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A Linear Algebra Primer

Standard texts on Linear Algebra and Algebra are [1, 8].

1 Preliminaries

1.1 Vectors and matrices

We shall useR to denote the set of real numbers &ido denote the set of complex numbers. For any
c = a+ bi € C, thecomplex conjugatef c, denoted by is defined to b& = a — bi. Themodulusof c,
denoted byc|, is va? + b2. Itis easy to see that|? = cc.

If we mention the word “vector” alone, it is understood to be a column vectornAliimensional
vectorz hasn entries in some field of numbers, suchfasr C:

z1

Z2
xr=

Tn

The set of alln-dimensional vectors ovéR (respectivelyC) is denoted byR"™ (respectivelyC™). They
are also calledeal vectorsandcomplex vectorgespectively.

Similar to vectors, matrices need an underlying field. We thus have complex matrices and real matri-
ces just as in the case of vectors. In factpadimensional vector is nothing but anx 1 matrix. In the
discussion that follows, the concepts of complex conjugates, transposes, and conjugate transposes also
apply to vectors in this sense.

Given anm x n matrix A = (a;;), thecomplex conjugatel of 4 is a matrix obtained frond by
replacing each entry;; of A by the corresponding complex conjugate. ThetransposeA® of A is the
matrix obtained fromA4 by turning its rows into columns and vice versa. For example,

—2
0

1

10 31 T
A_[_Q 0 1],andA =

—= w O

Theconjugate transposd* of A is defined to b A)”". A square matrix4 is symmetridff A = A7,
and isHermitianiff A = A*.
Given a real vector € R", thelength||z|| of z is

lall = \/e2 + 23+ -+ a2, (1)

Notice that||z|> = z2™. Whenz is a complex vector, we use instead ofz”. Hence, in general we
define||z|| = vVzz* = va*z. (You should check thatz* = z*xz, and that it is a real number so that the
square root makes sense.)



The length||z|| is also referred to as thBy-norm of vector z, denoted byj|z||2. In general, the

L,-normof ann-dimensional vectot, denoted by|z||,, wherep =1, 2,. .., is defined to be
1
[zllp := (lzaf” + -+ [zn?) 7, )
and
[2]loo == max |, @)
i=1..n

The following identities are easy to show, yet of great importance. Giverxa matrix A and a
g X r matrix B, we have
(AB)T = BTAT (4)
(AB)" = B*A* (5)
(Question: what are the dimensions of the matricé8)” and(AB)*?)
A square matrixA4 is said to besingularif there is no unique solution to the equatida: = b. For

A to be singular, it does not matter whats. The uniqueness of a solution #for = b is an intrinsic
property ofA alone. If there is one and only onesuch thatdz = b, thenA is said to benon-singular

1.2 Determinant and trace

Given a square matrid = (a;;) of ordern, the equatiomdz = 0 has a unique solution if and only if
det A # 0, wheredet A denotes theleterminanbf A, which is defined by

det A = Z (—-1)f™ Ham(z‘) = Z sign(r) Ham(i)- (6)
TESK i=1 TESR i=1

Here,S,, denotes the set of all permutations on the[sét= {1,...,n}. (S, is more often referred to
as thesymmetric groupf ordern.) Given a permutatiom € S,,, we usel () to denote the number of
inversionsof 7, which is the number of pairgr(:), 7(j)) for whichi < j andn (i) > = (j). Thesignof
a permutationr, denoted by sigfrr), is defined to be sigmr) = (—1)1(7).

Exercise 1.1.Find an involution forS,, to show that, fom > 2, there are as many permutations with
negative sign as permutations with positive sign.

Let us take an example far = 3. In this caseS,, consists ob permutations:
S, = {123,132,213,231, 312, 321}.

Notationally, we writer = 132 to mean a permutation wherg1l) = 1, 7(2) = 3, andn(3) = 2.

Thus, whenr = 132 we have sigfwr) = —1 since there is only one “out-of-order” pai8,2). To
be more precise, sigh23) = 1, sign(132) = —1, sign(312) = 1, sign(213) = —1, sign(231) = 1,
sign(321) = —1.
Consequently, for
0 3 1
A=|-2 0 1

-1 2 2

we have
det A = airagazs + (—1)anazsase + (—1)arzas ass + a12as3az +
a13azasz + (—1)aizazzaz

= 0:0-24(=1)-0-1-24(=1)-3-(=2)-24+3-1-(=1) +
1-(=2)-24(=1)-1-0-(=1)
=5



Thetrace of a square matrix4, denoted by trd is the sum of its diagonal entries. The matrx
above has
trA=0+0+2=2.

1.3 Combinations of vectors and vector spaces
A vectorw is alinear combinatiorof m vectorsuy, . . ., v, if w can be written as
W= a1 + a2 + ... amVm.- @)

The number; is called thecoefficienbf the vector; in this linear combination. Note that, as usual, we
have to fix the underlying field such &sor C. If, additionally, we also have; + as + -- - + a,, = 1,
thenw is called amaffine combinatiomf the v;.

A canonical combinatiois a linear combination in whict; > 0, Vj; and aconvex combinatiois an
affine combination which is also canonical. Tilrear (affine, canonical, convex) haf {vy, ..., vy} is
the set of all linear (affine, canonical, convex) combinations obthélote that in the above definitions,
m could be infinite. The convex hull of a finite set of vectors is calleatbag or more specifically a
convex polyhedral cone

A real vector spacés a setV of real vectors so that a linear combination of any subset of vectors
in V is also inV. In other words, vector spaces have todi@sedunder taking linear combinations.
Technically speaking, this is an incomplete definition, but it is sufficient for our purposes. One can also
replace the word “real” by “complex”. Aubspac®f a vector spac” is a subset of” which is closed
under taking linear combinations.

Given asel/ = {v1,..., vy} of vectors, the set of all linear combinations of theforms a vector
space, denoted by sp&f/)}, or span{(vi,...,vm)}. Thecolumn spacef a matrix A is the span of
its column vectors. Theow spaceof A is the span ofd’s rows. Note that equatioAz = b (with A not
necessarily a square matrix) has a solution if and orllyiés in the column space of. The coordinates
of = form the coefficients of the column vectors4fin a linear combination to forrh.

AsetV = {v,...,v,} of (real, complex) vectors is said to beearly independenit

a1v1 + asvs + ... amvy, = 0 only happens whemy = as = ...a,, = 0.

Otherwise, the vectors Wi are said to be (linearlyjependent

The dimensionof a vector space is the maximum number of linearly independent vectors in the
space. Théasisof a vector spac®” is a subsefvy, ..., v, } of V which is linearly independent and
span{(vi,...,vy)} = V. Itis easy to show that: is actually the dimension df. A vector space
typically has infinitely many bases. All bases of a vector sgadeve the same size, which is also the
dimension ofl/. The setR™ andC™ are vector spaces by themselves.

In ann-dimensional vector space, a setof> n vectors must be linearly dependent.

The dimensions of a matriX’s column space and row space are equal, and is referred to emthe
of A. This fact is not very easy to show, but not too difficult either. Gaussian elimination is of great use
here.

Exercise 1.2.Show that for any basi® of a vector spac& and some vectas € V, there is exactly
one way to writev as a linear combination of vectors i

1.4 Inverses

We use diadu, . . ., a,) to denote the matri¥d = (a;;) wherea;; = 0 for i # j anda; = a;,Vi. The
identity matrix often denoted by, is defined to be diad, . .., 1).
Given a square matri¥, theinverseof A, denoted byA~! is a matrixB such that

AB=BA=1, or AA7'=A"t4=1.



Exercise 1.3.Show that, ifA and B both have inverses, then the inversedd® can be calculated easily

by
(AB)"'=B7tA™L. (8)

Similarly, the same rule holds f@ror more matrices. For example,
(ABCD)™' = D~ lc7'B~tA~

If A has an inverse, it is said to bevertible Not all matrices are invertible. There are many
conditions to test if a matrix has an inverse, including: non-singularity, non-zero determinant, non-zero
eigenvalues (to be defined), linearly independent column vectors, linearly independent row vectors.

