
CSE 713: Random Graphs and Applications Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2003 Scribe: Hung Q. Ngo

Lecture 10: Introduction to Algebraic Graph Theory

Standard texts on linear algebra and algebra are [2,14]. Two standard texts on algebraic graph theory
are [3,6]. The monograph by Fan Chung [5] and the book by Godsil [7] are also related references.

1 The characteristic polynomial and the spectrum

Let A(G) denote the adjacency matrix of the graphG. The polynomialpA(G)(x) is usually referred to as
thecharacteristic polynomialof G. For convenience, we usep(G, x) to denotepA(G)(x). Thespectrum
of a graphG is the set of eigenvalues ofA(G) together with their multiplicities. SinceA (short forA(G))
is a real symmetric matrix, basic linear algebra tells us a few thing aboutA and its eigenvalues (the roots
of p(G, x)). Firstly, A is diagonalizable and has real eigenvalues. Secondly, ifλ is an eigenvalue of
A, then theλ-eigenspace has dimension equal to the multiplicity ofλ as a root ofp(G, x). Thirdly, if
n = |V (G)|, thenCn is the direct sum of all eigenspaces ofA. Last but not least,

rank(A) = n−m[0],

wherem[0] is the multiplicity of the0-eigenvalue.
SupposeA(G) hass distinct eigenvaluesλ1 > · · · > λs, with multiplicities m[λ1], . . . ,m[λs]

respectively, then we shall write

Spec(G) =
(

λ1 λ2 . . . λs

m[λ1] m[λ2] . . . m[λs]

)
We also useλmax(G) andλmin(G) to denoteλ1 andλs, respectively.

Example 1.1 (The Spectrum of The Complete Graph).

p(Kn, λ) = λI − J

= det


λ −1 −1 . . . −1
0 (λ+1)(λ−1)

λ
−(λ+1)

λ . . . −(λ+1)
λ

0 0 (λ+1)(λ−2)
(λ−1) . . . −(λ+1)

λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . (λ+1)(λ−(n−1))
(λ−(n−2))


= (λ + 1)n−1(λ− n + 1)

So,

Spec(Kn) =
(

n− 1 −1
1 n− 1

)
Remark1.2. Two graphs areco-spectralif they have the same spectrum. There are many examples of
co-spectral graphs which are not isomorphic. There are also examples all the graphs with a particular
spectral must be isomorphic. I don’t know of an intuitive example of co-spectral graphs (yet). Many
examples can be found in the “bible” of graph spectra [15].
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A principal minor of a square matrixA is the determinant of a square submatrix ofA obtained by
taking a subset of rows and the same subset of columns. The principal minor is oforderk if it hask rows
andk columns.

Proposition 1.3. Supposep(G, x) = xn + c1x
n−1 + · · ·+ cn, then

(i) c1 = 0.

(ii) −c2 = |E(G)|.

(iii) −c3 is twice the number of triangles inG.

Proof. It is not difficult to see that(−1)ici is the sum of the principal minors ofA(G) of orderi. Given
this observation, we can see that

(i) c1 = 0 sincetrA(G) = 0.

(ii) −c2 = |E(G)| since each non-zero principal minor of order2 of A(G) corresponds todet
[

0 1
1 0

]
,

and there is one such minor for each pair of adjacent vertices inG.

(iii) Of all possible order-3 principal minors ofA(G), the only non-zero minor is

det

0 1 1
1 0 1
1 1 0

 = 2

which corresponds to a triangle inG.

Example 1.4. All principal minors ofA(Km,n) of orderk 6= 2 are0. Hence,p(Km,n, x) = xm+n +
c2x

m+n−2. By previous proposition,c2 = −mn. Thus,

Spec(Km,n) =
(√

mn 0 −
√

mn
1 m + n− 2 1

)
Notice thatSpec(Km,n) is symmetric above the eigenvalue0. This beautiful property turns out to be

true for all bipartite graphs, as the following lemma shows.

