This Week's Agenda

Last Time

• Exponential Distribution, Poisson Process, DTMC

Today

• Continuous Time Markov Chain

Another Look at the Poisson Process

There are two equivalent ways to look at this:

- 1. The process moves from state i to i + 1 with average rate λ
- 2. The process stays at state i in an amount exponential(λ) (i.e. with mean $1/\lambda$), and then moves to i+1 with probability 1

A continuous time Markov chain (CTMC) generalizes this idea.

- The process moves around a directed graph (finite or infinite, but the number of states is countable)
- The process' staying times at different states have different exponential distributions (exponential (q_i) for state i, e.g.)
- The probability of moving from i to j is π_{ij}
- Equivalently, the "jumping rate" from i to j is $q_{ij} = q_i \pi_{ij}$

Right Continuous Continuous Time Processes

• A continuous time stochastic process $\{X_t \mid 0 \le t < \infty\}$ is right continuous if

$$\forall t, \exists \epsilon > 0 : X_s = X_t, \forall s \in [t, t + \epsilon]$$

• A result from measure theory:

Theorem 1. The probability of any event depending on a right continuous process can be determined from its finite dimensional distributions, i.e. from the probabilities

$$\Pr[X_{t_1}=i_1,\ldots,X_{t_n}=i_n],$$

for
$$n \ge 1, 0 \le t_1 \le ..., \le t_n$$
, and $i_1, ..., i_n \in I$

• All continuous time processes we consider will be right continuous.

CTMC: First Definition

• A continuous time stochastic process $(X_t)_{t\geq 0}$ with a countable state space I is a continuous time Markov chain if there exists a given family of matrices $\{\mathbf{P}(t) = (p_{ij}(t))\}_{t\geq 0}$ such that

$$\Pr[X_{t_{n+1}} = j \mid X_{t_n} = i, X_{t_k} = i_k, 0 \le k \le n-1]$$

$$= p_{ij}(t_{n+1} - t_n), \quad (1)$$

for all $n \ge 0$, states $i_0, \ldots, i_{n-1}, i, j$, and times $0 \le t_0 \le t_1 \le \cdots \le t_n \le t_{n+1}$.

Chapman-Kolmogorov equations:

$$p_{ij}(s+t) = \sum_{k \in I} p_{ik}(s) p_{kj}(t).$$

In matrix terms, we have

$$\mathbf{P}(s+t) = \mathbf{P}(s)\mathbf{P}(t), \ \forall s, t \ge 0.$$
 (2)

• The set $\{P(t), t \ge 0\}$ satisfying (2) is called a semigroup

Example: Poisson Process

- Consider a Poisson process $\{X_t\}_{t\geq 0}$ with rate λ .
- For $j \leq i$, it's clear that $p_{ij}(t) = 0$
- For j > i, $p_{ij}(t)$ is the probability that there are j i arrivals within an amount t of time, thus

$$p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}.$$

Sanity check for Chapman-Kolmogorov

$$\sum_{k=0}^{\infty} p_{ik}(s) p_{kj}(t) = \sum_{k=i}^{j} p_{ik}(s) p_{kj}(t)$$

$$= \sum_{k=i}^{j} e^{-\lambda s} \frac{(\lambda s)^{k-i}}{(k-i)!} e^{-\lambda t} \frac{(\lambda t)^{j-k}}{(j-k)!}$$

$$= \frac{e^{-\lambda(s+t)} \lambda^{j-i}}{(j-i)!} \sum_{l=0}^{j-i} {j-i \choose l} s^{l} t^{j-i-l}$$

$$= p_{ij}(s+t).$$

CTMC: towards the second definition

We will be needing the following concepts associated with a continuous time stochastic process $(X_t)_{t>0}$:

- Jump times
- Holding times
- Explosion and explosion time
- Jump process and jump chain
- Minimal (and right-continuous) process
- Q-matrix
- Jump matrix

Why do we need the second definition? In many cases

- it is more intuitive
- it is easier to construct the CTMC using this definition
- it contains a discrete (and often finite) set of parameters specifying the CTMC
- the two definitions are equivalent

Jump, Holding, Explosion Times

Given $(X_t)_{t>0}$

• The jump times J_0, J_1, \ldots are defined by

$$J_0 = 0, J_n = \inf\{t \ge J_{n-1} \mid X_t \ne X_{J_{n-1}}\}, n \ge 1.$$

• The holding times S_0, S_1, \ldots are defined by

$$S_n = \begin{cases} J_{n+1} - J_n & J_n < \infty \\ \infty & \text{otherwise} \end{cases}$$

• The explosion time is

$$\xi = \sup_{n} J_n = \sum_{n=0}^{\infty} S_n.$$

When $\xi < \infty$, the process makes infinitely many jumps in a finite amount of time: not desirable.

- The jump process $(Y_n)n \ge 0$ is defined by $Y_n = X_{J_n}$. If $(Y_n)_{n\ge 0}$ is a DTMC, then it is called the jump chain or embedded chain of $(X_t)_{t\ge 0}$.
- $(X_t)_{t\geq 0}$ is minimal when we require $X_t=\infty$ for $t\geq \xi$.

