G. GAMBOSI, V. KANN , A. MARCHETTI-SPACCAMELA, AND M. PROTASI, Complex-
ity and approximation, Springer-Verlag, Berlin, 1999. Combinatorial optimization problems and their approximability
properties, With 1 CD-ROM (Windows and UNIX).

12

[3] V. CHVÁTAL , Linear programming, A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New
York, 1983.

[4] I. D INUR AND S. SAFRA, The importance of being biased, in STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, ACM Press, 2002, pp. 33–42.

[5] P. ERDŐS AND J. L. SELFRIDGE, On a combinatorial game, J. Combinatorial Theory Ser. A, 14 (1973), pp. 298–301.

[6] M. X. GOEMANS AND D. P. WILLIAMSON , New 3
4
-approximation algorithms for the maximum satisfiability problem,

SIAM J. Discrete Math., 7 (1994), pp. 656–666.

[7] J. HÅSTAD, Some optimal inapproximability results, in STOC ’97 (El Paso, TX), ACM, New York, 1999, pp. 1–10
(electronic).

[8] D. S. HOCHBAUM, ed.,Approximation Algorithms for NP Hard Problems, PWS Publishing Company, Boston, MA,
1997.

[9] R. A. HORN AND C. R. JOHNSON, Matrix analysis, Cambridge University Press, Cambridge, 1985.

[10] D. S. JOHNSON, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974), pp. 256–278.
Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).

[11] H. KARLOFF AND U. ZWICK, A 7/8-approximation algorithm for MAX 3SAT?, in Proceedings of the 38th Annual IEEE
Symposium on Foundations of Computer Science, Miami Beach, FL, USA, IEEE Press, 1997.

[12] K. J. LIEBERHERR ANDE. SPECKER, Complexity of partial satisfaction, J. Assoc. Comput. Mach., 28 (1981), pp. 411–
421.

[13] E. W. MAYR AND H. J. PRÖMEL, eds.,Lectures on proof verification and approximation algorithms, vol. 1367 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998. Papers from the Workshop on Proof Verification and
Approximation Algorithms held at Schloß Dagstuhl, April 21–25, 1997.

[14] R. MOTWANI AND P. RAGHAVAN , Randomized algorithms, Cambridge University Press, Cambridge, 1995.

[15] A. SCHRIJVER, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John
Wiley & Sons Ltd., Chichester, 1986. A Wiley-Interscience Publication.

[16] G. STRANG, Linear algebra and its applications, Academic Press [Harcourt Brace Jovanovich Publishers], New York,
second ed., 1980.

[17] V. V. VAZIRANI , Approximation algorithms, Springer-Verlag, Berlin, 2001.

[18] L. A. WOLSEY, Integer programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley
& Sons Inc., New York, 1998. A Wiley-Interscience Publication.

[19] M. YANNAKAKIS , On the approximation of maximum satisfiability, J. Algorithms, 17 (1994), pp. 475–502. Third Annual
ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992).

13

