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This Week’s Agenda
• Introduction to Queueing Theory

– Exponential Distribution, Poisson Process, Discrete
Time Markov Chain

– Continuous Time Markov Chain, Birth and Death
Process

– Queueing Networks
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Exponential Distribution
T exponentially distributed with rate λ if

fT (t) =





λe−λt t ≥ 0

0 t < 0
(1)

fT (t) is the density function of T . We also write

T = exponential(λ).

The cdf of T is then

FT (t) = Pr[T ≤ t] =

∫ t

−∞
fT (x) dx = 1− e−λt. (2)

Equivalently,

FT (t) = Pr[T > t] = e−λt. (3)
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Memoryless Random Variables
T is said to be memoryless if

Pr[T > t1 + t2 | T > t1] = Pr[T > t2]

Theorem 1. A continuous random variable X is memoryless if
and only if it has an exponential distribution

Some facts
Let T = exponential(λ). Then,

E[exT ] =

∫ ∞

−∞
extfT (t) dt = · · · =

∞∑

n=0

n!

λn
xn

n!

Hence,

E[T ] =
1

λ

Var [T ] =
1

λ2
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Example: Exponential Race Problem
• k lines carrying incoming packet streams are connected to

a router.

• The interarrival times T1, . . . , Tk are independent

• Ti = exponential(λi)

Questions

• What’s the probability that the first packet comes from line
1?

• What’s the distribution of the first arrival time min{Ti}?

• What’s the distribution of the last arrival time max{Ti}?
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Example: Exponential Race Problem

Pr
[
first arrival is from line 1

]

= Pr
[
T1 = min{T1, · · · , Tk}

]

=

∫ ∞

0

Pr
[
T2 > t

]
· · · Pr

[
Tk > t

]
fT1

(t) dt

=

∫ ∞

0

e−(λ1+···+λk)tλ1e
−λ1t dt

=
λ1

λ1 + λ2 + · · ·+ λk

Let Z = min{T1, · · · , Tk}. The cdf of Z is

FZ(t) = P [Z ≤ t] = 1− P [Z > t]

= 1−
k∏

1

P [Ti > t] = 1− e−(λ1+···+λk)t.

Similarly, W = max{T1, · · · , Tk}, and

FW (t) = P [W ≤ t] =

k∏

1

(1− e−λit).

Intuitively, why is it that Z is exponential but W is not?
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The nth packet arrival time
• Packets are arriving at a server.

• Inter-arrival time is exponential(λ).

• Ti is the time that the ith packet arrives.

• Sn = T1 + · · ·+ Tn.

Question

Compute the cdf of Sn
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The nth packet arrival time
The cdf of Sn can be computed as follows.

FSn(t) = Pr[Sn ≤ t]

=

∫ t

0

(Pr[Sn − T1 ≤ t− x])fT1(x) dx

Inductively, we get FSn(t) and

fSn(t) = λe−λt
(λt)n−1

(n− 1)!
(4)

which is Gamma(n, λ).
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Stochastic Processes
• A stochastic process is a collection of random variables

indexed by some set T :

{X(t), t ∈ T}

• Elements of T are often throught of as points in time

• The set of all posible values of the X(t) are called the state
space of the process

• When T is countable the process is said to be discrete-time

• When T is an interval of the real line, then the process is
called a continuous-time process

CSE 620 Lecture Notes Advanced Networking Concepts Page 8



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo September 29, 2005

Example: Bernoulli Process
A Bernoulli process is a sequence {X1, X2, . . . , } of
independent Bernoulli random variables with parameter p, i.e.

Pr[Xi = 1] = p

Pr[Xi = 0] = 1− p

We are interested in the following quantities

Sn = X1 + · · ·+Xn

Tn = number of slots from the (n− 1)th 1 to the nth 1

Yn = T1 + · · ·+ Tn

Questions

• Compute the probability mass functions of Sn, Tn, Yn

• Compute the expectations and variances of Sn, Tn, Yn
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Example: Bernoulli Process

pSn(k) =

(
n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n

pTn(k) = (1− p)k−1p

pYn(k) =

(
k − 1

n− 1

)
pn(1− p)k−n, k ≥ n.

E[Sn] = np

Var [Sn] = np(1− p)

E[Tn] =
1

p

Var [Tn] =
1− p
p2

E[Yn] =
n

p

Var [Yn] =
n(1− p)

p2

CSE 620 Lecture Notes Advanced Networking Concepts Page 10



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo September 29, 2005

Poisson Distribution
X has Poisson distribution with parameter µ, written as
X = Poisson(µ) if

Pr[X = n] = e−µ
µn

n!

We have E[X] = µ and Var [X] = µ.
Theorem 2. If X = Poisson(λ) and Y = Poisson(µ), then
X+Y = Poisson(λ+µ), given that X and Y are independent
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Poisson Process
• There are several equivalent definitions. We give the most

intuitive here.

• Let T1, . . . , Tn, . . . be i.i.d. random variables which are all
exponential(λ)

• Think of Ti as the inter-arrival time between the (i− 1)th
event and the ith event

• Let Sn = T1 + · · ·+ Tn

• Define the random process {N(t), t ≥ 0} by

N(t) = max{n : Sn ≤ t}.

Then, the process is called a Poisson process with rate λ

It is easy to see that

Pr[N(t) = n] = Pr[Sn ≤ t, Sn+1 > t]

=

∫ t

0

(P [Tn+1 > t− x])fsn(x) dx

= . . .

= e−λt · (λt)n

n!
= Poisson(λt)
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Merging Independent Poisson Processes
Let N1(t), . . . , Nk(t) be independent Poisson processes.

Then, N(t) = N1(t) + . . . Nk(t) is called the merging, or the
superposition of Poisson processes.
Proposition 3. The merging, or superposition of independent
Poission processes N1(t), N2(t), · · · , Nk(t) with rates
λ1, λ2, · · · , λk is a new Poisson process N(t) with rate

λ =
k∑

i=1

λi.

CSE 620 Lecture Notes Advanced Networking Concepts Page 13



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo September 29, 2005

Splitting Independent Poisson Processes
We can split N(t) with rate λ into Ni(t) with probability pi,
where 1 ≤ i ≤ k and p1 + · · ·+ pk = 1.

This act is called splitting or thinning the Poisson process.
Theorem 4. Ni(t) is a Poisson process with rate λpi.

Proof.

Pr[N1(t) = n1, · · · , Nk(t) = nk] =
k∏

j=1

e−λpjt
(λpjt)

nj

nj !

Thus,

Pr[N1(t) = n]

=
∑

n2,··· ,nk
Pr[N1(t) = n,N2(t) = n2, · · · , Nk(t) = nk]

= · · ·

= e−λp1t
(λp1t)

n

n!

k∏

j=2

∞∑

nj=0

e−λpjt
(λpjt)

nj

nj !

= e−λp1t
(λp1t)

n

n!
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