Lemma 1.5 (The Spectrum of a Bipartite Graph). The following are equivalent statements about a
graphG

(a) G is bipartite.

(b) The non-zero eigenvalues ofG occurs in pairsλi, λj such thatλi + λj = 0 (with the same multi-
plicity).

(c) p(G, x) is a polynomial inx2 after factoring out the largest common power ofx.

(d)
∑n

i=1 λ2t+1
i = 0 for all t ∈ N.

Proof. (a ⇒ b). First of all, we could assume that the bipartitions ofG have the same size, otherwise
adding more isolated vertices into one of the bipartitions only give us more0 eigenvalues. We can
permute the vertices ofG so thatA = A(G) =

[
0 B

BT 0

]
. Let v =

[
x
y

]
be aλ-eigenvector. We haveλv =

Av =
[

0 B
BT 0

][
x
y

]
=

[ By
BT x

]
. So,By = λx andBT x = λy. Let v′ =

[
x
−y

]
thenAv′ =

[−By
BT x

]
= −λ

[
x
−y

]
.

Hence,v′ is a (−λ)-eigenvector ofA. The multiplicity of λ is the dimension of its eigenspace. The
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mappingv → v′ just described is clearly an invertible linear transformation, so theλ-eigenspace and the
(−λ)-eigenspace have the same dimension.

(b ⇒ c). Easy as(x− λi)(x + λi) = x2 − λ2
i .

(c ⇒ d). Whenp(G, x) is a polynomial inx2, its roots come in pairsλi + λj = 0, so thatλ2t+1
i +

λ2t+1
j = 0 for each pair.

(d ⇒ a). =
∑n

i=1 λ2t+1
i = trA2t+1 by Proposition??. Also, trA2t+1 is at least the total number of

closed walks of length2t+1 in G. SoG does not have any cycle of odd length. It must be bipartite.

Proposition 1.6 (A Reduction Formula for p(G, x)). Supposevi is a vertex of degree1 of G, andvj is
v1’s neighbor. LetG1 = G− vi, andG2 = G− {vi, vj}, then

p(G, x) = (xp(G1, x)− p(G2, x)) .

Proof. Expanding the determinant of(xI −A) along rowi and then columnj yields the result.

Example 1.7 (The Characteristic Polynomial of a Path).LetPn be the path withn vertices{v1, . . . , vn},
then

p(Pn, x) = xp(Pn−1, x)− p(Pn−2, x), n ≥ 3;

which is a straightforward application of the previous proposition. Note that this impliesp(Pn, x) =
Un(x/2) whereUn is the Chebyshev polynomial of the second kind.

For the sake of completeness, recall that the Chebyshev polynomial of the second kind has generating
function

u(t, x) =
1

1− 2xt + t2
=

∞∑
n=0

Un(x)tn,

for |x| < 1 and|t| < 1; which gives the three-term recurrence

Un(x) = 2xUn−1(x)− Un−2(x).(why?)

Proposition 1.8 (The Derivative ofp(G, x)). For i = 1, . . . , n, let Gi be G − vi whereV (G) =
{v1, . . . , vn}. Then,

p′(G, x) =
∑

i

p(Gi, x).

Proof. Write

p′(G, x) = (xn + c1x
n−1 + · · ·+ cix

n−i + · · ·+ cn)′

= nxn−1 +
n−j∑
j=1

(n− j)cjx
n−j−1.

Now, nxn−1 distributes ton leading terms ofp(Gi, x). We show that the terms(n − j)cjx
n−j−1 also

distribute to the corresponding terms ofp(Gi, x).
We know cj is (−1)j times the sum of all order-j principle minors ofA. We want to show that

(n− j)cj(−1)j is the sum of all order-j principle minors of allAi = A(Gi). An order-j principle minor
of anyAi is an order-j principle minor ofA. An order-j principle minor ofA is an order-j principle
minor of precisely(n − j) of theAi. Thej exceptions are theAi obtained fromA by removing one of
thej rows (and columns) corresponding to the minor under consideration.
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Example 1.9. SupposeA(G) hasr identical columns indexed{i1, . . . , ir}, i.e. thoser vertices share
the same set of neighbors. Letx be a vector all of whose components are0 except at two componentsis
andit wherexis = −xit 6= 0. Thenx is a0-eigenvector ofA. The vector space spanned by all thesex
has dimensionr − 1 (why?), so the0-eigenspace ofA has dimension at leastr − 1.

