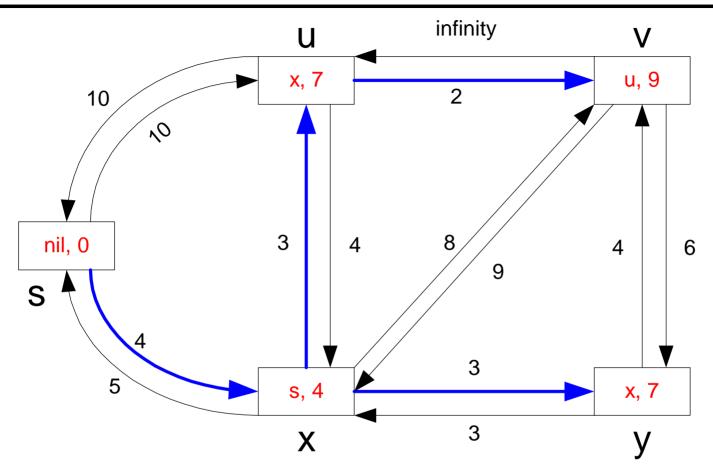

Review of Internet routing algorithms


- Shortest path algorithms
 - o Dijkstra algorithm
 - Bellman-Ford algorithm
- Routing algorithms in practice
 - Link-state routing
 - Distance vector routing
- Routing protocols
 - Intra-AS routing: OSPF, RIP, IS-IS, Static
 - o Inter-AS routing: BGP

Networks as Graphs

Weights: combination of bandwidth, load, delay, ...

Shortest Path Tree

- Directed tree, links go out from root to leaves
- The unique path from root to any node v is the shortest path from the root to v

Single-source Shortest Path Algorithms

- Dijkstra algorithm
- Bellman-Ford algorithm
- Input:
 - Direct graph G = (V,E)
 - A weight function $W: E \rightarrow R^+$
 - A source s
- Output:
 - A shortest path tree rooted at *s*

Basic Data Structures and Functions

- To build the SPT, each node maintain two fields:
 - p[v]: the pointer to the parent of v in the tree
 - c[v]: the least cost from s to v
- Init():
 - For each vertex v, $c[v] = \infty$, p[v] = NIL
 - $\bullet C[S] = 0$
- Improve(u, v), where (u, v) is a directed edge of G
 - if c[v] > c[u] + w(u,v) then c[v] = c[u] + w(u,v)p[v] = u

- Init()
- T = empty-set
- while (*T != V*)
 - $u \leftarrow a$ vertex not in T with minimum c[u]
 - $T = T \cup \{u\} / / \text{ add } u \text{ to } T$
 - for each v not in T so that (u, v) is an edge Improve(u, v)
 - Note:
 - negative edges, the algorithm is slightly different
 - it can also fail if there is a negative cycle

Some Dijkstra's quotes:

- "The question of whether a computer can think is no more interesting than the question of whether a submarine can swim."
- "Computer science is no more about computers than astronomy is about telescopes."
- "<u>Object-oriented programming is an exceptionally</u> <u>bad idea which could only have originated in</u> <u>California.</u>"

Bellman-Ford Algorithm

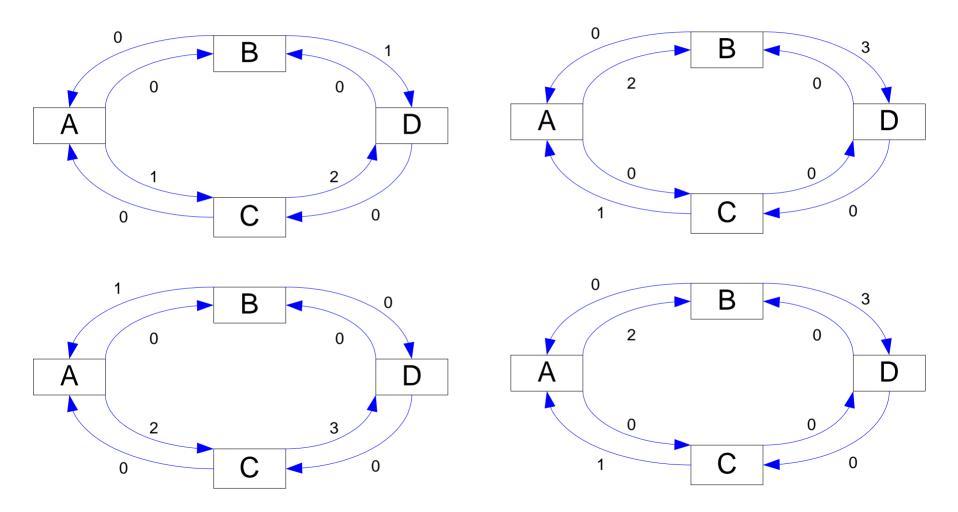
- Init()
- For i=1 to | *V*|-1
 - for each edge (u, v) in G
 Improve(u, v)

