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A Linear Algebra Primer

Standard texts on Linear Algebra and Algebra are [1,8].

1 Preliminaries

1.1 Vectors and matrices

We shall useR to denote the set of real numbers andC to denote the set of complex numbers. For any
c = a + bi ∈ C, thecomplex conjugateof c, denoted bȳc is defined to bēc = a− bi. Themodulusof c,
denoted by|c|, is

√
a2 + b2. It is easy to see that|c|2 = cc̄.

If we mention the word “vector” alone, it is understood to be a column vector. Ann-dimensional
vectorx hasn entries in some field of numbers, such asR or C:

x =


x1

x2
...

xn

 .

The set of alln-dimensional vectors overR (respectivelyC) is denoted byRn (respectivelyCn). They
are also calledreal vectorsandcomplex vectors, respectively.

Similar to vectors, matrices need an underlying field. We thus have complex matrices and real matri-
ces just as in the case of vectors. In fact, ann-dimensional vector is nothing but ann× 1 matrix. In the
discussion that follows, the concepts of complex conjugates, transposes, and conjugate transposes also
apply to vectors in this sense.

Given anm × n matrix A = (aij), thecomplex conjugatēA of A is a matrix obtained fromA by
replacing each entryaij of A by the corresponding complex conjugateāij . ThetransposeAT of A is the
matrix obtained fromA by turning its rows into columns and vice versa. For example,

A =
[

0 3 1
−2 0 1

]
, andAT =

0 −2
3 0
1 1

 .

Theconjugate transposeA∗ of A is defined to be(Ā)T . A square matrixA is symmetriciff A = AT ,
and isHermitian iff A = A∗.

Given a real vectorx ∈ Rn, thelength‖x‖ of x is

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n. (1)

Notice that‖x‖2 = xxT . Whenx is a complex vector, we usex∗ instead ofxT . Hence, in general we
define‖x‖ =

√
xx∗ =

√
x∗x. (You should check thatxx∗ = x∗x, and that it is a real number so that the

square root makes sense.)
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The length‖x‖ is also referred to as theL2-norm of vectorx, denoted by‖x‖2. In general, the
Lp-normof ann-dimensional vectorx, denoted by‖x‖p, wherep = 1, 2, . . . , is defined to be

‖x‖p := (|x1|p + · · ·+ |xn|p)
1
p , (2)

and
‖x‖∞ := max

i=1..n
|xi|. (3)

The following identities are easy to show, yet of great importance. Given ap × q matrix A and a
q × r matrixB, we have

(AB)T = BT AT (4)

(AB)∗ = B∗A∗ (5)

(Question: what are the dimensions of the matrices(AB)T and(AB)∗?)
A square matrixA is said to besingular if there is no unique solution to the equationAx = b. For

A to be singular, it does not matter whatb is. The uniqueness of a solution toAx = b is an intrinsic
property ofA alone. If there is one and only onex such thatAx = b, thenA is said to benon-singular.

1.2 Determinant and trace

Given a square matrixA = (aij) of ordern, the equationAx = 0 has a unique solution if and only if
det A 6= 0, wheredet A denotes thedeterminantof A, which is defined by

det A =
∑
π∈Sn

(−1)I(π)
n∏

i=1

aiπ(i) =
∑
π∈Sn

sign(π)
n∏

i=1

aiπ(i). (6)

Here,Sn denotes the set of all permutations on the set[n] = {1, . . . , n}. (Sn is more often referred to
as thesymmetric groupof ordern.) Given a permutationπ ∈ Sn, we useI(π) to denote the number of
inversionsof π, which is the number of pairs(π(i), π(j)) for which i < j andπ(i) > π(j). Thesignof
a permutationπ, denoted by sign(π), is defined to be sign(π) = (−1)I(π).

Exercise 1.1.Find an involution forSn to show that, forn ≥ 2, there are as many permutations with
negative sign as permutations with positive sign.

Let us take an example forn = 3. In this caseSn consists of6 permutations:

Sn = {123, 132, 213, 231, 312, 321}.

Notationally, we writeπ = 132 to mean a permutation whereπ(1) = 1, π(2) = 3, andπ(3) = 2.
Thus, whenπ = 132 we have sign(π) = −1 since there is only one “out-of-order” pair(3, 2). To
be more precise, sign(123) = 1, sign(132) = −1, sign(312) = 1, sign(213) = −1, sign(231) = 1,
sign(321) = −1.