This fact could be obtained by seeing thatrank(A) ≤ n− r + 1 due to ther identical columns, then
applyrank(A) = n−m[0].

Example 1.10.It’s easy to see that the number of closed walks of lengthk of G is trAk =
∑

λk
i . Hence,

if G hasn vertices andm edges then
∑

λi = 0 and
∑

λ2
i = 2m. (Here we letλ1 ≥ λ2 ≥ · · · ≥ λn be

the eigenvalues ofG.) It follows trivially that

λ2
1 = (λ2 + · · ·+ λn)2

≤ (n− 1)(2m− λ2
1).

So,
2m

n
≤ λ1 ≤

√
2m(n− 1)

n
,

where the lower bound is shown in the next section.

2 Eigenvalues and some basic parameters of a graph

The eigenvalues of a graph gives pretty good bounds on certain parameters of a graph. I include here
several representative results. More relationships of this kind shall be presented later (e.g. the chromatic
number in section 5).

Lemma 2.1. If G′ is an induced subgraph ofG, then

λmin(G) ≤ λmin(G′) ≤ λmax(G′) ≤ λmax(G)

Proof. Follows directly from the theorem about interlacing of eigenvalues

Lemma 2.2. For every graphG, δ(G) ≤ λmax(G) ≤ ∆(G).

Proof. Let x be aλ-eigenvector for some eigenvalueλ of G. Let |xj | = maxi |xi| be the largest absolute
coordinate value inx, then

|λ||xj | = |(Ax)j | =
∑

i | ij∈E(G)

|xi| ≤ deg(j)|xj | ≤ ∆(G)|xj |

For the lower bound, let1 be the all-1 vector. Applying Rayleigh’s principle yields

λmax ≥
1T A1
1T1

=
1
n

∑
i,j

aij =
2|E(G)|

n

Thus, actuallyλmax is at least the average degree.

Proposition 2.3 (Largest eigenvalue of regular graphs).If G is ak-regular graph, then

(i) k is an eigenvalue ofG.

(ii) if G is connected, thenm[k] = 1.

(iii) for any other eigenvalueλ of G, λ ≤ k.
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Proof. Let ~1 denote the all1 vector, thenA~1 = k~1, showing(i). Now, let x = [x1, . . . , xn]t be any
k-eigenvector ofG, then(Ax)i is the sum ofk of thexj for which j is a neighbor ofi. Moreover,(kx)i

is kxi. If xi was the largest among all components ofx, then it follows that allk neighboringxj must
have the same value asxi. Tracing this neighboring relation we conclude that all ofx’s components are
the same. In fact, ifG is a union ofm k-regular graphs, then the multiplicity of the eigenvaluek of G is
m.

The fact thatλ ≤ k can be shown by a similar argument, we just have to pick a component with
largest absolute value.

Theorem 2.4 (Alon, Milman (1985, [1])). SupposeG is a k-regular connected graph with diameterd,
then

d ≤ 2

⌈√
2k

k − λ2
log2 n

⌉
.

Proof.

An improvement was given by Mohar:

Theorem 2.5 (Mohar (1991, [11])).SupposeG is ak-regular connected graph with diameterd, then

d ≤ 2
⌈

2k − λ2

4(k − λ2)
ln(n− 1)

⌉
.

Proof.

3 The Coefficients of the Characteristic Polynomial

Theorem 3.1 (Harary, 1962 [8]). Let H be the collection of spanning subgraphs of a simple graph
G such that for allH ∈ H, every component ofH is either an edge or a cycle. Letc(H) and y(H)
be the number of components and the number of components that are cycles ofH, respectively. Then,
det A(G) =

∑
H∈H(−1)n−c(H)2y(H), wheren = |V (G)|.