Can be modified to allow negative weights and negative cycles

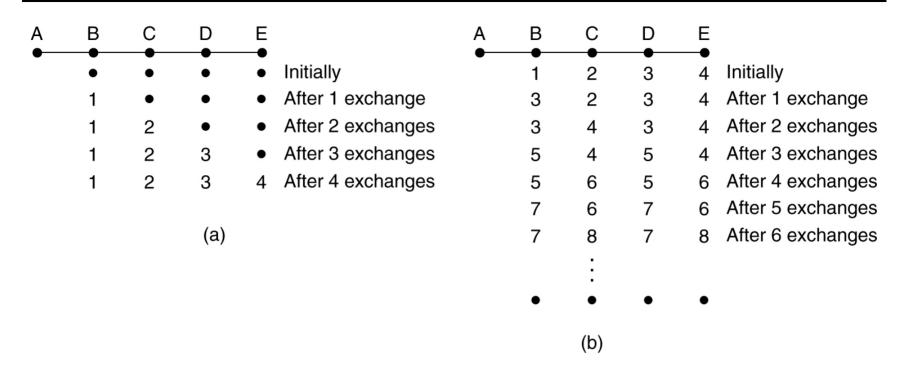
Link State and Distance Vector Basics

Which corresponds to Dijkstra, Bellman-Ford?

Link State Routing

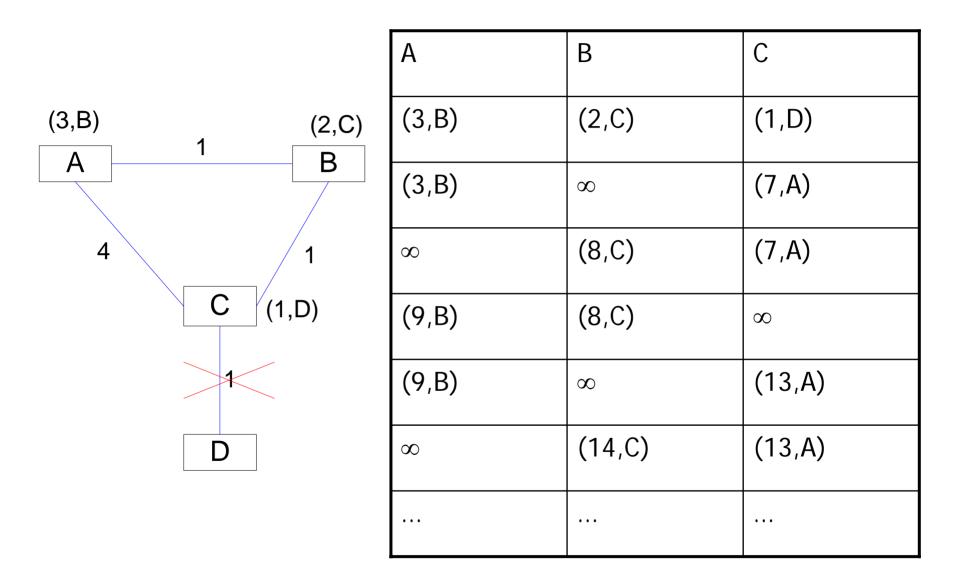

- Each node sends neighboring link costs to all nodes
- Each node computes routing table separately
- Question: what if two nodes compute two different SPTs (given the same graph?)

