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This Week’s Agenda
Last Time

• Exponential Distribution, Poisson Process, DTMC

Today

• Continuous Time Markov Chain
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Another Look at the Poisson Process

0
λ λ λ

1 2

0 1 2

1/λ 1/λ 1/λ

There are two equivalent ways to look at this:

1. The process moves from state i to i+ 1 with average rate λ

2. The process stays at state i in an amount exponential(λ)

(i.e. with mean 1/λ), and then moves to i+ 1 with
probability 1

A continuous time Markov chain (CTMC) generalizes this idea.

• The process moves around a directed graph (finite or
infinite, but the number of states is countable)

• The process’ staying times at different states have different
exponential distributions (exponential(qi) for state i, e.g.)

• The probability of moving from i to j is πij

• Equivalently, the “jumping rate” from i to j is qij = qiπij
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Right Continuous Continuous Time Processes
• A continuous time stochastic process {Xt | 0 ≤ t <∞} is

right continuous if

∀t,∃ε > 0 : Xs = Xt, ∀s ∈ [t, t+ ε]

• A result from measure theory:
Theorem 1. The probability of any event depending on a
right continuous process can be determined from its finite
dimensional distributions, i.e. from the probabilities

Pr[Xt1 = i1, . . . , Xtn = in],

for n ≥ 1, 0 ≤ t1 ≤ . . . ,≤ tn, and i1, . . . , in ∈ I

• All continuous time processes we consider will be right
continuous.
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CTMC: First Definition
• A continuous time stochastic process (Xt)t≥0 with a

countable state space I is a continuous time Markov chain
if there exists a given family of matrices
{P(t) = (pij(t))}t≥0 such that

Pr[Xtn+1 = j | Xtn = i,Xtk = ik, 0 ≤ k ≤ n− 1]

= pij(tn+1 − tn), (1)

for all n ≥ 0, states i0, . . . , in−1, i, j, and times
0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ tn+1.

• Chapman-Kolmogorov equations:

pij(s+ t) =
∑

k∈I
pik(s)pkj(t).

In matrix terms, we have

P(s+ t) = P(s)P(t), ∀s, t ≥ 0. (2)

• The set {P (t), t ≥ 0} satisfying (2) is called a semigroup

CSE 620 Lecture Notes Advanced Networking Concepts Page 4



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 6, 2005

Example: Poisson Process
• Consider a Poisson process {Xt}t≥0 with rate λ.

• For j ≤ i, it’s clear that pij(t) = 0

• For j > i, pij(t) is the probability that there are j − i
arrivals within an amount t of time, thus

pij(t) = e−λt
(λt)j−i

(j − i)! .

• Sanity check for Chapman-Kolmogorov

∞∑

k=0

pik(s)pkj(t) =

j∑

k=i

pik(s)pkj(t)

=

j∑

k=i

e−λs
(λs)k−i

(k − i)! e
−λt (λt)j−k

(j − k)!

=
e−λ(s+t)λj−i

(j − i)!

j−i∑

l=0

(
j − i
l

)
sltj−i−l

= pij(s+ t).
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CTMC: towards the second definition
We will be needing the following concepts associated with a
continuous time stochastic process (Xt)t≥0:

• Jump times

• Holding times

• Explosion and explosion time

• Jump process and jump chain

• Minimal (and right-continuous) process

• Q-matrix

• Jump matrix

Why do we need the second definition? In many cases

• it is more intuitive

• it is easier to construct the CTMC using this definition

• it contains a discrete (and often finite) set of parameters
specifying the CTMC

• the two definitions are equivalent
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Jump, Holding, Explosion Times
Given (Xt)t≥0

• The jump times J0, J1, . . . are defined by

J0 = 0, Jn = inf{t ≥ Jn−1 | Xt 6= XJn−1}, n ≥ 1.

• The holding times S0, S1, . . . are defined by

Sn =




Jn+1 − Jn Jn <∞
∞ otherwise

• The explosion time is

ξ = sup
n
Jn =

∞∑

n=0

Sn.

