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This Week’s Agenda

Last Time
e Exponential Distribution, Poisson Process, DTMC

Today

e Continuous Time Markov Chain
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Another Look at the Poisson Process

D OO
1/\ 1/ 1/
O O

There are two equivalent ways to look at this:
1. The process moves from state ¢ to ¢ + 1 with average rate \

2. The process stays at state ¢ in an amount exponential(\)
(i.e. with mean 1/)), and then moves to 7 4+ 1 with
probability 1

A continuous time Markov chain (CTMC) generalizes this idea.

e The process moves around a directed graph (finite or
infinite, but the number of states is countable)

e The process’ staying times at different states have different
exponential distributions (exponential(q; ) for state , e.g.)

e The probability of moving from 7 to 7 is m;;

e Equivalently, the “jumping rate” from ¢ to j 1S g;; = q;T;
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Right Continuous Continuous Time Processes

e A continuous time stochastic process { X; | 0 <t < oo} is
right continuous if

Vi,3e >0 : Xy = Xy, Vs € [t,t + €

e A result from measure theory:

Theorem 1. The probability of any event depending on a
right continuous process can be determined from its finite
dimensional distributions, i.e. from the probabilities

Pr[th — 7:17 <o 7Xt — Zn]’

n

forn>1,0<t1 <...,.<ty,andi1,...,1, €1

e All continuous time processes we consider will be right
continuous.
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CTMC: First Definition

e A continuous time stochastic process (X;);>o with a
countable state space [ 1s a continuous time Markov chain
if there exists a given family of matrices

[P(t) = (pi;(t))}s>0 such that

PI'[Xt :]’th:%th:’Lk,OSkSn—l]

= pij(tn+1 —tn), (1)

n—+1

for all n > 0, states ¢¢,...,%,_1,%, 7, and times
0<ty <t <<t <ilpi1.

e Chapman-Kolmogorov equations:

ng S + t szk pkj
kel

In matrix terms, we have
P(s+1t)=P(s)P(t), Vs,t > 0. (2)

e The set { P(t),t > 0} satisfying (2) is called a semigroup
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Example: Poisson Process

e Consider a Poisson process { X; }:>o with rate \.
e For j <, it’s clear that p;;(¢) =0

e For j > i, p;;(t) is the probability that there are j — ¢
arrivals within an amount ¢ of time, thus

(At)?—
(7 =Dt

e Sanity check for Chapman-Kolmogorov

pij(t) = e

Z pik(s)prs(t) = Z Pik (5)pr; (1)
k=0 k=1

R N 0 LV e)
B kz:: (k—=0)!"  (j—Fk)
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CTMC: towards the second definition

We will be needing the following concepts associated with a
continuous time stochastic process (X )¢>o:

e Jump times
e Holding times
e Explosion and explosion time
e Jump process and jump chain
e Minimal (and right-continuous) process
e ()-matrix
e Jump matrix
Why do we need the second definition? In many cases
e if 1S more intuitive
e it is easier to construct the CTMC using this definition

e it contains a discrete (and often finite) set of parameters
specifying the CTMC

e the two definitions are equivalent
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Jump, Holding, Explosion Times

Given (Xt)tZO

e The jump times Jy, J1, ... are defined by
Jo=0, J,=inf{t > J, 1| Xt #X;, _,}, n>1
e The holding times Sy, S, ... are defined by

g _ ]I dn Jn<oo

00 otherwise

e The explosion time 1s

—supJ ZS

When & < oo, the process makes infinitely many jumps in
a finite amount of time: not desirable.

e The jump process (Y,,)n > 0is defined by Y,, = X . If
(Y, )n>0 is a DTMC, then it is called the jump chain or
embedded chain of (X;);>0.

e (X;)¢>0is minimal when we require X, = oo for ¢t > &.
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()-matrices

e Let / be a countable set

e A ()-matrix on I isamatrix Q = (q;; : ¢,j € I)
satisfying
(@) 0 < —q; <oo,foralls € [
(b) gi; > 0,forallz,5 €I

(©) Y qi; =0

jerI
e For convenience, define ¢; = —¢q;; > 0
e Example
(=3 2 0 1)
0O 0 O 0
Q —
0O 3 -5 2
\0 2 2 —4)
Later on,

e ¢;; will be interpreted as the rate of jumping from ¢ to j

e () will be called the (infinitesimal) generator matrix for a
CTMC
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Jump Matrix

e Given a Q-matrix Q = (g, ), define the jump matrix IT:

)
%i;i/q% JF% ¢ F#0
Tij = oy
\O ]#/IHQZ:O
)
0 ¢ #0
T = %
\1 qi:O

e Example, jump matrix of previous ()-matrix

(03 0 )
_0100
ooz oo

CREREN Y
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CTMC: Second Definition

A (minimal right-continuous) stochastic process (X¢)¢>0 is a
continuous time Markov chain if there is a Q-matrix Q = (g;;)

with corresponding jump matrix II such that

(i) The jump process (Y}, )n>0 of (X;)¢>0 is a discrete-time
Markov chain with transition probability matrix 11

(11) For any n > 0, conditional on Yy, ..., Y,,, the holding
times S, . . ., S, are independent exponential random

variables with parameters gy, , . .., gy, , respectively

Example: the Poisson process with rate A can be defined with
the following ()-matrix

(2 A 0 )

Q=0 -x A
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Relationship Between Two Definitions

e Think of them as two different constructions of a CTMC

e Relationships between {P ()}~ and Q:

(a) {P(t)}+>0 is the minimal non-negative solution to the

forward equation
P'(t) = QP(t), P(0) =1,
namely,

pi;(t) = > qirpr; (1), pij(0) = 6.