Consequently, for

A =

 0 3 1
−2 0 1
−1 2 2


we have

det A = a11a22a33 + (−1)a11a23a32 + (−1)a12a21a33 + a12a23a31 +
a13a21a32 + (−1)a13a22a31

= 0 · 0 · 2 + (−1) · 0 · 1 · 2 + (−1) · 3 · (−2) · 2 + 3 · 1 · (−1) +
1 · (−2) · 2 + (−1) · 1 · 0 · (−1)

= 5
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The trace of a square matrixA, denoted by trA is the sum of its diagonal entries. The matrixA
above has

tr A = 0 + 0 + 2 = 2.

1.3 Combinations of vectors and vector spaces

A vectorw is a linear combinationof m vectorsv1, . . . , vm if w can be written as

w = a1v1 + a2v2 + . . . amvm. (7)

The numberaj is called thecoefficientof the vectorvj in this linear combination. Note that, as usual, we
have to fix the underlying field such asR or C. If, additionally, we also havea1 + a2 + · · · + am = 1,
thenw is called anaffine combinationof thevi.

A canonical combinationis a linear combination in whichaj ≥ 0,∀j; and aconvex combinationis an
affine combination which is also canonical. Thelinear (affine, canonical, convex) hullof {v1, . . . , vm} is
the set of all linear (affine, canonical, convex) combinations of thevj . Note that in the above definitions,
m could be infinite. The convex hull of a finite set of vectors is called acone, or more specifically a
convex polyhedral cone.

A real vector spaceis a setV of real vectors so that a linear combination of any subset of vectors
in V is also inV . In other words, vector spaces have to beclosedunder taking linear combinations.
Technically speaking, this is an incomplete definition, but it is sufficient for our purposes. One can also
replace the word “real” by “complex”. Asubspaceof a vector spaceV is a subset ofV which is closed
under taking linear combinations.

Given a setV = {v1, . . . , vm} of vectors, the set of all linear combinations of thevj forms a vector
space, denoted by span{(V )}, or span{(v1, . . . , vm)}. Thecolumn spaceof a matrixA is the span of
its column vectors. Therow spaceof A is the span ofA’s rows. Note that equationAx = b (with A not
necessarily a square matrix) has a solution if and only ifb lies in the column space ofA. The coordinates
of x form the coefficients of the column vectors ofA in a linear combination to formb.

A setV = {v1, . . . , vm} of (real, complex) vectors is said to belinearly independentif

a1v1 + a2v2 + . . . amvm = 0 only happens whena1 = a2 = . . . am = 0.

Otherwise, the vectors inV are said to be (linearly)dependent.
The dimensionof a vector space is the maximum number of linearly independent vectors in the

space. Thebasisof a vector spaceV is a subset{v1, . . . , vm} of V which is linearly independent and
span{(v1, . . . , vm)} = V . It is easy to show thatm is actually the dimension ofV . A vector space
typically has infinitely many bases. All bases of a vector spaceV have the same size, which is also the
dimension ofV . The setsRn andCn are vector spaces by themselves.

In ann-dimensional vector space, a set ofm > n vectors must be linearly dependent.
The dimensions of a matrixA’s column space and row space are equal, and is referred to as therank

of A. This fact is not very easy to show, but not too difficult either. Gaussian elimination is of great use
here.

Exercise 1.2.Show that for any basisB of a vector spaceV and some vectorv ∈ V , there is exactly
one way to writev as a linear combination of vectors inB.

1.4 Inverses

We use diag(a1, . . . , an) to denote the matrixA = (aij) whereaij = 0 for i 6= j andaii = ai,∀i. The
identity matrix, often denoted byI, is defined to be diag(1, . . . , 1).

Given a square matrixA, theinverseof A, denoted byA−1 is a matrixB such that

AB = BA = I, or AA−1 = A−1A = I.
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Exercise 1.3.Show that, ifA andB both have inverses, then the inverse ofAB can be calculated easily
by

(AB)−1 = B−1A−1. (8)

Similarly, the same rule holds for3 or more matrices. For example,

(ABCD)−1 = D−1C−1B−1A−1.

If A has an inverse, it is said to beinvertible. Not all matrices are invertible. There are many
conditions to test if a matrix has an inverse, including: non-singularity, non-zero determinant, non-zero
eigenvalues (to be defined), linearly independent column vectors, linearly independent row vectors.