2 Eigenvalues and eigenvectors

In this section, we shall be concerned with square matrices only, unless stated otherwise.
Theeigenvaluesf a matrixA are the numbers such that the equatiadz = Az, or (AT — A)z = 0,

has a non-zero solution vector, in which case the solution vedocalled a\-eigenvector
Thecharacteristic polynomigp4 () of a matrix A is defined to be

pa(A) :=det(AI — A).

Since the all vector, denoted by, is always a solution tg ] — A)x = 0, it would be the only
solution if det(A\I — A) # 0. Hence, the eigenvalues are solutions to the equatign) = 0. For

example, if
2 1
e

A—2 -1
+2 A-3

then,

pA()\):det[ }:()\2)()\3)+2:)\25)\+8.

Hence, the eigenvalues dfare(5/2 4 i/7/2).

If we work on the complex numbers, then equation\) = 0 always has: roots (up to multi-
plicities). However, we shall be concerned greatly with matrices which have real eigenvalues. We shall
establish sufficient conditions for a matrix to have real eigenvalues, as shall be seen in later sections.

Theorem 2.1.Let Ay, ..., A, be the eigenvalues of anx n complex matrix4, then

() M+ + Ay =tr A,
(i) Ai... )\, = det A.

Proof. In the complex domainp 4(\) hasn complex roots since it is a polynomial of degree The
eigenvalues\;, ..., \, are the roots op 4 (). Hence, we can write

paN) =] =X) = A"+ ca i X" 4t ad + .

()

It is evident that

Cpn—1 = _()\1++)\n)
0 = (—1)"A1... .



On the other hand, by definition we have

A — ail —ai2 e —Q1n
—a9n A — asy ... —Qao2n
pa(N) = det
—Qpl —Qnp2 R QApn,

Expandingp 4 () in this way, the coefficient oX”~! (whichisc,, 1) is precisely—(ai1 +as+- - +ann);
and the coefficient ok® (which iscg) is (—1)" det A (think carefully about this statement!). O
2.1 The diagonal form

Proposition 2.2. Suppose the x n matrix A hasn linearly independent eigenvectats, . . . , x,, Where
X; is a \;-eigenvector. Lef be the matrix whose columns are the vectorsthenS—1AS = A, where
A =diag (A1, ..., A\n).

Proof. Note that since the column vectors $fare independeng is invertible and writingS—!' makes
sense. We want to sho~ ' AS = A, which is the same as showintS = SA. SinceAx; = x; )\, it
follows that

AS=A|x1 ... x| = [Ax; ... Ax,| = [Mx1 ... X, | = SA.

I I o
O

In general, if a matrixS satisfies the property th&t—! AS is a diagonal matrix, thess' is said to
diagonalizeA, and A is said to bediagonalizable It is easy to see from the above proof thatifis
diagonalizable byS, then the columns of are eigenvectors afl; moreover, since is invertible by
definition, the columns of must be linearly independent. In other words, we just proved

Theorem 2.3. A matrix is diagonalizable if and only if it hasindependent eigenvectors.

Proposition 2.4. If x1,...xz; are eigenvectors corresponding to distinct eigenvalyes .. \;, then
x1, ...z are linearly independent.

Proof. Whenk = 2, supposecix1 + coxs = 0. Multiplying by A givesciA1z1 + cahazs = 0.
Subtracting\, times the previous equation we get

Cl()\l - )\2)561 =0.
Hence,c; = 0 sinceA; # Ay andz; # 0. The general case follows trivially by induction. O
Exercise 2.5.1f 1, ...\, are eigenvalues of, then)\}, ... \* are eigenvalues of*. If S diagonalizes

A,i.e. STLAS = A, thenS—1AkS = Ak

2.2 Symmetric and Hermitian matrices

For any two vectors,y € C", theinner productof x andy is defined to be
X"‘y — )—(Ty — jlyl + -+ jnyn

Two vectors are@rthogonalto one another if their inner products The vector0 is orthogonal to all
vectors. Two orthogonal non-zero vectors must be linearly independent. ¥ty, i 0 andax+by = 0,

5



then0 = ax*x + bx*y = ax*x. This impliesa = 0, which in turns implies) = 0 also. With the
same reasoning, one easily shows that a set of pairwise orthogonal non-zero vectors must be linearly
independent.

If A is any complex matrix, recall that tHeermitian transposed* of A is defined to bed”, and
that A is said to beHermitianif A = A*. A real matrix is Hermitian if and only if it is symmetric.
Also notice that the diagonal entries of a Hermitian matrix must be real, because they are equal to their
respective complex conjugates. The next lemma lists several useful properties of a Hermitian matrix.

Lemma 2.6. Let A be a Hermitian matrix, then
(i) forall x € C", x*Ax is real.
(i) every eigenvalue ofl is real.

(iii) the eigenvectors ofd, if correspond to distinct eigenvalues, are orthogonal to one another.

Proof. It is straightforward that

() (x*Ax)* = x*A*x*™* = x*Ax.

(i) Ax = Ax implies) = X4x,
(i) Supposedx = A\1x, Ay = Aoy, andA; # Ag, then
(Mx)"y = (4x)"y = x"Ay = x"(A2y).

Hence,(\; — A2)x*y = 0, implying x*y = 0.

2.3 Orthonormal and unitary matrices

A real matrix@ is said to beorthogonalif Q7 Q = I. A complex matrixU is unitaryif U*U = I. In
other words, the columns &f (and@) areorthonormal Obviously being orthogonal is a special case of
being unitary. We state without proof a simple proposition.

Proposition 2.7. LetU be a unitary matrix, then
() (Ux)"(Uy) =x"y, and||Ux|]* = ||x|/*.
(i) Every eigenvalue\ of U has modulud (i.e. |A| = A*A = 1).
(iii) Eigenvectors corresponding to distinct eigenvalueg/adre orthogonal.

(iv) If U’ is another unitary matrix, the&’U’ is unitary.

3 The Spectral Theorem and the Jordan canonical form

Two matricesA and B are said to beimilar iff there is an invertible matrix\/ such thatM ~*AM =

B. Thus, a matrix is diagonalizable iff it is similar to a diagonal matrix. Similarity is obviously an
equivalence relation. The following proposition shows what is common among matrices in the same
similarity equivalent class.

Proposition 3.1. If B = M~ AM, thenA and B have the same eigenvalues. Moreover, an eigenvector
x of A corresponds to an eigenvectdf ~!x of B.



Proof. Ax = Ax implies(M~'A)x = AM ~'x, or (BM~1)x = A\(M~'x). O

An eigenvector corresponding to an eigenvalug called a\-eigenvector The vector space spanned
by all A-eigenvectors is called theeigenspaceWe shall often us®), to denote this space.

Corollary 3.2. If A and B are similar, then the corresponding eigenspacegl@nd B have the same
dimension.

Proof. SupposeB3 = M~ AM, then the mapping : + — M 'z is an invertible linear transformation
from one eigenspace of to the corresponding eigenspaceit O

If two matricesA and B are similar, then we can say a lot aboditif we know B. Hence, we
would like to find B similar to A where B is as “simple” as possible. The first “simple” form is the
upper-triangular form, as shown by the following Lemma, which is sometime referred to as the Jacobi
Theorem.

Lemma 3.3(Schur’s lemma) For anyn x n matrix A, there is a unitary matriX/ such thatB = U~ AU
is upper triangular. Hence, the eigenvalues/bére on the diagonal oB.

Proof. We show this by induction on. The lemma holds when = 1. Whenn > 1, overC A must
have at least one eigenvalde. Let x| be a corresponding eigenvector. Use @ram-Schmidprocess
to extendz to an orthonormal basisx1, xa, . .., x,} of C". LetU; be the matrix whose columns are
these vectors in order. From the fact that' = Uy, it is easy to see that

A1 * % *
0 * =x* *
UtAU = | 0« *
0 * =x *

Now, let A’ = (Ul‘lAUl)H (crossing off rowl and columni of Ul‘lAUl). Then, by induction there
exists an(n — 1) x (n — 1) unitary matrix M such thath/—! A’ M is upper triangular. Let/; be the
n x n matrix obtained by adding a new row and new columm/{awith all new entries equal except
(Us)11 = 1. Clearly Uy is unitary andU, ' (U; AU, )Us is upper triangular. Letting/ = U;Us
completes the proof. m

The following theorem is one of the most important theorems in elementary linear algebra, beside
the Jordan form.

