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This Week’s Agenda
Last time

• Exponential Distribution, Poisson Process

Today

• Discrete Time Markov Chain
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Discrete-Time Markov Chain
A discrete-time Markov chain is

• A discrete-time stochastic process {X0, X1, . . . }

• State space I is countable (i.e. finite or enumerable)
I is often a subset of N or Z

• For all i, j ≥ 0 there is a given probability pij such that

P
[
Xn+1 = j |Xn = i,Xn−1 = in−1, . . . X0 = i0

]
= pij ,

for all i0, . . . , in−1, n ≥ 0.

• Clearly, the pij have to satisfy

pij ≥ 0,∀i, j ∈ I, and
∑

j∈I
pij = 1,∀i ≥ 0.

• P = (pij) is called the transition probability matrix
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Chapman-Kolmogorov Equations
• A measure on I is a vector λ where λi ≥ 0, for all i ∈ I .

• A measure is a distribution if
∑
i λi = 1.

• For any event F , let Pri[F ] = Pr[F | X0 = i]

• For any random variable Z, let Ei[Z] = E[Z | X0 = i]

• Let p(n)
ij = Pri[Xn = j]

• Chapman-Kolmogorov Equations:

p
(m+n)
ij =

∞∑

k=0

p
(n)
ik p

(m)
kj ,∀n,m ≥ 0, i, j ∈ I.

• It is clear that (Pn)ij = p
(n)
ij

• If λ is the distribution of X0, then λTPn is the distribution
of Xn. We also write

(Xn)n≥0 = Markov(P, λ).
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Communication Classes
• j is reachable from i if p(n)

ij > 0 for some n ≥ 0. We write
i ; j.

• i and j communicate if i ; j and j ; i. We write i↔ j.

• Communication is an equivalence relation, partitioning I
into communication classes

• Communication classes are strongly connected
components of the directed graph corresponding to for P

• A chain is irreducible if there is only one class

• A closed class C is a class where i ∈ C and i ; j imply
j ∈ C (no escape!)

• A state i is absorbing if i is a class
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Passage Times, Recurrent and Transient States
• First passage time:

Ti = inf{n ≥ 1 | Xn = i}. (1)

• Define

f
(n)
ij = Pri[Xn = j ∧ Xs 6= j,∀s = 1, .., n− 1]

= Pri[Tj = n]

fij =

∞∑

n=1

f
(n)
ij

µij =
∞∑

n=1

nf
(n)
ij

• i is recurrent (or persistent) iff fii = 1, and transient if
fii < 1.

• A recurrent state is
– positive if µii <∞
– null if µii =∞
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A Characterization of Recurrence and Transience
Theorem 1. Given a DTMC P and a state i,

(i) i is recurrent iff
∑
n≥0 p

(n)
ii =∞

(ii) i is transient iff
∑
n≥0 p

(n)
ii <∞

Proof. Let Vi be the number of visits to i, namely

Vi :=

∞∑

n=0

1{Xn=i}.

Then,

Ei[Vi] =
∞∑

n=1

nfn−1
ii (1− fii) =

1

1− fii
.

On the other hand,

Ei[Vi] = Ei

[ ∞∑

n=0

1{Xn=i}

]

=

∞∑

n=0

Ei[1{Xn=i}]

=
∞∑

n=0

p
(n)
ii .
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Example of Positive Recurrent States

P =


 p 1− p

1− p p


 , for 0 < p < 1.

Let the states be 0 and 1, then

f
(1)
00 = f

(1)
11 = p

f
(n)
00 = f

(n)
11 = (1− p)2pn−2, n ≥ 2

Both states are recurrent. Moreover,

µ00 = µ11 = p+
∞∑

n=2

n(1− p)2pn−2 = 2.

Hence, both states are positive recurrent states.
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Class properties
Theorem 2. Recurrence, transience, and positive/null
recurrent are all class properties.
Theorem 3. In a DTMC,

(i) Every recurrent class is closed

(ii) Every finite, closed class is recurrent
Corollary 4. In a finite DTMC, all recurrent states are positive
recurrent. Moreover, if the chain is also irreducible, then

(i) all states are positive recurrent.

(ii) Pr[Ti <∞] = 1

(this is true for irreducible, recurrent chains in general).
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Example of Null Recurrent States
Consider a Markov chain where P01 = 1, and for all i ≥ 1 we
have

Pi,i+1 =
i

i+ 1

Pi,0 =
1

i+ 1
.