Proof. We usedet A =
∑

π∈Sn
sgn(π)

∏n
i=1 aiπ(i). A term corresponding toπ of this product is not

zero iffaiπ(i) = 1 for all i, namelyπ is a permutation such that(i, π(i)) ∈ E(G). In other words, ifH(π)
is the functional digraph ofπ with edges undirected, thenH(π) ∈ H. Hence, there is a one-to-many
mapping betweenH and the set ofπ which contribute1 to det A. We can group the indices of the sum
according toH instead, and count how manyπ with H(π) = H. GivenH ∈ H, each cycle of length≥ 3
has2 choices of direction to construct the correspondingπ, this gives the factor2y(H). The sign is readily
verified. As we have noticed in the proof of the Matrix Tree theorem,sgn(π) = (−1)n−c(π) wherec(π)
is the number of cycles ofπ, which is the number of components of its functional digraph.

Corollary 3.2 (Sachs, 1967 [13]).Let Hi denotes the collection ofi-vertex subgraphs ofG whose
components are edges or cycles. Ifp(G, λ) =

∑
i ciλ

n−i is the characteristic polynomial ofG, then
ci =

∑
H∈Hi

(−1)c(H)2y(H).

Proof. We already noticed that(−1)ici is the sum of all orderi principal minors ofA(G). Each principal
minor correspond uniquely to an induced subgraph ofG on somei vertices. Applying Harary’s theorem
completes our proof.
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4 The Adjacency Algebra

Recall that analgebrais a vector space with an associative multiplication of vectors (thus also imposing
a ring structure on the space). Theadjacency algebraA(G) of G is the algebra of all polynomials in
A(G). In other words,A(G) is the set of all linear combination of powers ofA. A(G) is the basic tool
to study a class of graphs calleddistance-regular graphs(see, e.g. [4] for a comprehensive treatment).
The theory of distance-regular graphs, in turn, has deep relations toCoding Theory(see [10], [?]) and
Design Theory(see [?]). We found yet another great reason to study algebraic graph theory. Obviously,
it makes sense to first study powers ofA.

Proposition 4.1. The number of walks of lengthl in G, fromvi to vj , is the(i, j) entry ofA(G)l.

Proof. Easy to see by inspection or by induction

Lemma 4.2. If G is a connected graph with diameterd, thendeg(m(A)) = dim(A(G)) ≥ d + 1.

Proof. Let x, y ∈ V (G) with distanced apart. Supposex = v0, v1, . . . , vd = y is a path of lengthd
joining x andy. Then, for alli ∈ [d] the distance fromx to vi is i. Consequently,(Ai)x,vi > 0 but
(Aj)x,vj = 0, ∀j < i. This implies that for alli ∈ [d] Ai is independent from{I, A, . . . , Ai−1}, or
{I, A, . . . , Ad} is a set of independent members ofA(G).

Corollary 4.3. A graph with diameterd has at leastd + 1 distinct eigenvalues. In other words, the
diameter of a graph is strictly less than the number of its distinct eigenvalues.

Proof. If A(G) hass distinct eigenvalues, then by Lemma??, the minimum polynomial ofA(G) has
degrees, makingdim(A(G)) = s. So,s ≥ d + 1 by the previous lemma.

5 The Chromatic Number

The following theorem improves the greedy boundχ(G) ≤ 1 + ∆(G).

Theorem 5.1 (Wilf, 1967 [16]).For every graphG, χ(G) ≤ 1+λmax(G), whereχ(G) is the chromatic
number ofG.