Theorem 3.4(Spectral theorem)Every real symmetric matrix can be diagonalized by an orthogonal
matrix, and every Hermitian matrix can be diagonalized by a unitary matrix:

(real case) Q 'AQ = A, (complex case)U 1AU = A
Moreover, in both cases all the eigenvalues are real.

Proof. The real case follows from the complex case. Firstly, by Schur's lemma there is a unitary matrix
U such that/ ~! AU is upper triangular. Moreover,

(UTAU)* = U A (U~ ) = U A,

i.e. UL AU is also Hermitian. But an upper triangular Hermitian matrix must be diagonal. The realness
of the eigenvalues follow from Lemma 2.6. O

! have not define linear transformation yet. The thing to remember is that if there is an invertible linear transformation
from one vector space to another, then the two vector spaces have the same dimension. Invertible linear transformations are
like isomorphisms or bijections, in some sense. A curious student should try to prove this fact directly without using the term
linear transformation.



Theorem 3.5(The Jordan canonical form)f a matrix A hass linearly independent eigenvectors, then
it is similar to a matrix which is indJordan formwith s square blocks on the diagonal:

B, 0 0 ... 0
0 By, 0 ... 0
M7'AM=1|: o . ... 0
0 0 o0 B,

nal:

Aio100 0
0 A 1 0
Bj = 0 . 0
................ 1
0 0 0 A

Proof. A proof could be read from Appendix B of [8]. Another proof is presented in [3], which has a
nice combinatorial presentation in terms of digraphs. The fact that each Jordan block has exakttly one
dimensional eigenspace is straightforward. The main statement is normally shown by induction in three
steps. O

Corollary 3.6. Letn()\) be the number of occurrencesobn the diagonal of the Jordan form df. The
following hold

1. rank(A) = 3 5, .0 n(Ai) +n(0) — dim(Vp).

2. If Ais Hermitian, then the\-eigenspace has dimension equal the multiplicitk a6 a solution to
equationp4(x) = 0.

3. Infact, in Hermitian cas€™ = @, V), whereV,, denotes the\;-eigenspace.

Proof. This follows directly from theJordan formand our observation in Corollary 3.2. We are mostly
concerned with the dimensions of eigenspaces, so we can think Abositead ofA. Similar matrices
have the same rank, sband its Jordan form have the same rank. The Jordan formtads rank equal
the total number of non-zero eigenvalues on the diagonal plus the numbrinfthe Jordan blocks
corresponding to the eigenval0gwhich is exactlyn(0) — dim(Vj).

When A is Hermitian, it is diagonalizable. Every eigenvector corresponding tacanrrenceof an
eigenvalue) is linearly independent from all others (including the eigenvector corresponding to another
instance of the samkg). O

4  The Minimum Polynomial

| found the following very nice theorem stated without proof in a book called “Matrix Methods” by
Richard Bronson. I'm sure we could find a proof in either [6] or [4], but | wasn't able to get them from
the library. Here | present my little proof.



Theorem 4.1. SupposeBy, is a Jordan block of siz€ + 1) x (I + 1) corresponding to the eigenvalue
Ak of A, i.e.

(A 1 0 ... 0
0 X 1 ... O
Bi=|: :
................ 1
0 0 0 ... A
Then, for any polynomiaj(\) € C[)]
B / 1 ) 7]
a(\r) Q(l)!‘k) q (2>'\k) :]l 11()!)%)
0 g) & (1/\!k) o (l—l());k)
aBe) =1 ©
......................... ¢0n)
0 0 0 a(\e) |

Proof. We only need to consider the cage) = 2/, j > 0, and then extend linearly into all polynomials.
The casg = 0 is clear. Suppose equation (9) holds for) = 27~!,j > 1. Then, wheny(z) = 27 we
have

a(Br) = Bl 'By

N O DN COMTT T 1 0 0]
S A I PV AU () DY A I IR VRS R
................................. COINTZ e 1
|0 0 0 0 Xt | Lo 00 A
AL (DM (%)A?;j ,(?)A?;:IZH_

0 A DM o (DM

.......................... @A

00 0 0 o]

O]

The minimum polynomiatn 4 (\) of ann x n matrix A over the complex numbers is the monic
polynomial of lowest degree such thaty(A) = 0.

Lemma 4.2. With the terminologies just stated, we have
(i) ma(\) dividespa()).

(i) Every root ofp4(A) is also a root ofm4(\). In other words, the eigenvalues dfare roots of
ma(N).

(iii) Ais diagonalizable ifin4(\) has no multiple roots.

(iv) If {\;}5_, are distinct eigenvalues of a Hermitian mate thenm 4 () = [[7_; (A — Xi).

9



Proof. (i) ma(\) mustdivide every polynomial(\) with ¢(A) = 0, since otherwisg(\) = h(A\)ma(A\)+
r(A) impliesr(A) = 0 while »(\) has smaller degree than,4(\). On the other hand, by the
Cayley-Hamilton Theorem (theorem 5.24(A) = 0.

(i) Notice thatAz = Az implies A’z = Xz Thus, for any); eigenvector: of A 0 = m(A)z =
S ciAlr =3 i\ix = m(\)z. This implies)y is a root ofm(\).

(iiiy (=). SupposeM 1AM = A for some invertible matrix\/, and )y, . .., A, are distinct eigen-
values of A. By (i) and (ii), we only need to show is a root ofma(A\) = [[_; (A — Ni).
It is easy to see that for any polynomigl)\), ¢(A) = Mq(A)M~!. In particular,m4(A) =
M~ ma(A)M = 0, sincem4(A) = 0.
(«<). Now we assumen 4 () has no multiple root, which impliesi4(X) = []7_; (A — A;). By
Proposition 2.2, we shall show thdthasn linearly independent eigenvectors. Firstly, notice that
if the Jordan form of4 is

By 0 0 0
0 By O 0
MT7AM=1|: o " ... 0
0 0 0 B |
Then, for anyg(\) € C[\] we have
By 0 0 ... 0]
0 By 0 ... 0
M~q(AM = q||: o . ... 0
(0 0 0 Bs|
[q(B1) 0 0 0 ]
0 q(B2) 0 0
= 0 0
| 0 0 0 q(Bs) ]

So,[[;_1(A—XNI) =0implies][’ (B, — \I) =0forallk =1,...,s. If Adoes not have
linearly independent eigenvectors, one of the bloBksmust have size- 1. Applying Theorem
4.1 withq(X) = T]7_; (A — \i), we see thay(By,) does not vanish sincg(\;) # 0,Vi € [s].
Contradiction!

(iv) Follows from (iii) since a Hermitian matrix is diagonalizable.

5 Two Motivating Theorems

5.1 The statements

We examine two elegant theorems which illustrate beautifully the inter-relations between Combinatorics,
Algebra, and Graph Theory. These two theorems are presented not only for the purpose of demonstrating

10



the relationships, but they will also be used to develop some of our later materials on Algebraic Graph
Theory.

Theorem 5.1(Cayley-Hamilton) Let A be ann x n matrix over any field. Lep4(x) := det(z] — A)
be the characteristic polynomial of. Thenp4(A) = 0.

I will give a proof of this theorem combinatorially, following the presentation in [7]. A typical
algebraic proof of this theorem would first shows that a weak version whésediagonal holds, then
extend to all matrices ovét. To show the most general version we stated, the Fundamental Theorem of
Algebra is used. (FTA say8 is algebraically closed, or anyc C[z] has roots irC).

Theorem 5.2(Matrix-Tree) Let G be a labeled graph ofn] := {1,...,n}. Let A be the adjacency
matrix of G andd; := deg(i) be the degree of vertex Then the number of spanning treedbfs any
cofactor of L, whereL = D — A, D is diagonal with diagonal entried;; = d;,

The matrix L is often referred to as theaplacian of G. A cofactor of a square matriX is
(—1)""7 det L;; where L;; is the matrix obtained by crossing off roinand columnj of L. This the-
orem also has a beautiful combinatorial proof. See [7] for details. | will present the typical proof of this
theorem which uses the Cauchy-Binet theorem on matrix expansion. This proof is also very elegant and
helps us develope a bit of linear algebra. Actually, for weighted graphs, a minimum spanning tree can be
shown to be a tree which minimizes certain determinant.