Distance Vector


- Each nodes sends estimates to all neighbors
- Each node updates routing table accordingly

Oscillation Problem

If link load is part of the cost


Count-to-infinity Problem

• What are some solutions?

- Split horizon
- With poisoned reverse (does it solve the problem?)
- Triggered Updates

Poisoned Reverse Fails Too

- How bad is count-to-infinity: it takes sometime to report unreachable destination
- To make bad news propagate faster, in practice we use triggered updates
 - send link status updates really quick hopefully before regular exchanges are done
 - Still do not solve the problem

Link State vs. Distance Vector (1)

Message complexity

- <u>LS</u>: with n nodes, E links, O(nE) msgs sent each
- <u>DV</u>: exchange between neighbors only
 - convergence time varies

Speed of Convergence

- <u>LS</u>: O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

<u>LS:</u>

- node can advertise incorrect *link* cost
- each node computes only its *own* table

<u>DV:</u>

- DV node can advertise incorrect *path* cost
- each node's table used by others
 - error propagate thru network

Message complexity

 LS requires more messages to be exchanged, DV requires larger messages

Speed of convergence

 DV can converge slower, but LS needs more overhead to flood messages

Robustness

 LS is somewhat more robust since each node calculate all the routes by itself, less dependent on a few routers' errors

Efficiency

Hard to say, neither is a winner, both are used in practice

Tips and Tricks 9

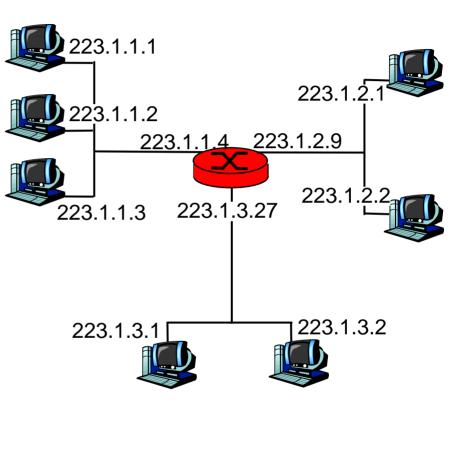
What is a *file descriptor leakage*?

Why Hierarchical Routing?

Suppose a single routing algorithm is used

Does not scale well

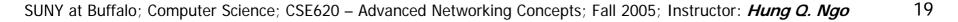
- 200 Mil destinations can't be stored in memory entirely
- LS: overhead required to broadcast link status
- DV: likely never converge


Politically incorrect

- Intra-AS routing protocol or Interior Gateway Protocol
 - **Static**: used in very small domains
 - [DV] RIP: used in some small domains (has limitations)
 - [LS] OSPF: widely used in enterprise networks
 - [LS] IS-IS: widely used in ISP networks
 - Cisco's IGRP and EIGRP

Inter-AS protocol or Exterior Gateway Protocol BGP (v4)

IP Addressing


- IP address: 32-bit identifier for host, router *interface*
- *interface:* connection between host/router and physical link
 - router's typically have multiple interfaces
 - host may have multiple interfaces
 - IP addresses associated with each interface

 $223.1.1.1 = \underbrace{11011111}_{00000001} \underbrace{0000001}_{0000001} \underbrace{0000001}_{0000001}$

1

1

A	0	Few large organizations	1.0.0.0 to 126.0.0.0
В	10	Medium organizations	128.1.0.0 to 191.255.0.0
С	110	Small organizations	192.0.1.0 to 223.255.255.0
D	1110	Multicasting	224.0.0.0 to 239.255.255.255
E	1111	Reserved	240.0.0.0 to 254.255.255.255

Are we missing something ?

Waste lots of addresses

- A class C network is too small
- A class B network (65534 hosts) is too large
- Running out of Class B networks
- Giving out class C blocks increase the routing table sizes of core routers

What are current solutions?