Proof. If χ(G) = k, successively delete vertices ofG until we obtain ak-critical subgraphH of G, i.e.
χ(H − v) = k − 1, ∀v ∈ V (H). We claimδ(H) ≥ k − 1. Supposeδ(H) ≤ k − 2, let v be the vertex
in H with deg(v) ≤ k − 2. H − v is (k − 1)-colorable, soH is alsok − 1 colorable since adding back
v wouldn’t require a new color. Consequently,

k ≤ 1 + δ(H) ≤ 1 + λmax(H) ≤ 1 + λmax(G)

It must be noted that this bound is still a poor estimate for the chromatic number. A parallel result
concerning the lower bound is as follows.

Theorem 5.2 (Hoffman, 1970 [9]).For any graphG with non-empty edge set

χ(G) ≥ 1 +
λmax(G)
−λmin(G)

We first need two auxiliary results.
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Lemma 5.3. LetX be a real symmetric matrix, partitioned in the form

X =
[

P Q
QT R

]
whereP andR are square symmetric matrices, then

λmax(X) + λmin(X) ≤ λmax(P ) + λmax(R)

Proof. Let λ = λmin(X). Let X ′ = X − λI, P ′ = P − λI andR′ = R− λI, then clearly

X ′ =
[

P ′ Q
QT R′

]
Let A andB be defined as follows

A =
[

P ′ 0
QT 0

]
B =

[
0 Q
0 R′

]

then, every eigenvalue ofA (B) is an eigenvalue ofP ′ (R′) sinceAx = µx ⇒ P ′y = µy where
x = [y z]T with y being the part corresponding toP ′. Consequently, the eigenvalues ofA andB are all
real. Theorem?? implies

λmax(X)− λ = λmax(X ′) = λ1(A + B)
≤ λ1(A) + λ1(B)
≤ λ1(P ′) + λ1(R′)
= λ1(P )− λ + λ1(R)− λ

Corollary 5.4. LetA be a real symmetric matrix, partitioned intot2 submatricesAij in such a way that
the rows and columns are partitioned in the same way, i.e. the diagonal submatricesAii are all square
matrices. Then

λmax(A) + (t− 1)λmin(A) ≤
t∑

i=1

λmax(Aii)

Proof. Induction and apply previous lemma

Proof of Theorem 5.2.Let c = χ(G) and partitionV (G) into c color classes, inducing a partition of
A(G) into c2 submatrices where all diagonal submatricesAii consist entirely of0’s. Thus,

λmax(A) + (c− 1)λmin(A) ≤
c∑

i=1

λmax(Aii) = 0

But if G has at least one edge,pA(λ) = λn + c1λ
n−1 + · · ·+ cn 6= λn, becausec2 = −|E(G)|. Hence,

λmin(A) < 0. This completes the proof.
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6 The Laplacian

This section is built upon the first chapter’s outline of Fan Chung’s book [5]. See has an entirely different
system of notations and definitions (she normalized everything and defined the eigenvalues of a graph
to be the eigenvalues of the Laplacian). So, I’ll try my best of map them back to our, I believe, more
standard notations.

However, the mapping isn’t so simple. It will take me some time to link the two definitions. Thus,
courtesy Bill Gate : “the best is yet to come.”

6.1 The Laplacian and eigenvalues

Definition 6.1. LetG be a simple graph,D the diagonal matrix with(D)ii = deg(i), andA the adjacency
matrix of G. Then, the matrixL := D − A is called theLaplacianmatrix of G. We shall often use
µ1 ≥ µ2 ≥ · · · ≥ µn to denote the eigenvalues ofL.

Definition 6.2. Let N be the incident matrix of any orientationH of G(V,E). Let L2(V ) (L2(E))
be the space of real valued functions onV (E), with the usual inner product〈f, g〉 and the usual norm
‖f‖ =

√
〈f, f〉.

Note thatL2(V ) is isomorphic toRn and thus we can define the Rayleigh quotient forf similarly:
RA(f) = 〈Lf,f〉

‖f‖2 . Also note that

〈Lf, f〉 = 〈NT Nf, f〉 = 〈Nf, Nf〉
=

∑
(u,v)∈E(H)

(f(u)− f(v))2

=
∑
u∼v

(f(u)− f(v))2

So,L is non-negative definite, which impliesL has non-negative eigenvalues. We’ve just proved the first
statement of the following proposition.