When ξ <∞, the process makes infinitely many jumps in
a finite amount of time: not desirable.

• The jump process (Yn)n ≥ 0 is defined by Yn = XJn . If
(Yn)n≥0 is a DTMC, then it is called the jump chain or
embedded chain of (Xt)t≥0.

• (Xt)t≥0 is minimal when we require Xt =∞ for t ≥ ξ.
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Q-matrices
• Let I be a countable set

• A Q-matrix on I is a matrix Q = (qij : i, j ∈ I)

satisfying
(a) 0 ≤ −qii <∞, for all i ∈ I
(b) qij ≥ 0, for all i, j ∈ I
(c)

∑

j∈I
qij = 0

• For convenience, define qi = −qii ≥ 0

• Example

Q =




−3 2 0 1

0 0 0 0

0 3 −5 2

0 2 2 −4




Later on,

• qij will be interpreted as the rate of jumping from i to j

• Q will be called the (infinitesimal) generator matrix for a
CTMC
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Jump Matrix
• Given a Q-matrix Q = (qij), define the jump matrix Π:

πij =




qij/qi j 6= i, qi 6= 0

0 j 6= i, qi = 0

πii =





0 qi 6= 0

1 qi = 0

• Example, jump matrix of previous Q-matrix

Q =




0 2
3 0 1

3

0 1 0 0

0 3
5 0 2

5

0 1
2

1
2 0



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CTMC: Second Definition
A (minimal right-continuous) stochastic process (Xt)t≥0 is a
continuous time Markov chain if there is a Q-matrix Q = (qij)

with corresponding jump matrix Π such that

(i) The jump process (Yn)n≥0 of (Xt)t≥0 is a discrete-time
Markov chain with transition probability matrix Π

(ii) For any n ≥ 0, conditional on Y0, . . . , Yn, the holding
times S0, . . . , Sn are independent exponential random
variables with parameters qY0 , . . . , qYn , respectively

Example: the Poisson process with rate λ can be defined with
the following Q-matrix

Q =




−λ λ 0 . . .

0 −λ λ . . .
...

...
. . . . . .



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Relationship Between Two Definitions
• Think of them as two different constructions of a CTMC

• Relationships between {P(t)}t≥0 and Q:
(a) {P(t)}t≥0 is the minimal non-negative solution to the

forward equation

P′(t) = QP(t), P(0) = I,

namely,

p′ij(t) =
∑

k∈I
qikpkj(t), pij(0) = δij .

(b) {P(t)}t≥0 is the minimal non-negative solution to the
backward equation

P′(t) = P(t)Q, P(0) = I,

namely,

p′ij(t) =
∑

k∈I
pik(t)qkj , pij(0) = δij .

The Kronecker delta δij =





1 i = j

0 i 6= j
.
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Getting the P(t) from Q

• To get the P(t) from Q, solve either the forward equation
or the backward equation

• If I is finite, the following solution is the unique solution
to the forward and backward equations (i.e., even among
the non-minimal, negative ones)

P(t) = etQ =
∞∑

n=0

Qn t
n

n!
.

Getting Q from the P(t)

P′(0) = P(0)Q = Q.

In other words,

qij = p′ij(0), for all i, j.
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Class Structure
• i ; j if Pri(∃t ≥ 0, Xt = j) > 0

• i communicate with j, i.e. i↔ j, if i ; j and j ; i

• communicating class, closed class, irreducibility are
defined similarly

Theorem 2. Given states i 6= j, the following are equivalent

(1) i ; j

(2) i ; j in the jump chain Π

(3) qii1qi1i2 · · · qinj > 0 for some states i1, . . . , in, n ≥ 0

(4) pij(t) > 0 for all t > 0

(5) pij(t) > 0 for some t > 0
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Recurrence and Transience
• i is recurrent if

