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This Week’s Agenda

e Introduction to Queueing Theory

— Exponential Distribution, Poisson Process, Discrete
Time Markov Chain

— Continuous Time Markov Chain, Birth and Death
Process

— Queueing Networks
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Exponential Distribution

1" exponentially distributed with rate \ if

e M >0
0 t <0

fr(t) =

fr(t) is the density function of 7. We also write
T = exponential(\).

The cdf of T is then

(1)

Fr(t)=Pr[T <t| = /t frz)dr=1—e. (2

Equivalently,

Fr(t) =Pr[T > t] = e .

3)
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Memoryless Random Variables

1" 1s said to be memoryless it

PI’[T > 11 + to |T > tl] —= PI’[T > tQ]

Theorem 1. A continuous random variable X is memoryless if

and only if it has an exponential distribution

Some facts

Let T' = exponential(\). Then,

EWﬂ=/wﬁh@ﬁ=~-

— 00

Hence,

Mo = >l
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Example: Exponential Race Problem

e £ lines carrying incoming packet streams are connected to

a router.
e The interarrival times 77, ..., T} are independent
e T; = exponential(}\;)
Questions

e What’s the probability that the first packet comes from line
1?

e What’s the distribution of the first arrival time min{7; }?

e What’s the distribution of the last arrival time max{7T;}?
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Example: Exponential Race Problem

Pr [ﬁrst arrival 1s from line 1]

= Pr[Tl = min{7T1, - - 7Tk}}

_ /°° Pr[Ty > t] - Pr[Th > t] fr, (1) dlt

@)
= / e~ Mttty e=Mit gy
0

A1
N g e

Let Z = min{T},--- ,T%}. The cdf of Z is

Fz(t)=P[Z<t] = 1-P[Z>1
k

—1-J[PITi >4 = 1—eGutrtw,
1

Similarly, W = max{T},--- , Ty}, and

k

[J(x—e ).

1

Fuw(t) = PIW < 1

Intuitively, why i1s it that Z is exponential but W 1s not?
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The nth packet arrival time

e Packets are arriving at a server.

e Inter-arrival time is exponential(\).

e 7; is the time that the 2th packet arrives.
e S5, =11+ ---+1,.

Question

Compute the cdf of .5,
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The nth packet arrival time

The cdf of S,, can be computed as follows.

Fg,(t) = Pr[S, <t
_ /O (Pr[S,, — Ty < t — a]) i, () da

Inductively, we get F's_(t) and

(At)™—1

fs,(t) = )\G_MM

4)

which is Gamma(n, \).
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Stochastic Processes

e A stochastic process is a collection of random variables
indexed by some set 7"

{X(t),teT}

e Elements of 7" are often throught of as points in time

e The set of all posible values of the X (¢) are called the state
space of the process

e When 7' is countable the process is said to be discrete-time

e When 7' 1s an interval of the real line, then the process is

called a continuous-time process
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Example: Bernoulli Process

A Bernoulli process is a sequence { X1, Xo, ..., } of
independent Bernoulli random variables with parameter p, i.e.

PI'[XZ
PI'[XZ

1] = p
0] = 1-—p

We are interested in the following quantities

T, = number of slots from the (n — 1)th 1 to the nth 1
Questions

e Compute the probability mass functions of S.,, T,, Y,

e Compute the expectations and variances of \S,,, T’,, Y,
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Example: Bernoulli Process

ps, (k) = (Z)pk(l —p)"F0<k<n
pr,(k) = (1-p)*'p

k—1

n(| _ k—nk> .
N TR

Py, (k) = (

E[S,] = np
Var [S,,] = np(l—p)
BT, = —
o p
Var[T,] = 7
p
B[V, = =
p
varfy,] = "L—P)
p
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Poisson Distribution

X has Poisson distribution with parameter p, written as
X = Poisson(u) if

Pr[X =n] = e~ nE
n!
We have E[ X | = p and Var [ X]| = pu.
Theorem 2. If X = Poisson(\) and Y = Poisson(u), then

X +Y = Poisson(A+ ), given that X and 'Y are independent
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Poisson Process

e There are several equivalent definitions. We give the most
intuitive here.

o Let7y,...,T,,... beiid. random variables which are all
exponential(\)

e Think of 7; as the inter-arrival time between the (¢ — 1)th

event and the ith event
o [etS,=T1+---+1,
e Define the random process { N(t),t > 0} by
N(t) = max{n : S, <t}.
Then, the process is called a Poisson process with rate \

It 1s easy to see that
Pr|N(t) =n] = Pr[S, <t,S,11 > 1]

/O (P[Ty1 >t — a))fs (2)da

_ M (A2)
n!
= Poisson(\t)
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Merging Independent Poisson Processes

Let Ni(t), ..., Ng(t) be independent Poisson processes.
Then, N(t) = N1(t) + ... Ng(t) is called the merging, or the

superposition of Poisson processes.

Proposition 3. The merging, or superposition of independent
Poission processes N1(t), Na(t), - - - , Ni(t) with rates

A1, A2, -+, A\, is a new Poisson process N (t) with rate
k
A=) A
i=1
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Splitting Independent Poisson Processes

We can split N (¢) with rate X into V;(¢) with probability p;,
where 1 <: < kandp; +---+pr = 1.

This act 1s called splitting or thinning the Poisson process.

Theorem 4. N,(t) is a Poisson process with rate \p;.

Proof.
Pr[Nl(t):n17"' 7Nk(t):nk]:H€_>\pjt L |
ale nj.

Thus,

ng, - ,Ng
k o0 n
_ —Apit ()‘plt)n H Z —Apjt()\p]t> ’
= e &
| N
n. P n].
—)\plt ()\plt)n
= €
n!
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