5.2 The proofs
Combinatorial proof of Cayley-Hamilton Theorerfby Straubing 1983 [9]).

pa(z) :==det(xl — A) := Z sgn(m) H(m[ — A)ir(i)
i=1

WGS’n

Let the set fixed points of a permutatianbe denoted byfp(w) := {i € [n] | 7(i) = i}. Each
i € fp(r) contributes eithex or —a;; to a term. Eachi ¢ fp(w) contributes—a,.(;). Hence, thinking
of I as the set of fixed points contributingwe get

pA(x) = Z Sgn(ﬂ—) Z (_1)n_|F|$‘F|Haiﬂ'(z)

— Z sgn() Z Dol IS\HQ (i)
TESY SC[n], i€S
[n]-SCfp(r)

Now we exchange the summation indices by first fixing a particular choige ®her will be the ones
with [n] — S C fp(w), i.e. the permutations which fix everything not.$h Let P(S) be the set of
permutations ord, then

Zx" K Z Z sgn(m 1)’“Ham(i).

SE([ ]) weP(S) (sh

Let c(7) be the number of cycles af, it is easy to see that for € P(S) with |S| = k, sgn(r)(—1)* =
(=1)°™). Thus,

Zw" EDIRD DR I L0

SE([ ]) TeP(S) €S

11



Our objective is to show 4 (A) = 0. We’'ll do so by showindpa(A));; = 0, Vi, j € [n]. Firstly,

n

(pa(A))ij Z (A" k Z Z )¢ (™ Ham(l)

k=0 Se(["]) TeP(S) les

Let Pi’fj be the set of all directed walks of lengthfrom i to j in K, - the complete directed graph

onn vertices. Let an edge = (4,j) € E(K,) be weighted byw(e) = a;;. For anyP € 7?1’3, let
w(P) = [[.epw(e). It follows that

(A" )= > w(P)

peppF

To this end, let(S, 7, P) be a triple satisfying (&p C [n]; (b) 7 € P(S); and (c)P € Pfj_|3|.
Definew(S, 7, P) := w(P)w(r), wherew(n) = [[,cq in(t)- L€tSsgN(S, 7, P) := (—=1)°(7), then

(pA(A))ij = Z w(S,ﬂ,P)sgn(S,W,P)

(S,m,P)

To show(pa(A));; = 0, we seek a sign-reversing, weight-preserving involutioon the set of triples
(S, m, P). Letv be the first vertex inP? along the walk such that either @) < S, or (ii) v completes a
cycle in P. Clearly,

e (i) and (ii) are mutually exclusive, since if completes a cycle i® andv € S thenv was inS
before completing the cycle.

e One of (i) and (ii) must hold, since if no satisfy (i) thenP induces a graph on — |S| vertices
with n — |S| edges.P must have a cycle.

Lastly, given the observations above we can descfibs follows. Take the first € [n] satisfying
(i) or (ii). If v € S then letC be the cycle ofr containingv. Let P’ be P with C added right aftep.
S’ =8 — C andn’ ber with the cycleC removed. The image af(S, 7, P) is then(S’, «’, P'). Case
(i) v completes a cycle i before touchings is treated in the exact opposite fashion, i.e. we add the
cycle intor, and remove it fronP. O

To prove the Matrix-Tree Theorem, we first need to show a sequence of lemmas. The first (Cauchy-
Binet Theorem) is commonly stated with = 1.

Lemma 5.3(Cauchy-Binet Theorem)Let A and B be, respectively; x m andm x r matrices. LetD
be anm x m diagonal matrix with diagonal entries;, i € [m|. For anyr-subsetS of [m], let Ag and
B® denote, respectively, thex r submatrices ofd and B consisting of the columns of, or the rows
of B, indexed bys. Then

det(ADB) Z det Ag det B® H €;.
SE( ) €S

Proof. We will prove this assuming that, . .., e,, are indeterminates. With this assumption in mind,
since(ADB);; = Y -, aikbkjex, it is easy to see thatet(ADB) is a homogeneous polynomial in
e, ...,en With degreer.
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Consider a monomiadtlle’;2 .. .e?j;;b, where the number distinct variables that occur i r, i.e.
I{i | t; > 0}] < r. Substitute0 for all other indeterminates thet{'e’’ ... el and its coefficient
are unchanged. But, after this substitutionnk(D) < r, which impliesrank(ADB) < r, making
det(ADB) = 0. So the coefficient of our monomial (s

Put it another way, the coefficient of a monomei:%l ...elm is 0 unless it is a product of distinct
indeterminates, i.e3S € (™)) s.t.el' ... elm = [T;eq e

The coefficient of [, 4 e; can be calculated by setting = 1 for all i € S ande; = 0 forall j ¢ S.
It is not hard to see that the coefficientlist Ag det BS. O

Lemma 5.4. Given a directed graph{ with incident matrixV. Let C'(H) be the set of connected
component off, then
rank(N) = [V(H)| - |C(H)|

Proof. Recall thatNV is defined to be a matrix whose rows are indexed/§y? ), whose columns are
indexed byE(H), and

0 if ¢ is not incident tce or e is a loop
Nie=<R1 ife=j—i,j#i

)

—1 ife=i—j,j#i

To showrank(N) = |V (H)| — |C(H)| we only need to show thatim(col(N)*) = |C(H)|. For
any row vectorg € RIVUDI g € col(N)- iff gN = 0, i.e. for any edge = = — y € E(H) we must
haveg(z) = g(y). Consequentlyy € col(N)L iff g is constant on the coordinates corresponding to any
connected component éf. It is thus clear thatlim(col(N)*) = |C(H)). O

Lemma 5.5 (Poincag, 1901) Let M be a square matrix with at most two non-zero entries in each
column, at most ongé and at most one-1, thendet M = 0, +1.

Proof. This can be done easily by induction. If every column has exacthaad a—1, then the sum
of all row vectors ofM is 0, makingdet M = 0. Otherwise, expand the determinantidfalong the
column with at most one-1 and use the induction hypothesis. O

Proof the Matrix-Tree Theoreme will first show that the Theorem holds for tliecofactors for all
i € [n]. Then, we shall show that thg-cofactors are all equal for ajl € [n], which completes the
proof. We can safely assume > n — 1, since otherwise there is no spanning tree and at the same time
det(NNT) = 0.

Step 1. IfG’ is any orientation o, and N is the incident matrix oy, thenL = NN7. (Recall
that L is the Laplacian of7.) For anyi # j € [n], if i is adjacent tgi then clearly(NNT);; = —1. On
the other hand,N N7);; is obviously the number of edges incidentito

Step 2. IfBisan(n — 1) x (n — 1) submatrix ofN, thendet B = 0 if the corresponding: — 1
edges contain a cycle, anttt B = +1 if they form a spanning tree @f. Clearly, B is obtained by
removing a row ofNg for some(n — 1)-subsetS of E(H). By Lemma 5.4ank(Ng) = n — 1 iff
the edges corresponding fform a spanning tree. Moreover, since the sum of all row#&/efis the
0-vector,rank(B) = rank(Ng). Hencedet B # 0 iff S form a spanning tree. Whe$idoes not form
a spanning tree, Lemma 5.5 impliést B = +1.

Step 3.Calculatingdet L;;, i.e. theii-cofactor ofL. Letm = |E(G)|. Let M be the matrix obtained
from N by deleting rowi of N, thenL;; = M M7. Applying Cauchy-Binet theorem with;, = 1, Vi,
we get
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det(MM") = )" det Mgdet(M")"
se(y™)
= > (detMg)
se(y™)
= # of spanning trees a¥

The following Lemma is my solution to exercise 2.2.18 in [10]. The Lemma completes the proof
becausd. is a matrix whose columns sum to thevector. O

Lemma 5.6. Given ann x n matrix A = (a;;) whose columns sum to ttievector. Letb;; =
(—1)"* det A;;, then for a fixed, we haveh;; = by, Vj, 5.

Proof. Let B = (bij)T = (bji>, then

(AB)Z] = Zaikbjk
k=1
Obviously,(AB);; = 0;; det A whered;; is the Kronecker delta. To see this, imagine replacing row
j of Abyrowi of A and expandet A along row;, we get exactly the expression above. In other words,
AB = (det A)I.