(b) {P(t)}+>0 is the minimal non-negative solution to the
backward equation

P(t) =P(¢)Q, P(0) =1,

namely,
pii(t) = > pir(D)ars, pij(0) = bij.
kel
1=
The Kronecker delta d;; = .
0 i#]
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Getting the P(¢) from Q

e To get the P(¢) from Q, solve either the forward equation
or the backward equation

e If 7 is finite, the following solution is the unique solution
to the forward and backward equations (i.e., even among

the non-minimal, negative ones)

_ Qe _N"orll
P(t)=e _;}Q 5
Getting Q from the P(¢)

In other words,

qij = pi;(0), foralli, j.
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Class Structure

e i~ jifPry(It>0,X; =5) >0
e ¢ communicate with j7,1.e. ¢ <~ j,1f 2~ jand j ~» ¢

e communicating class, closed class, irreducibility are

defined similarly

Theorem 2. Given states © # j, the following are equivalent
(1) i~

(2) 1~ 7 in the jump chain 11

(3) Qii,Qiyiy - Qi,; > 0 for some states 1, ...,1p, n >0
(4) pi;j(t) > 0forallt >0

(5) pij(t) > 0 for somet > 0
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Recurrence and Transience

e 7 1s recurrent if
Pr[{t : X; = i}is unbounded| = 1
e 7 1s positive recurrent iff the expected return time to ¢ 1s
finite (u;; < 00), and ¢ is null recurrent otherwise
e 7 is transient if
Pr[{t : X; = i}is unbounded| = 0
Theorem 3. We have
(1) 1 is recurrent if and only if 1 is recurrent for 11
(2) every state is either recurrent or transient

(3) (positive/null) recurrence and transience are class

properties
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Stationary Distributions

A distribution (resp., measure) A on [ is a stationary (or
invariant) distribution (resp., measure) if AP(¢) = X\, Vi > 0
Theorem 4. )\ is stationary iff A\Q = 0 (this holds for both

measure and distribution cases). Specifically, A is stationary iff
> Mg =XNg; =X gk Vi€l (3)
i#] ket

This is the balanced equation for j. Moreover, A is a stationary

measure iff T1I = 7, where 7, = \;q;, Vi € 1.

Theorem 5. Let Q be irreducible, then Q is non-explosive and

has an invariant distribution if and only if Q is positive

recurrent. Moreover, when Q) is positive recurrent with

invariant distribution \, we have 1;; = %q,w e 1.

Detailed Balance Condition

Theorem 6. If )\ satisfies the detailed balance condition

then \ is invariant.
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Convergence to Equilibrium

Theorem 7. Let Q be irreducible, non-explosive with an

invariant distribution \. Then,

tllm pz‘j(t) = )\j, Vi e I.

In particular, the invariant distribution is unique.

Ergodic Theorem
Theorem 8. Let Q be irreducible, then

1 [t 1
Pr| lim — 1 _ds = — 1
I'[ 1111 t/o {X =i} S ]

t—00 Hiiqi

Moreover, if Q is positive recurrent, implying Q has a unique
invariant distribution \, then for any bounded function
f:I—R,

1 [ .
Pr llim — | f(Xs)ds = f] =1,

where
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Birth and Death Process (BDP)

A birth and death process can be 1llustrated as follows.

___z_
@C@ IR S—
42

,uz—l—l

e The {\;};>0 are called the birth rates

e The {u;}i>0 are called the death rates

e The Poisson process is a special case of this process

e We often think of a state ¢ as the number of “items” in a

system

— Items entering the system having ¢ items according to a

Poisson process with rate \;

— Items leaving the system having 7 items according to a
Poisson process with rate 11;, independent from the

entering items
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BDP: Condition for Positive Recurrence

e The jump chain is the birth and death chain we’ve
discussed, where

apgp = 1
\,
a; = L i>1
Ai + 1
M
b, = , 1> 1
Ai +
e The chain 1s current iff
@)
/‘Llo..un:OO
n:1)‘1'”)"”

e The chain is also positive recurrent if, additionally,

Saa WA Y
Z 0 n1<OO
,LLl,un

n=1
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BDP: Stationary Distribution

The balance equation for a measure 7 to be stationary 1s

U1 = ToAo
Tit1fit1 + Ticidi—1 = TN+ pq), 1> 1
Solving this, we get
Xo A1
™ — T0
H1 - hn

For 7 to be an invariant distribution, we further need
S > ,Tn = 1, which is solvable if

© Ao An_1
C:1+E < 00.
n:1 /’L]_.../’Ln

This 1s true when the chain is positive recurrent! In conclusion,

1
O = —
° C
1 Ao\
o - 0 nl’ 7121

Ergodic theorem: as time tends to co, fraction of time spent in
state 7 is 7;(A; + f45).
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