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This Week’s Agenda

Last time
e Exponential Distribution, Poisson Process

Today

e Discrete Time Markov Chain
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Discrete-Time Markov Chain

A discrete-time Markov chain 1s
e A discrete-time stochastic process { X, X1,... }

e State space [ is countable (i.e. finite or enumerable)
I 1s often a subset of N or Z

e Forall¢,7 > 0 there is a given probability p;; such that
Pl Xpp1=7|Xn=0Xn_1=1ln_1,...Xo =io| = Dpijy
forall 7g,...,%,—1,m > 0.

e Clearly, the p;; have to satisty

pij > 0,Vi,j €1, and » pi; =1,¥i > 0.
jel

o P = (p;;) is called the transition probability matrix
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Chapman-Kolmogorov Equations

e A measure on I 1s a vector A where \; > 0, forallz € I.
o A measure is a distribution if ) |, \; = 1.
e For any event F', let Pr;|F'| = Pr|F | Xy = 1]
e For any random variable Z, let E;[Z] = E[Z | Xy = 1]
o Letp)” =Pr;[X, = j
e Chapman-Kolmogorov Equations:
pz(;'ﬂrn) = ipgz)pé?),Vn,m >0,2,7 € 1.
k=0
e Itis clear that (P");; = pz(-;b)

e If )\ is the distribution of X, then AT P™ is the distribution
of X,,. We also write

(Xn)n>0 = Markov(P, \).
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Communication Classes

e jis reachable from i if pq(;;fb)

> ( for some n > 0. We write
1~ 7.
e ¢ and j communicate if 1 ~» 7 and 7 ~ 1. We write ¢ < .

e Communication is an equivalence relation, partitioning /

Into communication classes

e Communication classes are strongly connected
components of the directed graph corresponding to for P

e A chain is irreducible if there 1s only one class

e A closed class C'is a class where ¢ € C' and ¢ ~ j imply
g € C (no escape!)

e A state 7 is absorbing if 1 1s a class
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Passage Times, Recurrent and Transient States

e First passage time:

T; =inf{n > 1| X,, = i}. (1)
e Define
Ff = Pr[X,=j A Xy #£5,Vs=1,..,n—1]
= PI};[T]‘ = 'n]
N )
i = Z ij
n=1

g =y nfy
n=1

e i is recurrent (or persistent) iff f;; = 1, and transient if
Jis < 1.

e A recurrent state is
— positive if p;; < 00

— null if p;; = 00
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A Characterization of Recurrence and Transience
Theorem 1. Given a DTMC P and a state 1,

(i) iis recurrent iff Y, <, pg?) = 00

(ii) 1 is transient iﬁfzn>0p§?> < 00

Proof. Let V; be the number of visits to ¢, namely

Vi = Z lex, =i}
n=0

Then,
1

1— fii

EiVil =) nfli (1 — fu) =
n=1

On the other hand,
Ei[Vi] = Ei|) lix,—j
n=0
= 2_Ellix,=]
n=0

()
= Di; -
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Example of Positive Recurrent States

P—

,for0 < p < 1.

Let the states be 0 and 1, then

(1)
00

(1)
00

1
1(1) =D

W =0=p)p" n>2

Both states are recurrent. Moreover,

poo = p1 =p+ Y _n(l—p)*p" % =2.

n=2

Hence, both states are positive recurrent states.
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Class properties

Theorem 2. Recurrence, transience, and positive/null

recurrent are all class properties.
Theorem 3. In a DTMC,

(i) Every recurrent class is closed

(ii) Every finite, closed class is recurrent

Corollary 4. In a finite DTMC, all recurrent states are positive

recurrent. Moreover, if the chain is also irreducible, then

(i) all states are positive recurrent.