Then,

f
(1)
00 = 0

f
(n)
00 =

1

n(n− 1)
∞∑

n=1

f
(n)
00 = 1

∞∑

n=1

nf
(n)
00 =

∞∑

n=1

1

n
=∞.

Consequently, 0 is a null recurrent state.
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Example of Transient States
• Consider a random walk on Z, where pi,i+1 = p and
pi+1,i = q, for all i ∈ Z, p+ q = 1, p, q > 0.

• The chain is an infinite and closed class.

• For any state i, we have

p
(2n+1)
ii = 0

p
(2n)
ii =

(
2n

n

)
pnqn

Hence,

fii =
∞∑

n=0

p
(2n)
ii =

∞∑

n=0

(
2n

n

)
pnqn

≈
∑

n≥n0

√
4πn(2n/e)2n(1 + o(1))

2πn(n/e)2n(1 + o(1))
pnqn

≈
∑

n≥n0

1√
πn

(4pq)n(1 + o(1)).

which is∞ if p = q and finite if p 6= q.

• Hence, an infinite closed class could be transient or
recurrent.
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Brief Summary of Recurrent and Transient
Properties

• We often only need to look at closed classes (that’s where
the chain will eventually end up).

• We can then consider irreducible chains instead.

Let P be an irreducible chain.

• If P is finite, then P is positive recurrent.

• If P is infinite, then P could be either transient, or positive
recurrent, or null recurrent.
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Periodicity, Ergodicity
• For a state i ∈ I , let

di = gcd{n : p
(n)
ii > 0}.

• When di ≥ 2, state i has period di.

• When di = 1, state i is aperiodic.

• A DTMC is periodic if it has a periodic state. Otherwise,
the chain is aperiodic.

Theorem 5. If i↔ j, then di = dj . In particular, aperiodicity
and periodicity are class properties.
Theorem 6. If i is aperiodic, then ∃n0 : p(n)

ii > 0, ∀n ≥ n0.
Corollary 7. If P is irreducible and has an aperiodic state i,
then Pn has all strictly positive entries for sufficiently large n.

• An ergodic state is an aperiodic, positive recurrent state.

• An ergodic Markov chain is a Markov chain in which all
states are ergodic. (Basically, a “well-behaved” chain.)
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Stationary Distribution
• A distribution λ is a stationary (equilibrium, invariant)

distribution if λTP = λ

Theorem 8. We have

(i) Let (Xn)n≥0 = Markov(P, λ), where λ is stationary, then
(Xn+m)n≥0 = Markov(P, λ) for any fixed m.

(ii) In a finite DTMC, suppose for some i ∈ I we have

lim
n→∞

p
(n)
ij = πj ,∀j ∈ I,

then π = (πj : j ∈ I) is an invariant distribution.

• In an infinite DTMC, it is possible that lim
n→∞

p
(n)
ij exists for

all i, j, producing a vector π for each i, yet π is not a
distribution.

• Consider the DTMC with state space Z and

pi,i+1 = p = 1− q = 1− pi,i−1, ∀i ∈ Z.

It is not difficult, although tedious, to show that

lim
n→∞

p
(n)
ij = 0,∀i, j.
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Existence of a Stationary Distribution
Theorem 9. An irreducible DTMC P has a stationary
distribution if and only if one of its states is positive recurrent.
Moreover, if P has a stationary distribution π, then πi = 1/µii.

Two other questions:

• When does an irreducible DMTC converge to a unique
invariant distribution?

• What’s the long-term behavior of the chain, e.g. how often
it visits a state?
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Convergence to equilibrium
Theorem 10. Suppose P is irreducible and ergodic. Then, it
has an invariant distribution π. Moreover,

1

µjj
= πj = lim

n→∞
p

(n)
ij , ∀j ∈ I.

Thus, π is the unique invariant distribution of P.

Note: there is a generalized version of this theorem for
irreducible chains with period d ≥ 2. (And the chain is not
even required to be positive recurrent.)
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Ergodic Theorem
Let

Vi(n) =
n−1∑

k=0

1{Xk=i}.

Theorem 11 (Ergodic Theorem). Let P be an irreducible
DTMC. Then

Pr
[

lim
n→∞

Vi(n)

n
=

1

µii

]
= 1

Moreover, if P is positive recurrent, implying P has a unique
invariant distribution π, then for any bounded function
f : I → R,

Pr
[

lim
n→∞

1

n

n−1∑

k=0

f(Xk) = f̄

]
= 1,

where
f̄ =

∑

i∈I
πifi.

• Note that, in the former case f(Xk) = 1{Xk=i}.

• This is essentially the strong law of large numbers for
DTMC.
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