Proposition 6.3. We haveµ1 ≥ · · · ≥ µn−1 ≥ µn = 0, ∀i. Moreover,µn−1 = 0 iff G is not connected;
and, whenG is regular,m[0] is the number of connected components ofG.

Proof. Firstly, µn = 0 becauseL1 = 0, i.e. 1 is a0-eigenvalue ofL. Secondly, notice that any function
y which is non-zero and constant on the connected components ofG would makeLy = 0, and thusy is
a0-eigenvector ofG. Hence, the multiplicity of0, being the dimension of the0-eigenspace, is≥ 2 when
G is disconnected. For the converse, we assumeµn−1 = 0 so that the0-eigenspace has dimension≥ 2.
Let f be anyµn−1-eigenvector orthogonal to1 then

µn−1 =

∑
u∼v

(f(u)− f(v))2∑
v

f2(v)

This means thatf has to be constant on all connected components ofG. If G has only1 connected
component,f has to be identically0 contradicting the fact that it is an eigenvector.

Lastly, also note that if each connected component ofG is regular, then the multiplicity of0 is equal
to the number of connected components.
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Theorem 6.4. Letf ∈ L2(V ) such that
∑

v f(v) = 0. Letµn−1 be the second smallest eigenvalue ofL
then

µn−1 ≤
〈Lf, f〉
‖f‖

=

∑
u∼v

(f(u)− f(v))2∑
v

f2(v)

In fact, a stronger statement holds

µn−1 = min
f 6=0

〈Lf, f〉
‖f‖

with themin runs over allf satisfying
∑

v f(v) = 0.

Note.
∑
u∼v

(f(u)− f(v))2 is sometime called theDirichlet sumof G.

Proof. Let un = 1/
√

n be the unitµn-eigenvector, then by Theorem??we have

µn−1 = min
0 6=f∈Cn

f⊥un

RL(f) = min
0 6=f∈Cn

f⊥1

〈Lf, f〉
‖f‖

The conditionf ⊥ 1 is the same as
∑

u f(u) = 0.

Theorem 6.4 gives us a very useful upper bound forµn−1. However, sometime we need also a lower
bound. The following Proposition fills our gap.

Proposition 6.5. Let G be a connected graph,µ = µn−1(G) andf ∈ L2(V ) be anyµ-eigenvalue. Let
V + := {v ∈ V | f(v) > 0 andV − := V − V +, then defineg ∈ L2(V ) as follows.

g(v) =

{
f(v) if v ∈ V +

0 otherwise.

Then, we have

µ ≥

∑
u∼v

(g(u)− g(v))2∑
v

g2(v)

Proof. Note that sinceG is connected,µ 6= 0, makingf 6= 0. Hence,V + 6= ∅. By definition, we have
(Lf)(v) = µf(v),∀v ∈ V . Thus,

µ =

∑
v∈V +

(Lf)(v)f(v)∑
v∈V +

f2(v)

But, ∑
v∈V +

f2(v) =
∑
v∈V

g2(v)
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and,

∑
v∈V +

(Lf)(v)f(v) =
∑

v∈V +

d(v)f2(v)−
∑

u∈Γ(v)

f(v)f(u)


=

∑
uv∈E(V +)

(f(u)− f(v))2 +
∑

uv∈E(V +,V −)

f(u)(f(u)− f(v))

≥
∑
u∼v

(g(u)− g(v))2

completes our proof.

6.2 The Laplacian spectrum

6.3 Eigenvalues of weighted graphs

6.4 Eigenvalues and random walks

7 Cycles and cuts

8 More on spanning trees

9 Spectral decomposition and the walk generating function

10 Graph colorings

11 Eigenvalues and combinatorial optimization

This section shall be based on an article with the same title by Bojan Mohar and Svatopluk Poljak [12].
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