Pr[{t : Xt = i}is unbounded] = 1

• i is positive recurrent iff the expected return time to i is
finite (µii <∞), and i is null recurrent otherwise

• i is transient if

Pr[{t : Xt = i}is unbounded] = 0

Theorem 3. We have

(1) i is recurrent if and only if i is recurrent for Π

(2) every state is either recurrent or transient

(3) (positive/null) recurrence and transience are class
properties
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Stationary Distributions
A distribution (resp., measure) λ on I is a stationary (or
invariant) distribution (resp., measure) if λP(t) = λ, ∀t > 0

Theorem 4. λ is stationary iff λQ = 0 (this holds for both
measure and distribution cases). Specifically, λ is stationary iff

∑

i6=j
λiqij = λjqj = λj

∑

k 6=j
qjk ∀j ∈ I. (3)

This is the balanced equation for j. Moreover, λ is a stationary
measure iff τΠ = τ , where τi = λiqi,∀i ∈ I .
Theorem 5. Let Q be irreducible, then Q is non-explosive and
has an invariant distribution if and only if Q is positive
recurrent. Moreover, when Q is positive recurrent with
invariant distribution λ, we have µii = 1

λiqi
,∀i ∈ I .

Detailed Balance Condition
Theorem 6. If λ satisfies the detailed balance condition

λkqkj = λjqjk, ∀j, k ∈ I, (4)

then λ is invariant.
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Convergence to Equilibrium
Theorem 7. Let Q be irreducible, non-explosive with an
invariant distribution λ. Then,

lim
t→∞

pij(t) = λj , ∀j ∈ I.

In particular, the invariant distribution is unique.

Ergodic Theorem
Theorem 8. Let Q be irreducible, then

Pr
[

lim
t→∞

1

t

∫ t

0

1{Xs=i}ds =
1

µiiqi

]
= 1

Moreover, if Q is positive recurrent, implying Q has a unique
invariant distribution λ, then for any bounded function
f : I → R,

Pr
[

lim
t→∞

1

t

∫ t

0

f(Xs)ds = f̄

]
= 1,

where
f̄ =

∑

i∈I
πifi.

CSE 620 Lecture Notes Advanced Networking Concepts Page 16



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 6, 2005

Birth and Death Process (BDP)
A birth and death process can be illustrated as follows.

i0 1

λ0

µ1

λ1

µ2

λi−1

µi+1µi

λi

• The {λi}i≥0 are called the birth rates

• The {µi}i≥0 are called the death rates

• The Poisson process is a special case of this process

• We often think of a state i as the number of “items” in a
system
– Items entering the system having i items according to a

Poisson process with rate λi
– Items leaving the system having i items according to a

Poisson process with rate µi, independent from the
entering items
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BDP: Condition for Positive Recurrence
• The jump chain is the birth and death chain we’ve

discussed, where

a0 = 1

ai =
λi

λi + µi
, i ≥ 1

bi =
µi

λi + µi
, i ≥ 1

• The chain is current iff
∞∑

n=1

µ1 · · ·µn
λ1 · · ·λn

=∞

• The chain is also positive recurrent if, additionally,
∞∑

n=1

λ0 · · ·λn−1

µ1 · · ·µn
<∞
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BDP: Stationary Distribution
The balance equation for a measure τ to be stationary is

τ1µ1 = τ0λ0

τi+1µi+1 + τi−1λi−1 = τi(λi + µi), i ≥ 1

Solving this, we get

τn = τ0
λ0 · · ·λn−1

µ1 · · ·µn
For τ to be an invariant distribution, we further need∑∞
n=0 τn = 1, which is solvable if

C = 1 +
∞∑

n=1

λ0 · · ·λn−1

µ1 · · ·µn
<∞.

This is true when the chain is positive recurrent! In conclusion,

τ0 =
1

C

τn =
1

C

λ0 · · ·λn−1

µ1 · · ·µn
, n ≥ 1

Ergodic theorem: as time tends to∞, fraction of time spent in
state i is τi(λi + µi).
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