Q-matrices

- Let I be a countable set
- A Q-matrix on I is a matrix $\mathbf{Q} = (q_{ij} : i, j \in I)$ satisfying
 - (a) $0 \le -q_{ii} < \infty$, for all $i \in I$
 - (b) $q_{ij} \geq 0$, for all $i, j \in I$
 - $(c) \sum_{j \in I} q_{ij} = 0$
- For convenience, define $q_i = -q_{ii} \ge 0$
- Example

$$\mathbf{Q} = \begin{pmatrix} -3 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & -5 & 2 \\ 0 & 2 & 2 & -4 \end{pmatrix}$$

Later on,

- q_{ij} will be interpreted as the rate of jumping from i to j
- Q will be called the (infinitesimal) generator matrix for a CTMC

Jump Matrix

• Given a Q-matrix $\mathbf{Q} = (q_{ij})$, define the jump matrix $\mathbf{\Pi}$:

$$\pi_{ij} = \begin{cases} q_{ij}/q_i & j \neq i, \ q_i \neq 0 \\ 0 & j \neq i, \ q_i = 0 \end{cases}$$

$$\pi_{ii} = \begin{cases} 0 & q_i \neq 0 \\ 1 & q_i = 0 \end{cases}$$

• Example, jump matrix of previous Q-matrix

$$\mathbf{Q} = \begin{pmatrix} 0 & \frac{2}{3} & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 0 \\ 0 & \frac{3}{5} & 0 & \frac{2}{5} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

CTMC: Second Definition

A (minimal right-continuous) stochastic process $(X_t)_{t\geq 0}$ is a continuous time Markov chain if there is a Q-matrix $\mathbf{Q}=(q_{ij})$ with corresponding jump matrix $\mathbf{\Pi}$ such that

- (i) The jump process $(Y_n)_{n\geq 0}$ of $(X_t)_{t\geq 0}$ is a discrete-time Markov chain with transition probability matrix Π
- (ii) For any $n \geq 0$, conditional on Y_0, \ldots, Y_n , the holding times S_0, \ldots, S_n are independent exponential random variables with parameters q_{Y_0}, \ldots, q_{Y_n} , respectively

Example: the Poisson process with rate λ can be defined with the following Q-matrix

$$\mathbf{Q} = \begin{pmatrix} -\lambda & \lambda & 0 & \dots \\ 0 & -\lambda & \lambda & \dots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

Relationship Between Two Definitions

- Think of them as two different constructions of a CTMC
- Relationships between $\{\mathbf{P}(t)\}_{t>0}$ and \mathbf{Q} :
 - (a) $\{\mathbf{P}(t)\}_{t\geq 0}$ is the minimal non-negative solution to the forward equation

$$\mathbf{P}'(t) = \mathbf{QP}(t), \ \mathbf{P}(0) = \mathbf{I},$$

namely,

$$p'_{ij}(t) = \sum_{k \in I} q_{ik} p_{kj}(t), \ p_{ij}(0) = \delta_{ij}.$$

(b) $\{\mathbf{P}(t)\}_{t\geq 0}$ is the minimal non-negative solution to the backward equation

$$\mathbf{P}'(t) = \mathbf{P}(t)\mathbf{Q}, \ \mathbf{P}(0) = \mathbf{I},$$

namely,

$$p'_{ij}(t) = \sum_{k \in I} p_{ik}(t) q_{kj}, \ p_{ij}(0) = \delta_{ij}.$$

The Kronecker delta
$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
.

Getting the P(t) from Q

- To get the P(t) from Q, solve either the forward equation or the backward equation
- If *I* is finite, the following solution is the **unique** solution to the forward and backward equations (i.e., even among the non-minimal, negative ones)

$$\mathbf{P}(t) = e^{t\mathbf{Q}} = \sum_{n=0}^{\infty} \mathbf{Q}^n \frac{t^n}{n!}.$$

Getting Q from the P(t)

$$\mathbf{P}'(0) = \mathbf{P}(0)\mathbf{Q} = \mathbf{Q}.$$

In other words,

$$q_{ij} = p'_{ij}(0)$$
, for all i, j .

Class Structure

- $i \rightsquigarrow j \text{ if } \Pr_i(\exists t \geq 0, X_t = j) > 0$
- i communicate with j, i.e. $i \leftrightarrow j$, if $i \rightsquigarrow j$ and $j \rightsquigarrow i$
- communicating class, closed class, irreducibility are defined similarly

Theorem 2. Given states $i \neq j$, the following are equivalent

- (1) $i \rightsquigarrow j$
- (2) $i \rightsquigarrow j$ in the jump chain Π
- (3) $q_{ii_1}q_{i_1i_2}\cdots q_{i_nj} > 0$ for some states $i_1,\ldots,i_n, n \geq 0$
- (4) $p_{ij}(t) > 0 \text{ for all } t > 0$
- (5) $p_{ij}(t) > 0$ for some t > 0