Let a; denote column of A, then by assumptiol; d; = 0. Hencedet A = 0 anddim(col(A)) <
n—1.If dim(col(A)) < n—1thenrank(A;;) < n—1, makingb;; = 0. Otherwise, ifdim(col(A)) =
n — 1 thenn — 1 vectorsaj — di, 2 < j < n are linearly independent. MoreovetB = (det A)I =0
andy", a; = 0 implies that for alli

(biz — bi1) (@3 — a1) + (bis — bin)(ds — i) + - ... (bin — bir)(dr, — di) =0
SO,bij — bil =0, \V/j > 2. O

Corollary 5.7 (Cayley Formula) The number of labeled trees ém is n" 2.

Proof. Cayley formula is usually proved by using Prufer correspondence. Here | use the Matrix-Tree
theorem to give us a different proof. Clearly the number of labeled tregg @the number of spanning
trees ofK,,. Hence, by the Matrix-Tree theorem, itdst(n/ — J) where.J is the alll’'s matrix, and/

and.J are matrices of ordet — 1 (we are taking thé 1-cofactor).
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-1 -1 -1 -1
1 n-1 -1 ... -1
det(nl —J) = det | —1 -1 n-—-1 ... -1
-1 -1 -1 n—1
n—1 —1 1 1 7
(n-2)  — _
0 3%12) P
. — n(n— —
= det 0 ni—nl n—1 n—nl
I ELITEITPPIEPEPEES B
. 0 P W nin=2) |
n—1 -1 1 1 7
(n-2) - _
0 S5 aa P
= det| 0 e
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| 0 0 o T o
m—1 -1 1 1
(n-2) - _
I = P
= det| 0 0o  nnzd) —n
.............................. R
L 0 0 0 nr:lf(nnf2) i
— nn—2

6 Positive definite matrices

The purpose of this section is to develop a necessary and sufficient conditions for a real symmetric matrix
A (or Hermitian in general) to beositive definiteThis is essentially the conditions folgaadratic form
onR" to have a minimum at some point.

6.1 Some analysis

Let us first recall two key theorems from real analysis, stated without proofsf F@®&™ — R, if for
someq € R" g—fi(a) = 0, thena is called astationary pointof f.

Theorem 6.1(The second derivative testpupposef : R™ — R and its partial derivatives up to and
including order2 are continuous in a balB(a, r) (centered at: € R, radiusr). Suppose thaf has a
stationary point at.. For h = (hq, ..., hy), defineAf(a,h) = f(a + h) — f(a); also define

1 < 9%f

2,7=1

Q(h) = (a)hih;

then,

1. IfQ(h) > 0 for h # 0, thenf has a strict local minimum at.
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2. IfQ(h) < 0for h # 0, thenf has a strict local maximum at

3. If Q(h) has a positive maximum and a negative minimum, thgfa, 4) changes sign in any ball
B(a, p) such thatp < 7.

Note. (3.) says that at any close neighborhood othere are some pointsandc such thatf (b) > f(a)
andf(c) < f(a).

Example 6.2. Let us look at a quadratic fortA (x4, . .., x,) with all real coefficients, i.e. every term of
F has degree at mo8t Let A be the matrix defined by;; = gj—a’;j(a). Clearly, A is a real symmetric
matrix. For any vectoh € R",

ailr a2 a1n Zl
a a L..a 2
WA = [h hy ... hy| |20 7% S
anl1 Aan2 Gnn hy,

= i aijhihj

i,j=1
= 2Q(h)

So,F(z1,...,r,) has a minimum afo, . .., 0) (which is a stationary point of) iff 27 Ah > 0 for
all h # 0.

Definition 6.3. A non-singulam x n Hermitian matrixA is said to bgositive definitef x* Az > 0 for
all non zero vector € C™. A is positive semidefinité we only requirex* Az > 0. The termaegative
definiteandnegative semidefinitean be defined similarly.

Note. Continuing with our example, clearl§/(z1, ..., x,) has a minimum a0, ..., 0) iff A is positive
definite. Also, since we already showed thatlifs Hermitian, thenc* Az is real, the definitions given
above make sense.

A function f is in C'* on some domaid) C R™ if f and all its first order derivatives are continuous
onD. Fora € D, vf(a) = ($L(a),..., 2L (a)).

Theorem 6.4(Lagrange’s multiplier rule) Suppose thaf, ¢1, ..., ¢ are C'! functions on an open set
D in R™ containing a point, that the vectorsy ¢ (a), . .., Vi (a) are linearly independent, and that
f takes on its minimum among all pointsigf at zy, whereDj is the subset ob so that for allz € Dy,

vi(z1,...,xn)=0,i=1,...,k

Then, if F : R*** — R is defined to be
k
F(z,\) = f(2) =) ()
=1

then there existd? € R* such that
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Note. This theorem essentially says that the maxima (or minimaj) etibject to theside conditions
p1 = -+ = ¢ = 0 are among the maxima (or minima) of the functiBrwithout any constraints.

Example 6.5. To find the maximum off (z) = x1 + 3z2 — 23 onthe spherd4 — (2% + 23 + 23) = 0,
we let
F(x,\) = x1 + 329 — 203 + N(2? + 23 + 23 — 14)

Then, 85 = 142Xz, §& = 3+2)zy, J& = —24+2)w3, anddy = z+23+a3—14. Solving S = 0
we obtain two solutionéz, \) = (1,3, -2, —1/2) and(—1, —3, 2, 1/2). Which of these solutions give a
maximum or a minimum ? We apply the second derivative test. All second derivativéeara0 except
0’F /023 = 0°F/0z3 = 0°F/0x3 = 2)\. Q(h) = 2X\(h? + h3 + h3) has the same sign as Hence,
the first solution gives the maximum valuelof, the second solution gives the minimum value-df3.

6.2 Conditions for positive-definiteness

Now we are ready to specify the necessary and sufficient conditions for a Hermitian matrix to be positive
definite, or positive semidefinite for that matter.

Theorem 6.6. Each of the following tests is a necessary and sufficient condition for the real symmetric
matrix A to be positive definite.

(@) ¥ Az > 0 for all non-zero vectott.

(b) All the eigenvalues ofl are positive.

(c) Allthe upper left submatriced;, of A have positive determinants.

(d) If we apply Gaussian elimination ot without row exchanges, all the pivots satigfy> 0.
Note. (a) and (b) hold for Hermitian matrices also.

Proof. (a = b). Supposer; is a unit\;-eigenvector, thef < ! Az; = a7 \z; = ;.
(b = a). SinceA is real symmetric, it has a full set of orthonormal eigenvecfers. . ., z,, } by the
Spectral theorem. For each non-zero veata R™, suppose: = ¢1x1 + - - - + ¢, 2y, then

Az = A1 + -+ epn) = 1l @1 + -+ Ay,
Because the; are orthonormal, we get

2T Az = (clx? +- 4+ cnxg)(cl)\lxl + ot epAny)
= M+ N
Thus, every\; > 0 impliesz” Az > 0 whenever: # 0.

(a = ¢). We knowdet A = A\; ...\, > 0. To prove the same result for all,, we look at a non-zero
vectorz whose lasti — & components ar@, then

0<al Az = [zl 0] [Ak 1 [xk] = o} Apa®.

* x| |0

Thus,det A, > 0 follows by induction.
(¢ = d). Without row exchanges, the pivp}, in Gaussian elimination idet A/ det Ax_1. This
can also be proved easily by induction.
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(d = a). Gaussian elimination gives us/aDU factorization ofA where all diagonal entries df
andU arel. Also, the diagonal entrieg of D is exactly thei’” pivot p;. The fact thatd is symmetric
impliesL = UT, henced = LDL™, which gives

T Az = (2TL)(D) (LT x) = dy (LT %) + do(LT2)3 + - - - + dn (LT 2)2

SinceL is fully ranked,L”2z # 0 wheneverz # 0. So the pivotsi; > 0 impliesz” Az > 0 for all
non-zero vectors. O

7 The Rayleigh’s quotient and the variational characterizations

For a Hermitian matrix4, the following is known as thRayleigh's quotient

z*Ax
R(x) = .
(:z) x*x
Theorem 7.1(Rayleigh-Ritz) Suppose\; > Xy > --- > )\, are the eigenvalues of a real symmetric
matrix A. Then, the quotienk(x) is maximized at any, -eigenvector: = z; with maximum value,; .

