CSE 713: Random Graphs and Applications Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2003 Scribe: Hung Q. Ngo

Lecture 10: Introduction to Algebraic Graph Theory

Standard texts on linear algebra and algebra are [2,14]. Two standard texts on algebraic graph theory
are [3, 6]. The monograph by Fan Chung [5] and the book by Godsil [7] are also related references.

1 The characteristic polynomial and the spectrum

Let A(G) denote the adjacency matrix of the gra@ghThe polynomiap 4 ) (z) is usually referred to as
thecharacteristic polynomiabf ;. For convenience, we usgG, =) to denotep 4 () (). Thespectrum
of a graphG is the set of eigenvalues df( G) together with their multiplicities. Since (short forA(G))

is a real symmetric matrix, basic linear algebra tells us a few thing abauid its eigenvalues (the roots
of p(G,x)). Firstly, A is diagonalizable and has real eigenvalues. Secondly,sfan eigenvalue of
A, then the\-eigenspace has dimension equal to the multiplicit\ @fs a root ofp(G, ). Thirdly, if

n = |V (G)|, thenC" is the direct sum of all eigenspacesAfLast but not least,

rank(A) =n —m]|0],

wherem|0] is the multiplicity of the0-eigenvalue.
SupposeA(G) hass distinct eigenvalues.; > --- > A, with multiplicities m[A1], ..., m[As]
respectively, then we shall write

SpeC(G)—<m>[\)l\ﬂ i mAm>

We also use\,,,..(G) and i, (G) to denote\; and )\, respectively.
Example 1.1 (The Spectrum of The Complete Graph).

p(EKn,\) = M —J

A -1 -1 .. -1
0 (A+1)(A-1) —(A+1) —(A+1)
A (/\+l)>\()\—2) o —(A+1)

A+ (A—=(n—-1))
0 0 0 O

= A+D)"tA=n+1)

So,

n—1

Spec(K,) = (”11 -1 )

Remarkl.2 Two graphs are€o-spectralif they have the same spectrum. There are many examples of
co-spectral graphs which are not isomorphic. There are also examples all the graphs with a particular
spectral must be isomorphic. | don't know of an intuitive example of co-spectral graphs (yet). Many
examples can be found in the “bible” of graph spectra [15].



A principal minor of a square matrix is the determinant of a square submatrix4bbtained by
taking a subset of rows and the same subset of columns. The principal minardeof if it has & rows
andk columns.

Proposition 1.3. Suppose (G, ) = 2" + c1z" 1 + - - - + ¢, then
(i) c1 =0.
(i) —c2 = |BE(G)].
(i) —cg is twice the number of triangles 1@.

Proof. It is not difficult to see that—1)’c; is the sum of the principal minors of(G) of orderi. Given
this observation, we can see that

(i) c1 =0sincetrA(G) = 0.

(i) —c2 = |E(G)] since each non-zero principal minor of ordeof A(G) corresponds tdet| § ],
and there is one such minor for each pair of adjacent verticés in

(iii) Of all possible order3 principal minors ofA(G), the only non-zero minor is
011
det |1 0 1| =2
1 10

which corresponds to a triangle @

O

Example 1.4. All principal minors of A(K, ,,) of orderk # 2 are0. Hencep(Ky, n,x) = ™" +
cox™ "2, By previous proposition;, = —mn. Thus,

/mn 0 —v/mn
Spec(Kpmn) = ( 1 m4n—2 1 >

Notice thatSpec( K, ») is symmetric above the eigenvaleThis beautiful property turns out to be
true for all bipartite graphs, as the following lemma shows.

Lemma 1.5 (The Spectrum of a Bipartite Graph). The following are equivalent statements about a
graphG
() G is bipartite.
(b) The non-zero eigenvalues@foccurs in pairs);, A; such that\; + A\; = 0 (with the same multi-
plicity).

(c) p(G,z) is a polynomial inz? after factoring out the largest common powerof

(d) SS7 A2 —oforall t € N.

i=1"%

Proof. (a = b). First of all, we could assume that the bipartitiongbhave the same size, otherwise
adding more isolated vertices into one of the bipartitions only give us maigenvalues. We can

permute the vertices @ so thatd = A(G) = [ % F]. Letv = [,] be ax-eigenvector. We havkv =
Av = [BOT ]g] Bﬂ = [lﬁym]. So0,By = Az andBTz = \y. Letv' = [fy] thenAv' = [E%’] = —)\[fy].