Recurrence and Transience

• i is recurrent if

$$\Pr[\{t: X_t = i\} \text{ is unbounded}] = 1$$

- i is positive recurrent iff the expected return time to i is finite $(\mu_{ii} < \infty)$, and i is null recurrent otherwise
- i is transient if

$$\Pr[\{t: X_t = i\} \text{ is unbounded}] = 0$$

Theorem 3. We have

- (1) i is recurrent if and only if i is recurrent for Π
- (2) every state is either recurrent or transient
- (3) (positive/null) recurrence and transience are class properties

Stationary Distributions

A distribution (resp., measure) λ on I is a stationary (or invariant) distribution (resp., measure) if $\lambda \mathbf{P}(t) = \lambda$, $\forall t > 0$

Theorem 4. λ is stationary iff $\lambda \mathbf{Q} = 0$ (this holds for both measure and distribution cases). Specifically, λ is stationary iff

$$\sum_{i \neq j} \lambda_i q_{ij} = \lambda_j q_j = \lambda_j \sum_{k \neq j} q_{jk} \ \forall j \in I.$$
 (3)

This is the balanced equation for j. Moreover, λ is a stationary measure iff $\tau \mathbf{\Pi} = \tau$, where $\tau_i = \lambda_i q_i, \forall i \in I$.

Theorem 5. Let \mathbf{Q} be irreducible, then \mathbf{Q} is non-explosive and has an invariant distribution if and only if \mathbf{Q} is positive recurrent. Moreover, when \mathbf{Q} is positive recurrent with invariant distribution λ , we have $\mu_{ii} = \frac{1}{\lambda_i q_i}, \forall i \in I$.

Detailed Balance Condition

Theorem 6. If λ satisfies the detailed balance condition

$$\lambda_k q_{kj} = \lambda_j q_{jk}, \ \forall j, k \in I, \tag{4}$$

then λ is invariant.

Convergence to Equilibrium

Theorem 7. Let \mathbf{Q} be irreducible, non-explosive with an invariant distribution λ . Then,

$$\lim_{t \to \infty} p_{ij}(t) = \lambda_j, \ \forall j \in I.$$

In particular, the invariant distribution is unique.

Ergodic Theorem

Theorem 8. Let Q be irreducible, then

$$\Pr\left[\lim_{t\to\infty}\frac{1}{t}\int_0^t 1_{\{X_s=i\}}ds = \frac{1}{\mu_{ii}q_i}\right] = 1$$

Moreover, if \mathbf{Q} is positive recurrent, implying \mathbf{Q} has a unique invariant distribution λ , then for any bounded function $f: I \to \mathbb{R}$,

$$\Pr\left[\lim_{t\to\infty}\frac{1}{t}\int_0^t f(X_s)ds = \bar{f}\right] = 1,$$

where

$$\bar{f} = \sum_{i \in I} \pi_i f_i.$$

Birth and Death Process (BDP)

A birth and death process can be illustrated as follows.

- The $\{\lambda_i\}_{i\geq 0}$ are called the birth rates
- The $\{\mu_i\}_{i>0}$ are called the death rates
- The Poisson process is a special case of this process
- We often think of a state *i* as the number of "items" in a system
 - Items entering the system having i items according to a Poisson process with rate λ_i
 - Items leaving the system having i items according to a Poisson process with rate μ_i , independent from the entering items

BDP: Condition for Positive Recurrence

• The jump chain is the birth and death chain we've discussed, where

$$a_0 = 1$$

$$a_i = \frac{\lambda_i}{\lambda_i + \mu_i}, i \ge 1$$

$$b_i = \frac{\mu_i}{\lambda_i + \mu_i}, i \ge 1$$

• The chain is current iff

$$\sum_{n=1}^{\infty} \frac{\mu_1 \cdots \mu_n}{\lambda_1 \cdots \lambda_n} = \infty$$

• The chain is also positive recurrent if, additionally,

$$\sum_{n=1}^{\infty} \frac{\lambda_0 \cdots \lambda_{n-1}}{\mu_1 \cdots \mu_n} < \infty$$

BDP: Stationary Distribution

The balance equation for a measure τ to be stationary is

$$\tau_1 \mu_1 = \tau_0 \lambda_0$$

$$\tau_{i+1} \mu_{i+1} + \tau_{i-1} \lambda_{i-1} = \tau_i (\lambda_i + \mu_i), \ i \ge 1$$

Solving this, we get

$$\tau_n = \tau_0 \frac{\lambda_0 \cdots \lambda_{n-1}}{\mu_1 \cdots \mu_n}$$

For τ to be an invariant distribution, we further need $\sum_{n=0}^{\infty} \tau_n = 1$, which is solvable if

$$C = 1 + \sum_{n=1}^{\infty} \frac{\lambda_0 \cdots \lambda_{n-1}}{\mu_1 \cdots \mu_n} < \infty.$$

This is true when the chain is positive recurrent! In conclusion,

$$\tau_0 = \frac{1}{C}$$

$$\tau_n = \frac{1}{C} \frac{\lambda_0 \cdots \lambda_{n-1}}{\mu_1 \cdots \mu_n}, \quad n \ge 1$$

Ergodic theorem: as time tends to ∞ , fraction of time spent in state i is $\tau_i(\lambda_i + \mu_i)$.