First Solution: Subnetting

	Network	Network		Subnet		Host	
Binary representation	11111111	111111111		11111111		00000000	
Dotted decimal representation	255	255		255		0	24145

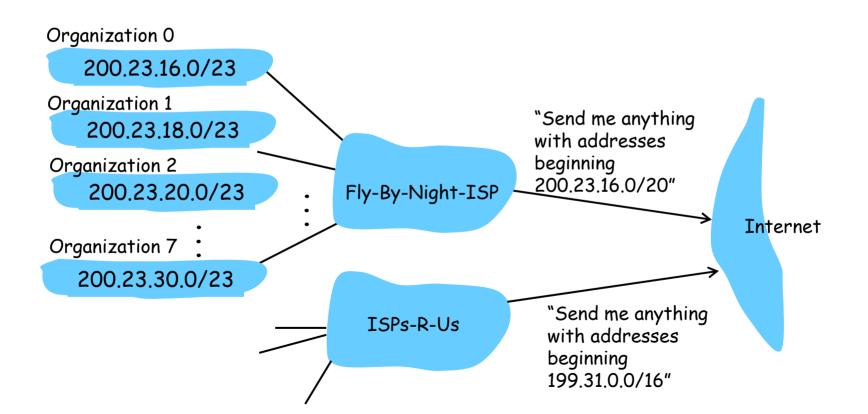
- The network-prefix and the subnet number form the extended network-prefix
- The rest is host-number
- Modern terminology: /x networks
 - e.g. a class B is /16, class C is /24, class A is /8
 - a subnet of a class B could be /20, ...

- Each organization has a fixed number of subnets of fixed sized
 - CSE should have more hosts than philosophy dept.
- Reason: earlier routing protocols (RIPv1 *routed*) did not pass the masks along with routes → a single mask used through out an organizational network

Second Solution: VLSM

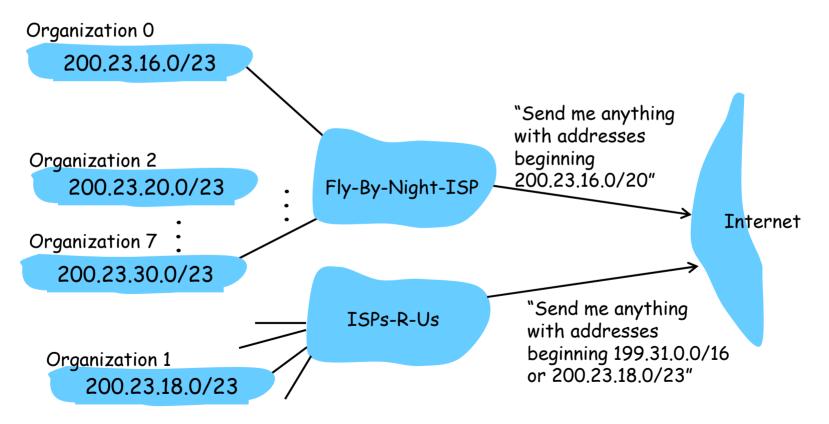
- Variable Length Subnet Mask (RFC 1009 1987)
- Much more efficient use of address space
- Allows route aggregation (what is it?), but require:
 - Routing protocols to carry extended network prefix
 - Routers must implement "longest match" (why?)
 - Addresses must have topological significant
- Examples:
 - /8 into multiple /16
 - Some /16 into multiple /24
 - Some /16 into multiple /18
 - Some /24 into multiple /27

- Destination:
 - 11.1.2.5 = 00001011.0000001.0000010.00000101
- Route 1:
 - $\bullet 11.1.2.0/24 = 00001011.0000001.00000010.00000000$
- Route 2:
 - $\bullet 11.1.0.0/16 = 00001011.0000001.0000000.00000000$
- Route 3:
- Router must pick route 1


- Just the same as VLSM, but
 - VLSM is performed on previously assigned space to an organization, invisible to the internet
 - CIDR is global
- Example:
 - an organization gets a /20 from a /8 of an ISP
 - Iater the organization switches to another ISP
 - changing all IPs of all computers is crazy
 - so, keep the IPs and use CIDR, the second ISP gateway router advertise the subnet of the organization too
 - requires Longest Match to work

Using NAT and Private Address Space (RFC 1918)

- **10.0.0.0 10.255.255.255**
- **172.16.0.0 172.31.255.255**
- **192.168.0.0 192.168.255.255**


Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