Hence,v’ is a (—\)-eigenvector ofA. The multiplicity of X is the dimension of its eigenspace. The
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mappingv — v’ just described is clearly an invertible linear transformation, so\te@enspace and the
(—)\)-eigenspace have the same dimension.

(b= c). Easyagz — \;)(z + \;) = 22 — \2.

(c = d). Whenp(G, ) is a polynomial inz?, its roots come in pairg; + \; = 0, so that\? ! +
A¥+1 = 0 for each pair.

(d = a). =31 A1 = ¢ A2+ by Propositior??. Also, tr A%+ s at least the total number of
closed walks of lengtBt + 1 in G. SoG does not have any cycle of odd length. It must be bipartite.

Proposition 1.6 (A Reduction Formula for p(G, z)). Suppose; is a vertex of degreé of G, andv; is
v1's neighbor. LetG; = G — v;, andGy = G — {v;,v;}, then

p(G7 :I:) = (‘T"p(Gla ZE) - p(G2> :B)) :
Proof. Expanding the determinant fI — A) along row: and then colump yields the result. O

Example 1.7 (The Characteristic Polynomial of a Path) Let P, be the path witl vertices{vy, ..., v, },
then
p(P’n’ $) = xp(PTLflax) - p(Pn*QwI)an Z 3;

which is a straightforward application of the previous proposition. Note that this implis z) =
Un(z/2) whereU,, is the Chebyshev polynomial of the second kind.

For the sake of completeness, recall that the Chebyshev polynomial of the second kind has generating
function

t
u(t @) = 1—2wt+t2 ZU
for |x| < 1 and|t| < 1; which gives the three-term recurrence
Un(z) = 22Up—_1(z) — Up—2(z).(Why?)

Proposition 1.8 (The Derivative ofp(G,z)). Fori = 1,...,n, let G; be G — v; whereV(G) =

{v1,...,v,}. Then,
x) = Zp(Gi,l‘).

Proof. Write
P (Gx) = (@ 4" Mg e
n—j
= na" ') (n— eI
j=1

Now, nz™~! distributes ton leading terms op(G;, z). We show that the term@ — j)c;z"7~! also
distribute to the corresponding termspgfs;, ).

We knowc; is (—1)7 times the sum of all ordej-principle minors ofA. We want to show that
(n—j)ej(—1)7 is the sum of all ordey-principle minors of all4; = A(G;). An order principle minor
of any A; is an orders principle minor of A. An order4 principle minor of A is an order; principle
minor of precisely(n — j) of the A;. Thej exceptions are thd; obtained fromA by removing one of
the j rows (and columns) corresponding to the minor under consideration. O



Example 1.9. SupposeA(G) hasr identical columns indexei, ..., .}, i.e. thoser vertices share
the same set of neighbors. Lebe a vector all of whose components arexcept at two components
andi; wherez;, = —z;, # 0. Thenz is a0-eigenvector ofd. The vector space spanned by all these
has dimensiom — 1 (why?), so thé-eigenspace ofl has dimension at least— 1.

This fact could be obtained by seeing thatk(A) < n —r + 1 due to the- identical columns, then
applyrank(A) = n — m[0].

Example 1.10.It's easy to see that the number of closed walks of lekgihG is tr A* = Z )\’f Hence,
if G hasn vertices andn edges theiy" \; = 0 andd_ \? = 2m. (Here we let\; > Ao > --- > ), be
the eigenvalues af.) It follows trivially that

Moo= M+ A)?
< (n—1)(2m —\?).
So,
27m<)\1 2m(n—1)’
n n

where the lower bound is shown in the next section.

2 Eigenvalues and some basic parameters of a graph

The eigenvalues of a graph gives pretty good bounds on certain parameters of a graph. | include here
several representative results. More relationships of this kind shall be presented later (e.g. the chromatic
number in section 5).