R(x) is minimized at any\,,-eigenvector: = x,, with minimum value\,,,

Proof. Let @ be a matrix whose columns are a set of orthonormal eigenvegters. . , x,, } of A corre-
sponding ta\q, ..., A,, respectively. Writinge as a linear combination of columns @t = = Qy, then
sinceQ” AQ = A we have

Az (QTy)TAQTy)  yTAz  Myi+- + My

R(z) =

Tz QTyTQTy)  vTy  vi+---+yd
Hence,
Mzmwzh@+m+¥%zM
i+t
Moreover,R(z) = A\ wheny; # 0 andy; = 0, Vi > 1. This means: = Qy is a\;-eigenvector. The
caseR(z) = A, case is proved similarly. O

The theorem above is also referred to asRlagleigh principle which also holds wherl is Hermi-
tian. The proof is identical, except that we have to replace transposition (T) by Hermitian transposition
(*). An equivalent statement of the principle is as follows.

Corollary 7.2. Suppose\; > X\, > --- > ), are the eigenvalues of a real symmetric matdix Over
all non-zero unit vectors € R, 27 Az is maximized at a unik; -eigenvector, with maximum valug,
and minimized at a unit,,-eigenvector, with minimum valus, .

Rayleigh’s principle essentially states that

A1 = max R(z) and ), = min R(z)
TeR" reR”

What about the rest of the eigenvalues ? Here is a simple answer, stated without proof. The proof is
simple enough.

Theorem 7.3. Suppose\; > Ay > --- > )\, are the eigenvalues of a Hermitian matrik, and
uy, ..., Uy, are the corresponding set of orthonormal eigenvectors. Then,
A = R
-
cluy,. .. up_q
A = i R
-

xJ—uk+l7"'7un
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The theorem has a pitfall that sometime we don't know the eigenvectors. The following generaliza-
tion of Rayleigh’s principle, sometime referred to astfiaimax and maximin principles for eigenvalues
fill the hole by not requiring us to know that eigenvectors.

Theorem 7.4(Courant-Fisher)Let V}, be the set of alk-dimensional subspacesGf. Let\; > Ay >
--- > A, be the eigenvalues of a Hermitian matdx Then,

A = max |minR(x)
SeVy | zeS
z#0

= min |maxR(z)
SEVn_k+1 €S
x#0

Note. It should be noted that the previous two theorems are often referred to earthtonal charac-
terizationof the eigenvalues.

Proof. LetU = [uy,us,...,u,| be the unitary matrix with unit eigenvectous, . . . , u,, corresponding
to the eigenvaluedy, ..., \,. Let us first fixS € V}, and letS’ be the image of under the invertible
linear transformation represented &y. Obviously,dim(S’) = k. We have already known th&t(z) is
bounded, so it is safe to say the following, with# 0, y # 0 being implicit.

*A
inf R(z) = inf =20
eSS zeS x*x
i (U*x)*A(U*x)
T €S (U*x)*(U*x)
L YAy
= inf
yes y*y
< ¢ y*Ay
yes’ Y'Yy
y1="=yk—1=0
. My 4+ Ay
= inf 5 3
yes’ y1++yn
y1==yr—1=0
2 2
N SRRt
yes’ Y+t un
y1="=yYp—1=0
< M

The inequality in line 4 is justified by the fact that there is a non zero vectorS’ such that; = --- =
yr—1 = 0. To get this vector, put basis vectors of’ into the rows of & x n matrix and do Gaussian
elimination.

Now, S was chosen arbitrarily, so it is also true that

sup inf R(z) < A
SeV; zeS

Moreover, R(uy) = (U*ug)*A(U*uy) = exAer, = \g. Thus, the infimum and supremum can be
changed to minimum and maximum, and the inequality can be changed to equality. The other equality
can be proven similarly. O
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This theorem has a very important and beautiful corollary, callethtteelacing of eigenvaluet® be
presented in the next section. Let us introduce a simple corollary.

Corollary 7.5. Let A be ann x n Hermitian matrix, letk be a given integer with < k < n, let
A1 > X > - > A, be the eigenvalues of, and letS, be a givenk-dimensional subspace @f*. The
following hold

(a) Ifthere existg; such thatR(z) < ¢; for all z € Sk, thency > \,_x11 > -+ > A,

(b) If there exists:;, such thatR(x) > co for all x € Sk, thenA; > -+ > A\p > co.

Proof. It is almost straightforward from the Courant-Fisher theorem that

(@)
> R(z) > i R(z) = A\,
2 B 2 )iy (B8 ) = ntn

(b)
c2 < min R(x) < max min R(z) =\
0#xES), dim(S)=k 0#z€S

8 Other proofs of the variational characterizations

The presentation below follows that in [2]. Let be a Hermitian matrix of orden with eigenvalues
AL > - > A\, LetU = [ug,...,u,] be the unitary matrix where; is the unit);-eigenvector ofA.
Then,
A= Nujus. (10)
J

This equation is called thepectral resolutiorof A. From the equation we obtain
(x, Ax) = Z Aj (ujl‘)* (ujz) = Z )\j]u;x|2
J J

When|z| = 1, we have

Z |“J*‘l‘|2 = Z (U§$)* (ujx) =2*UUx = 1.
J

J
As we can always normalize we shall only consider unit vectossin this section from here on.
Lemma 8.1. Supposd < i < k < n, then
{(x, Az) | |z| = 1,2 € spanf{u;, ..., ur}} = Mg, i

Additionally,
<UZ,AUZ> = )\Z', VZ
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Proof. The fact thatu;, Au;) = A; is trivial. Assumer is a unit vector inspan{u;, ..., ux}, then
(@, Az) = > Ajlujal?,
i<j<k

which yields easily
{{z, Az) | |z| = 1,z € span{u;,...,up}} C [Nk, Ai].

For the converse, let € [\, \;]. Lety € C™ be a column vector all of whose components(@rexcept
that

o A=A
|V
B Ai — A
Yk = N
Then,z = Uy € span{u;, ur} C span{u;,...,u}, x is obviously a unit vector. Moreover,

(x, Az) = (Uy)* A(Uy) = y* Ay = \iyii + s = A

Lemma 8.1 gives an interesting proof of Theorem 7.4.

Another proof of Courant-Fisher TheoreriVe shall show that

A = max |min R(z)
SeV, | zeS
T#£0
The other equality is obtained similarly. Fx € Vi, letW = span{ug,...,u,}, thenV andS have
total dimensiom+1. Thus, there exists a unit vecterc W N.S. Lemma 8.1 impliesk(x) = (x, Ax) €
[An, Ak]. Consequently,
min R(z) < Ag.
x#0
Equality is obtained by picking anmy~dimensional subspacecontainingug, andx = wuy. O

9 Applications of the variational characterizations and minimax princi-
ple

Throughout the rest of this section, we ukg, to denote the set of ab x n matrices overC (i.e.
M, =~ C""). The first application is a very important and beautiful theorem namethtbgacing of
Eigenvalues Theorem

Theorem 9.1(Interlacing of eigenvalues)Let A be a Hermitian matrix with eigenvalues > as >
.-+ > ay. Let B be the matrix obtained fromM by removing row and columni, for anyi € [n]. Suppose
B has eigenvalues; > --- > 3,1, then

ap>fr>ax> P> 2> B >y
Note. A proof of this theorem using Spectral Decomposition Theorem can also be given, but it is not

very instructive.
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Proof. We can safely assume that= n for the ease of presentation. We would like to show that as
1<k<n-—1,ap > B > ary. Lete = [yTz,]T € C* wherey € C"~!. Note that ifz,, = 0 then
x* Az = y* By. We first use the maximin form of Courant-Fisher theorem to write

. x*Ax
o = max Imin
SCC™ 0#zeS x*zx
dim(S)=k
. Az
> max Imin

SC{en}+ 0£z€S T*X
dim(S)=k

. x*Ax
= max min
SC{en}+ 0£z€S T*X
dim(S)=k *n=0

. y"By
= max min
sccn—1 0£yeS y*y
dim/(S)=k

= Bk

Now, we use the minimax form of the theorem to obtajn ; < (.