(ii) Pr|T; < 0] =1

(this is true for irreducible, recurrent chains in general).
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Example of Null Recurrent States

Consider a Markov chain where Py; = 1, and forall 2 > 1 we

have
1
Piivi = 1+ 1
1
P; — .
& i+ 1
Then,
1
(go) = 0
(n) _ 1
00 n(n —1)
> fo = 1
n=1
0 . o0 1
Yofk) = Mg
n=1 n=1

Consequently, 0 1s a null recurrent state.
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Example of Transient States

e Consider a random walk on Z, where p; ;41 = p and
pi+1: = ¢ forallt € Z,p+q=1,p,q > 0.

e The chain is an infinite and closed class.

e For any state z, we have

(2n+1) 0

X3

P;; — P q
n
Hence,

fii = pgn) Z (2:)pnqn
Varn(2n/e)*" (1 +o(1)) , ,,
Z 2mn(n/e)?"(1 4+ o(1)) v

Q

n>ng

Z F4pq "(1+0(1)).

n>ngo

Q

which is oo if p = ¢ and finite if p # q.

e Hence, an infinite closed class could be transient or

recurrent.
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Brief Summary of Recurrent and Transient

Properties

e We often only need to look at closed classes (that’s where
the chain will eventually end up).

e We can then consider irreducible chains instead.
Let P be an irreducible chain.
e If P is finite, then P is positive recurrent.

e If P is infinite, then P could be either transient, or positive
recurrent, or null recurrent.
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Periodicity, Ergodicity

e Forastate: € I, let
d; = ged{n : pfg?) > 0}.

e When d; > 2, state ¢ has period d;.
e When d; = 1, state ¢ is aperiodic.

e A DTMC is periodic if it has a periodic state. Otherwise,
the chain is aperiodic.

Theorem 5. Ifi < j, then d; = d;. In particular, aperiodicity
and periodicity are class properties.

Theorem 6. If: is aperiodic, then Ing : pg? ) > 0, Vn > ny.
Corollary 7. If P is irreducible and has an aperiodic state 1,

then P" has all strictly positive entries for sufficiently large n.
e An ergodic state 1s an aperiodic, positive recurrent state.

e An ergodic Markov chain is a Markov chain in which all
states are ergodic. (Basically, a “well-behaved” chain.)
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Stationary Distribution

e A distribution A is a stationary (equilibrium, invariant)
distribution if AP = )

Theorem 8. We have

(i) Let (X, )n>0 = Markov(P, \), where X is stationary, then
(Xn+m)n>0 = Markov(P, \) for any fixed m.

(ii) In a finite DTMC, suppose for some 1 € I we have

. n .
nh_)rrgopgj) =m;,Vj e l,
thenm = (m; : j € I) is an invariant distribution.

e In an infinite DTMC, it is possible that lim p."

1
n—oo J

exists for

all 7, g, producing a vector 7 for each ¢, yet 7 1s not a
distribution.

e Consider the DTMC with state space Z and
Piivi=p=1—q=1—-p;; 1, Vi€ Z.
It is not difficult, although tedious, to show that

lim p\™ =0,Vi, .

1
n—aoo J
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Existence of a Stationary Distribution

Theorem 9. An irreducible DTMC P has a stationary
distribution if and only if one of its states is positive recurrent.

Moreover, if P has a stationary distribution =, then 7; = 1/ uii.
Two other questions:

e When does an irreducible DMTC converge to a unique

mvariant distribution?

e What’s the long-term behavior of the chain, e.g. how often
1t visits a state?
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Convergence to equilibrium

Theorem 10. Suppose P is irreducible and ergodic. Then, it

has an invariant distribution w. Moreover,

1
— =m; = lim pE?), Vjel.
Hij nTee

Thus, 7 is the unique invariant distribution of P.

Note: there 1s a generalized version of this theorem for
irreducible chains with period d > 2. (And the chain is not

even required to be positive recurrent.)
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Ergodic Theorem

Let
n—1
V;(?’L) — Z 1{Xk:=i}'
k=0

Theorem 11 (Ergodic Theorem). Let P be an irreducible
DTMC. Then

lim = —

Pr[ Vitn) _ 1 ] —1
n—oo N 227}

Moreover, if P is positive recurrent, implying P has a unique

invariant distribution m, then for any bounded function
f:I—R,

where

e Note that, in the former case f(X%) = 1{x, =i}

e This is essentially the strong law of large numbers for
DTMC.
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