Lemma 2.1. If G’ is an induced subgraph @, then

Amin(G) < Anin(G') < Amaz(G') < Anaa(G)
Proof. Follows directly from the theorem about interlacing of eigenvalues O
Lemma 2.2. For every graphd, §(G) < Az (G) < A(G).

Proof. Letz be a\-eigenvector for some eigenvaldef G. Let|z;| = max; |z;| be the largest absolute
coordinate value im, then

Mol = [(Az);l = ) ai| < deg(i)lz;] < A(G)]y
i | ij€E(G)

For the lower bound, let be the alli vector. Applying Rayleigh’s principle yields

1741 2|E(G)|
Amaz > ]_T]_ = Zaz]— n

Thus, actually\,,.... is at least the average degree. O
Proposition 2.3 (Largest eigenvalue of regular graphs)If GG is a k-regular graph, then

(i) kis an eigenvalue ofr.

(i) if G is connected, them[k] = 1.

(i) for any other eigenvalue of G, A < k.



Proof. Let 1 denote the alll vector, thenAl = kI, showing(i). Now, letz = [z1,...,z,] be any
k-eigenvector of7, then(Ax); is the sum of of thex; for which j is a neighbor of. Moreover,(kx);
is kz;. If x; was the largest among all componentscothen it follows that allk neighboringz; must
have the same value as Tracing this neighboring relation we conclude that alk:sf components are
the same. In fact, i€7 is a union ofm k-regular graphs, then the multiplicity of the eigenvatuef G is
m.

The fact that\ < & can be shown by a similar argument, we just have to pick a component with
largest absolute value. O

Theorem 2.4 (Alon, Milman (1985, [1])). Suppos€ is a k-regular connected graph with diametéy

then
[ 2k
<2 1 .
d< |7 o 08> n-‘

Proof. O

An improvement was given by Mohar:
Theorem 2.5 (Mohar (1991, [11])).Supposé€- is a k-regular connected graph with diametérthen

d<2| -]

Proof. O

3 The Coefficients of the Characteristic Polynomial

Theorem 3.1 (Harary, 1962 [8]). Let H be the collection of spanning subgraphs of a simple graph
G such that for allH € H, every component d is either an edge or a cycle. LetH) andy(H)

be the number of components and the number of components that are cyHlesespectively. Then,
det A(G) = ZHGH(—l)”—C(H)Qy(H), wheren = |V (G)].

Proof. We usedet A = Y~ ¢ sgn(m) [[i; air;)- A term corresponding ta of this product is not
zeroiffa;.;) = 1forall4, namelyr is a permutation such thét 7(i)) € E(G). In other words, ifff ()

is the functional digraph of with edges undirected, thefi(7) € H. Hence, there is a one-to-many
mapping betweeft{ and the set ofr which contributel to det A. We can group the indices of the sum
according toH instead, and count how mamwith H (7)) = H. GivenH € H, each cycle of lengtk 3
has2 choices of direction to construct the correspondinthis gives the facta2?™). The sign is readily
verified. As we have noticed in the proof of the Matrix Tree theorgm,w) = (—1)"~“") wherec(n)

is the number of cycles of, which is the number of components of its functional digraph. O

Corollary 3.2 (Sachs, 1967 [13]).Let H; denotes the collection afvertex subgraphs ofi whose
components are edges or cyclesp(ti, \) = >". ;A" is the characteristic polynomial af, then

c; = ZHeHi<_1)C(H)2y(H)'

Proof. We already noticed thdt-1)c; is the sum of all ordei principal minors ofA(G). Each principal
minor correspond uniquely to an induced subgrap&y @ some vertices. Applying Harary's theorem
completes our proof. O



4 The Adjacency Algebra

Recall that aralgebrais a vector space with an associative multiplication of vectors (thus also imposing
aring structure on the space). Tlagjacency algebrad(G) of G is the algebra of all polynomials in
A(G). In other words,A(G) is the set of all linear combination of powers 4f A(G) is the basic tool

to study a class of graphs callddstance-regular graphésee, e.g. [4] for a comprehensive treatment).
The theory of distance-regular graphs, in turn, has deep relatiofieding Theorysee [10], ?]) and
Design Theorysee []). We found yet another great reason to study algebraic graph theory. Obviously,
it makes sense to first study powersAf

Proposition 4.1. The number of walks of lengthin G, fromwv; to v;, is the(i, j) entry of A(G)".
Proof. Easy to see by inspection or by induction O
Lemma 4.2. If G is a connected graph with diametérthendeg(m(A)) = dim(A(G)) > d + 1.