. ¥ Ax
(6% = min max
k1 scer 0£zeS T T
dim(S)=n—(k+1)+1
. ¥ Ax
< min max
SClen}t O0#zeS X*X
dim(S)=n—k
. * Az
= min max
SC{en}t O#zeS x*X
dim(S)=n—k Tn=0
B : y* By
= min max
sccn-t 0£yeS y*y
dim(S)=(n—1)—k+1
= bk
O
The converse of the Interlacing of Eigenvalues Theorem is also true.
Theorem 9.2. Given real numbers
a1 > >ay> P> > Bt > . (11)
Let B = diag[Bi,...,Bn_1. Then, there exist a vectgr € R"~! and a real number: such that the
matrix
A=l
Y a
has eigenvaluesy, . .., a,.
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Proof. Firstly, a = Y7 oy — Y77 ;. To determine the vectay = [y1,...,y,—1]7, we evaluate
f(x) = det(Ix — A).

$—/6]_ 0 Y1
det(Ix — A) = det : B : :
0 x—ﬂnfl Yn—1
Yy - Yn1 T —a
2 2
yl Yn—1
= xr — oo (X — Op— xr—a — .
I A )

Letg(z) = (z — f1)...(x — Bn_1), then

where
2 9() 5 gle) (12)

is a polynomial of degree — 2. We wantf(z) = (z — a1) ... (z — a,), which could be used to solve
for they;.

If the 3; are all distinct, them () is determined at — 1 points:r(3;) = f(0;). Lagrange interpola-
tion gives:

Zf B $)_ﬁ) (13)

Comparing (12) and (13), we conclude that ifforad 1,....,n — 1,
fBi))  (Bi—oa)...(Bi —im1)(Bi — i) (Bi — 1) - (Bi — an)

g'(6:) (Bi = B1) - (B = Bi=1)(Bi = Bi1) - - (Bi — Bn) =0
then we can solve for thg. The interlacing condition (11) implies th@; — «;) and(3; — 3;) have the
same sign except when: i. Hence,f,(ﬁ) < 0 as desired.
If, say,51 = --- = B > Br+1 > - .., then the interlacing condition (11) forcgs = --- = [ =
Qg = ag. Hence, we can divide both sidesfifr) = g(z)(z — a) + () by (z — 41)*~! to eliminate
the multiple root3; of g(x). After all multiple roots have been eliminated this way, we can proceed as
before. O]

Hermann Weyl (1912, [11]) derived a set of very interesting inequalities concerning the eigenvalues
of three Hermitian matriced, B, andC whereC = A + B. We shall follow the notations used in [2].
For any matrixA, let /\g(A) and/\]T(A) denote theth eigenvalue oA when all eigenvalues are weakly
ordered decreasingly and increasingly, respectively. When given three Hermitian matriseandC'
whereC = A + B, implicitly we definea; = )\j(A), B = )\é(B), andvy; = )\j(C), unless otherwise
specified.

Theorem 9.3(Weyl, 1912) Given Hermitian matricesi, B, andC of ordern such thatC' = A + B.
Then,
Vitj—1 S+ B fori+j—1<n. (14)
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Proof. Fork = 1,...,n, letug, vi, andwy be the unitay, G, and~, eigenvectors oA, B, andC,
respectively. The three vector spaces spannedy. .., u,}, {vj,...,v,}, and{wy, ..., witj—1}
have total dimension + 1. Hence, they have a non-trivial intersection. kelbe a unit vector in the
intersection, then by Lemma 8.1

<.7}, Ax> € [an, 041’]
(x,Bx) € [Bn, 0]
(z,Cr) € [Yitj-1,]

Thus,
Yitj-1 < (@, Cx) = (2, Az) + (2, Bz) < o + ;.

A few interesting consequences are summarized as follows.

Corollary9.4. (i) Forall k=1,...,n.
o+ Bn 2 Wk = ag + S,
(i)

a1+ B

Ba!

<
Tn 2

Proof. (i) The second inequality is obtained by specializjng 1, i = k in Theorem 9.3. The first
inequality follows from the first by noting thatC' = —A — B.

(i) Applying Theorem 9.3 withi = j = 1 vyields the first inequality. The second follows by the
—C = —A — B argument.
O

The following is a trivial consequence of the minimax principle.
Corollary 9.5 (Monotonicity principle) Define a partial order of all Hermitian matrices as follows.
A < Biff (x, Ax) < (x, Bz) Vz. (15)

Then, forallj = 1,...,n we have\;(A4) < \;(B) wheneved < B.
Equivalently, ifA and B are Hermitian withB being positive semidefinite, then

A(A) < AL(A+ B)

10 Sylvester’s law of inertia
Material in this section follows closely that in the boblatrix Analysisby Horn and Johnson [5].
Definition 10.1. Let A, B € M,, be given. If there exists a non-singular matsixuch that

e B = SAS* thenB is said to bex-congruent taA.

e B = SAST, thenB is said to bel-congruent toA.
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Note. These two notion of congruence must be closely related; they are the s&nieafreal matrix.
When it is not important to distinguish between the two, we use the ¢ergruencewithout a prefix.
SinceS was required to be non-singular, congruent matrices have the same rank. Also notedhst, if
Hermitian then so iS AS*; if A is symmetric, ther§ AS7 is also symmetric.

Proposition 10.2. Both x-congruence and’-congruence are equivalent relations.

Proof. It is easy to verify that the relations are reflexive, symmetric and transitive. Only need to notice
thatS is non-singular. O

The setM,,, therefore, is partitioned into equivalence classes by congruence. As an abstract prob-
lem, we may seek a canonical representative of each equivalence class under each type of congruence.
Sylvester’s law of inerti@ives us the affirmative answer for thecongruence case, and thus also gives
the answer for the set of real symmetric matrices.

Definition 10.3. Let A € M,, be a Hermitian matrix. Thimertia of A is the ordered triple
i(A) = (14+(A4),i-(A),i0(A))

wherei (A) is the number of positive eigenvalues4fi_(A) is the number of negative eigenvalues of
A, andig(A) is the number of zero eigenvaluesfall counting multiplicity. Thesignatureof A is the
quantityiy (A) —i_(A).

Note. Sincerank(A) =i+ (A) +i_(A), the signature and the rank dfuniquely identify the inertia of
A.

Theorem 10.4(Sylvester’s law of inertia) Let A, B € M, be Hermitian matrices.A and B are x-
congruent if and only ifA and B have the same inertia.

Proof. (=). Firstly, for any Hermitian matribC' € M,,, C' can be diagonalized by a unitary matrix
U, ie. C = UAU*, with A being diagonal containing all eigenvaluesf By multiplying U with a
permutation matrix, we can safely assume that down the main diagomgl af positive eigenvalues

go first: Ay,..., A;,, then the negatives);, y1,..., A\, +s_, and the rest ar@'s. Thus, if we setD =
dlag( \% ’)‘1‘7 s\ ’)‘i++i_ |a 0,... 70), then
o ;
1
-1
A = D '.. D - D[CD
-1
0
- 0_

with the entries not shown beirty I is called thanertia matrixof C. Consequently, letting = UD
(S is clearly non-singular) we get

C = UAU* = UDIoDU* = SIoS* (16)

Hence, ifA and B have the same inertia, then they could be written in the form (16) with possibly
a differentS for each, butl 4 = Ig. Sincex-congruence is transitive] is x-congruent taB as they are
both congruent td 4.
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(«<). Now, assumed = SBS* for some non-singular matris. A and B have the same rank,
s0ig(A) = ip(B). We are left to show that, (A) = iy (B). For convenience, let = i (A) and
b =i.(B). Letuy,...,u, be the orthonormal eigenvectors for the positive eigenvalues, sb that
dim(Span{uy, ..., uq}) = a. If & = cyuy + - - - + cqq, thenz* Az = i|c1|? + - - -+ Ao|ca|? > 0. But
then

¥ Ax = x*SBS*x = (S*z)"B(S*x) > 0

soy* By > 0 for all vectory in Span{S*uy,...,S*u,}, which also has dimensian By Corollary 7.5,
b > a. A similar argument shows that> b, which completes the proof. O

Corollary 10.5. Givenz € R", if 27 Az can be written as the sum of products involving two linear
factors, that is

m

2 Az = (> b)Y cjpx;)
k=1 i€Sy JET,
Further assume tha#l hasp positive eigenvalues anglpositive eigenvalues (counting multiplicities),
thenm > max(p, q).