Proof. Let x,y € V(G) with distanced apart. Suppose = vy, v1,...,v4 = y IS a path of lengthi
joining x andy. Then, for alli € [d] the distance fromx to v; is i. Consequently(A?),,, > 0 but
(A7), = 0,Vj < i. This implies that for ali € [d] A" is independent fron{, A, ..., A"}, or
{I,A,..., A% is a set of independent members4fG). O

Corollary 4.3. A graph with diameteri has at leastd + 1 distinct eigenvalues. In other words, the
diameter of a graph is strictly less than the number of its distinct eigenvalues.

Proof. If A(G) hass distinct eigenvalues, then by Lemm&, the minimum polynomial ofA(G) has
degrees, makingdim(A(G)) = s. So,s > d + 1 by the previous lemma. O

5 The Chromatic Number

The following theorem improves the greedy bour(d7) < 1 + A(G).

Theorem 5.1 (Wilf, 1967 [16]). For every graphG, x(G) < 1+ Apnae(G), wherex(G) is the chromatic
number ofG.

Proof. If x(G) = k, successively delete vertices@funtil we obtain a-critical subgraph# of G, i.e.
X(H—-v)=k—1,Yv e V(H). Weclaimé(H) > k — 1. Suppose(H) < k — 2, letv be the vertex
in H with deg(v) < k — 2. H —vis (k — 1)-colorable, saf is alsok — 1 colorable since adding back
v wouldn’t require a new color. Consequently,

E<1+6(H) <14 Mpaz(H) <14 Az (G)
O

It must be noted that this bound is still a poor estimate for the chromatic number. A parallel result
concerning the lower bound is as follows.

Theorem 5.2 (Hoffman, 1970 [9]).For any graphG with non-empty edge set

X(G)21+%

We first need two auxiliary results.



Lemma 5.3. Let X be a real symmetric matrix, partitioned in the form

[P Q
X‘[QT R]

whereP and R are square symmetric matrices, then
)\maa:(X) + )\mzn(X) S )\maa:(P) + Amax(R)

Proof. Let A = A\uin(X). Let X' = X — M\, P’ = P — Ml andR' = R — \I, then clearly

Pl
X' = |:QT ](%2/:|
Let A and B be defined as follows
P 0
4= {@T 0]
_ 0@
=[5 7

then, every eigenvalue ol (B) is an eigenvalue of”’ (R’) since Az = ux = P’y = py where
x = [y z]7 with y being the part corresponding . Consequently, the eigenvalues4findB are all
real. Theoren??implies

)\max(X)_)‘ ma:c(X/) :)‘1(A+B)
1(A) + M\ (B)
A (P) + M(R)

AM(P) = A+ M (R)— A

A
A

VANVAN

O]

Corollary 5.4. Let A be a real symmetric matrix, partitioned intd submatrices4;; in such a way that
the rows and columns are partitioned in the same way, i.e. the diagonal submatricae all square

matrices. Then
t

)\ma:c(A) + (t - 1))\mm(A) S Z )\ma:c(Aii)

i=1
Proof. Induction and apply previous lemma O

Proof of Theorem 5.2Let ¢ = x(G) and partitionV (G) into ¢ color classes, inducing a partition of
A(G) into ¢? submatrices where all diagonal submatriggsconsist entirely of’'s. Thus,

Amax(A) + (C - 1))\m7,n(A) < ZC: )\maa:(Aii) =0
=1

Butif G has at least one edgey (\) = A" + 1 A" 1 + -+ + ¢, # \", because, = —|E(G)|. Hence,
Amin(A) < 0. This completes the proof. O



6 The Laplacian

This section is built upon the first chapter’s outline of Fan Chung’s book [5]. See has an entirely different
system of notations and definitions (she normalized everything and defined the eigenvalues of a graph
to be the eigenvalues of the Laplacian). So, I'll try my best of map them back to our, | believe, more
standard notations.

However, the mapping isn't so simple. It will take me some time to link the two definitions. Thus,
courtesy Bill Gate : “the best is yet to come.”

6.1 The Laplacian and eigenvalues

Definition 6.1. Let G be a simple graph) the diagonal matrix withD);; = deg(i), andA the adjacency
matrix of G. Then, the matrix. := D — A is called theLaplacianmatrix of G. We shall often use
w1 > pe > - > g, to denote the eigenvalues bf

Definition 6.2. Let N be the incident matrix of any orientatiali of G(V, E). Let L2(V) (L?*(E))
be the space of real valued functions B E), with the usual inner productf, g) and the usual norm

11l = v/ f, £)-

Note thatZ?(V) is isomorphic taR" and thus we can define the Rayleigh quotientfaimilarly:

RA(f) = ﬁ]{"l’;). Also note that

(Lf.f) = (N'Nf,f)=(Nf,Nf)
= Y (fw=fw)
(u,w)EE(H)

= > (flw)— f(v)

u~v

So, L is non-negative definite, which implidshas non-negative eigenvalues. We've just proved the first
statement of the following proposition.

Proposition 6.3. We haves; > -+ > p,—1 > un = 0, Vi. Moreoveru,_1 = 0 iff G is not connected;
and, wher(G is regular,m/[0] is the number of connected component& of

Proof. Firstly, 1, = 0 becausd.1 = 0, i.e. 1 is a0-eigenvalue of.. Secondly, notice that any function
y which is non-zero and constant on the connected componettswaiuld makeLy = 0, and thugy is
a0-eigenvector of7. Hence, the multiplicity o, being the dimension of theeigenspace, i 2 when
G is disconnected. For the converse, we assumeg = 0 so that thé)-eigenspace has dimension2.
Let f be anyu,,_1-eigenvector orthogonal tbthen

> (fw) - f(v))?
> )

This means thaf has to be constant on all connected components.off G has onlyl connected
componentf has to be identicallp contradicting the fact that it is an eigenvector.

Lastly, also note that if each connected componelidt &f regular, then the multiplicity di is equal
to the number of connected components. O

Hn—1 =



Theorem 6.4. Let f € L*(V) such that)", f(v) = 0. Letu,,—1 be the second smallest eigenvalud.of

then )
flu)— f(v
@ﬂf%_g;(() (v))

3 P

Hn—1 <

In fact, a stronger statement holds

o — i (L)
0 || £l
with themin runs over allf satisfying) _, f(v) = 0.

Note. Z(f(u) — f(v))?* is sometime called thBirichlet sumof G.

u~v

Proof. Letu,, = 1/y/n be the unitu,-eigenvector, then by Theore®? we have

: (LS )
n—1= min R = min
Hn=1 0 feC™ () o£fec || £l
fLlug fl1
The conditionf L 1 is the same a§_,, f(u) = 0. O

Theorem 6.4 gives us a very useful upper boundifar;. However, sometime we need also a lower
bound. The following Proposition fills our gap.

Proposition 6.5. Let G be a connected graphy, = p,,_1(G) and f € L?(V) be anyu-eigenvalue. Let
Vt:={veV]|f(v)>0andV~ :=V — V*, then defing € L?(V) as follows.

gw):{f@) ifv eVt

0 otherwise.

Then, we have

u~v

> 9P (v)

=

Proof. Note that sinc&- is connected;: # 0, making f # 0. Hence, V' # (). By definition, we have
(Lf)(v) = pf(v),Yv € V. Thus,

> (L)) f(v)

_ wvevt

> W)

veV+

Y )= W)

veV+ veV

But,



and,

Y LN = Y d)fPw) = Y, f)f(w

veV+ vevV+ u€l'(v)
= > (Fw-re)*+ > fu(fw) - f(v)
weER (V) weB(V T, V)
> Y (9(w) — g(v))?

u~v

completes our proof. O

6.2 The Laplacian spectrum
6.3 Eigenvalues of weighted graphs

6.4 Eigenvalues and random walks

7 Cycles and cuts

8 More on spanning trees

9 Spectral decomposition and the walk generating function
10 Graph colorings

11 Eigenvalues and combinatorial optimization

This section shall be based on an article with the same title by Bojan Mohar and Svatopluk Poljak [12].
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