Proof. | have not been able to see why this corollary follows from Sylvester’s law yet. A proof of the
corollary can be given, but that's not the point. O

11 Majorizations

Several results in linear algebra are best presented through the concept of majorization. We first need a
few definitions.
Letvq,..., v, be vectors iR™. The vector

v=Av1+ -+ Anm

is called theinear combinatiorof thev;; when)_ A; = 1, we get araffine combinationa canonical
combinationis a linear combination in which; > 0,Vj; and aconvex combinatiors an affine combi-
nation which is also canonical. Thieear (affine, canonical, convex) huf {v,, ..., v,,} is the set of
all linear (affine, canonical, convex) combinations of theNote that in the above definitions, could
be infinite. The convex hull of a finite set of vectors is callgd@vex polyhedral) cone

Letx = (z1,...,z,) be a vector inR™. The vectorz! = (x{, ... ,m%) is obtained fromz by
rearranging all coordinates in weakly decreasing order. The vettoan be similarly defined.

Supposer, y € R"™. We sayz is weakly majorizedy y and writex <., y if

v <Yyl Vk=1,....n (17)
=1 i=1
Additionally, if
4= a9
=1 i=1

thenx is said to bemajorizedby y and we writexr < y.
The concept of majorization is very important in the theory of inequalities, as well as in linear algebra.
We develop here a few essential properties of majorization.

Theorem 11.1.Let A € M,, be Hermitian. Let be the vector of diagonal entries df anda = A\(A)
the vector of all eigenvalues af. Then,a < a.
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Proof. Whenn = 1, there is nothing to show. In general, IBte M,,_; be a Hermitian matrix obtained
from A by removing the row and the column corresponding to a smallest diagonal enty aft

b1, ...,0n—1 be the eigenvalues adB. Then,a; > 6y > --- > G,-1 > «a,. Moreover, induction
hypothesis yields
k k
ab <y B 1<k<n-—1
=1 =1
Hence,
k k
Zai SZai, 1<k<n-1.
=1 i=1
Lastly,tr(A) = >~ a; = > «a; finishes the proof. O

It turns out of the converse also holds. Before showing the converse, we need a technical lemma.

Lemma 11.2. Letz,y € R™ such thate - y. Then, there exists a vecterc R”~! such that

v

ol > >k >z > 2 > 1,

andz = [y},...,yp_4]"-
Proof. Whenn = 2, we must have:! > y! >y} > 1. Hence, picking:; = 4} suffices.
Suppose: > 3. Let D C R"~! be defined by

k k
D {UGR"‘I\JU% >up > > upl > ah, andZuiEZy,ﬁ, 1§k§n—2}.
i=1 i=1

Then, the existence of a poiate D for which Z?;f z; = Z?;ll y} = ¢ would complete the proof.

Notice that as{:z{, e ,xihl]T € D, D is not empty. Define a continuous functign: D — R by
f) =v1 4+ +vp-1. Then,f([x{, . ,x}l_l]T) > ¢. SinceD is a connected domain, if we could
find v € D for which f(v) < ¢, then there must exist the vectofor which f(z) = c. Letv € D be a
vector such that = min{f(z) | z € D}. If f(v) < ¢, then we are done. Suppogér) > ¢, we shall

show thatf(7) > c to reach a contradiction. We have

k
Yo > Yy 1<k<n-—1 (19)
i=1 =1

op > wp,. 1<k<n-—L (20)

Suppose first that all inequalities (19) are strict. Then, it must be the casekthatx,tH, k=
1,...,n — 1. Otherwise, one could reduce somgto make f(0;) smaller. Consequentlyf(v) =
f([a:%, .. ,a:,%]T) <ec.

If not all of the inequalities (19) are strict, then febe the largest index for which

' T

o o= >yl (21)
=1 =1
k k

b o> >y, r<k<n-—1 (22)

i=1 i=1
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(Notice the fact that < n — 2, since we assumef{¢) > c.) By the same reasoning as before, we must
havedy, :35,1erl fork=r+1,...,n—1. Thus,

n—1 n—1
@) —c = o=y
=1 i=1
T n—1 n—1
= Z@‘—F Z ﬁi_zyil
=1 i=1

i=r+1
r n n—1
= D ut Y @Yy
i=1 i=r+42 i=1
T n n—1
< D> U+ D> u-Y U
i=1 i=r+42 i=1
n n—1
= > u- > u
i=r+2 i=r+1
n
= > (v -vl)
i=r+2
< 0

We are now ready to show the converse of Theorem 11.1.

Theorem 11.3.Leta and « be two vectors iR™. If a < «, then there exists a real symmetric matrix
A € M,, which has diagonal entries;, and\(A4) = a.

Proof. The case: = 1 is trivial. In general, assume without loss of generality that !, anda = «o'.
Also, leth = [ay, . .., a,_1]. Then, Lemma 11.2 implies the existence of a ve@tar R"*~! such that

o> P> 2> B > ap,

and thatg > b. The induction hypothesis ensures the existence of a real symmetric Batrivich has
diagonal entrie$ and eigenvalueg. Now, Theorem 9.2 allows us to exteritlinto a real symmetric

matrix A’ € M,:
’ Ay
A - |:yT b )

whereA = diag(f1, ..., B.-1), andA’ has eigenvalues. One more step needs to be done to tdfn
into matrix A we are looking for. We know that there exists a orthonormal m&prix M,, 1 for which

B = QAQ". Hence, letting
A Q 0] [A y][QF 0] _ [QAQT Qy B Qy
B O O I E72 Y I U N ()7 Kt Q)" a

finishes the proof. O

Foranyr € S, andy € R", lety: := (Yr(1)s- -+ Ur(n))-
Theorem 11.4.Given vectors:, y € R"”, the following three statements are equivalent.

@) = >y.
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(i) There exists a doubly stochastic matfix for whichz = My.
(i) z isin the convex hull of alh! pointsy,., T € S,,.

Proof. We shall show(i) = (ii) = (iii) = (1).
Firstly, assume < y. By Theorem 11.3 there is a Hermitian matrdxe M,, with diagonal entrieg
and\(A) = x. There thus must exist a unitary mattix= (u;;) for which A = Udiag(yi, ..., yn)U",

which implies
n
Ti = Qi = Zyj\uz'j\Q-
j=1

Hence, taking\l = (|u;;|?) completes the proof.
Secondly, suppose = My whereM is a doubly stochastic matrix. Birkhoff Theorem implies that
there are non-negative real numbefsr € S, such that

chzl

ﬂ'ESn

M = Y P,

TI'ESn

whereP;. is the permutation matrix correspondingitoConsequently,

x=My= chpwy: chyﬂ‘

weSh TESK

Lastly, suppose there are non-negative real numbers € S,, such that

Zcﬂzl

TESy

r = Zcﬂyw.

ﬂ'ESn

Without loss of generality, we assume= y'. We can writez; is the following form:

n
=Y yi| > x| =D uidiy.
— o

Note that)_; di; = >_;d;; = 1. (This is rather like havingiii) = (ii) first, and then we show
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(73) = (4).) The following is straightforward:

kK n
Z Z yjidij

i=1 i=1 j=1
n k
= 2 i) dy
=1 i=1
k k nok
< ylzdz’1+"‘+ykzdik+yk+1 Z Zdij
i=1 i=1 j=k+1i=1
k k nok
= n+-+y—u <1_Zdi1> — = Yk (1_Zdik> + Yk+1 Z Zdz‘j
i=1 i=1 j=k+1 i=1

ko k nok
S oyt [ F DD di | Fuen | YL D di

j=11i=1 j=k+1 i=1

n k
= i+ Yk — Ykt | B — Zdij

j=1 i=1

)
= i+t Uk — Yk k‘—z dij

i=1 j=1
= Y+t Yk

0
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