2 Eigenvalues and eigenvectors

In this section, we shall be concerned with square matrices only, unless stated otherwise.
Theeigenvaluesof a matrixA are the numbersλ such that the equationAx = λx, or (λI−A)x = 0,

has a non-zero solution vector, in which case the solution vectorx is called aλ-eigenvector.
Thecharacteristic polynomialpA(λ) of a matrixA is defined to be

pA(λ) := det(λI −A).

Since the all-0 vector, denoted by~0, is always a solution to(λI − A)x = 0, it would be the only
solution if det(λI − A) 6= 0. Hence, the eigenvalues are solutions to the equationpA(λ) = 0. For
example, if

A =
[

2 1
−2 3

]
,

then,

pA(λ) = det
[
λ− 2 −1
+2 λ− 3

]
= (λ− 2)(λ− 3) + 2 = λ2 − 5λ + 8.

Hence, the eigenvalues ofA are(5/2± i
√

7/2).
If we work on the complex numbers, then equationpA(λ) = 0 always hasn roots (up to multi-

plicities). However, we shall be concerned greatly with matrices which have real eigenvalues. We shall
establish sufficient conditions for a matrix to have real eigenvalues, as shall be seen in later sections.

Theorem 2.1. Letλ1, . . . , λn be the eigenvalues of ann× n complex matrixA, then

(i) λ1 + · · ·+ λn = tr A.

(ii) λ1 . . . λn = detA.

Proof. In the complex domain,pA(λ) hasn complex roots since it is a polynomial of degreen. The
eigenvaluesλ1, . . . , λn are the roots ofpA(λ). Hence, we can write

pA(λ) =
∏

i

(λ− λi) = λn + cn−1λ
n−1 + · · ·+ c1λ + c0.

It is evident that

cn−1 = − (λ1 + · · ·+ λn)
c0 = (−1)nλ1 . . . λn.
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On the other hand, by definition we have

pA(λ) = det


λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n
... . . . . . .

...
−an1 −an2 . . . λ− ann

 .

ExpandingpA(λ) in this way, the coefficient ofλn−1 (which iscn−1) is precisely−(a11+a22+· · ·+ann);
and the coefficient ofλ0 (which isc0) is (−1)n det A (think carefully about this statement!).

2.1 The diagonal form

Proposition 2.2. Suppose then×n matrixA hasn linearly independent eigenvectorsx1, . . . ,xn, where
xi is a λi-eigenvector. LetS be the matrix whose columns are the vectorsxi, thenS−1AS = Λ, where
Λ = diag (λ1, . . . , λn).

Proof. Note that since the column vectors ofS are independent,S is invertible and writingS−1 makes
sense. We want to showS−1AS = Λ, which is the same as showingAS = SΛ. SinceAxi = xiλi, it
follows that

AS = A

 | . . . |
x1 . . . xn

| . . . |

 =

 | . . . |
Ax1 . . . Axn

| . . . |

 =

 | . . . |
λ1x1 . . . λnxn

| . . . |

 = SΛ.

In general, if a matrixS satisfies the property thatS−1AS is a diagonal matrix, thenS is said to
diagonalizeA, andA is said to bediagonalizable. It is easy to see from the above proof that ifA is
diagonalizable byS, then the columns ofS are eigenvectors ofA; moreover, sinceS is invertible by
definition, the columns ofS must be linearly independent. In other words, we just proved

Theorem 2.3. A matrix is diagonalizable if and only if it hasn independent eigenvectors.

Proposition 2.4. If x1, . . . xk are eigenvectors corresponding to distinct eigenvaluesλ1, . . . λk, then
x1, . . . xk are linearly independent.

Proof. When k = 2, supposec1x1 + c2x2 = 0. Multiplying by A gives c1λ1x1 + c2λ2x2 = 0.
Subtractingλ2 times the previous equation we get

c1(λ1 − λ2)x1 = 0.

Hence,c1 = 0 sinceλ1 6= λ2 andx1 6= 0. The general case follows trivially by induction.

Exercise 2.5.If λ1, . . . λn are eigenvalues ofA, thenλk
1, . . . λ

k
n are eigenvalues ofAk. If S diagonalizes

A, i.e. S−1AS = Λ, thenS−1AkS = Λk

2.2 Symmetric and Hermitian matrices

For any two vectorsx,y ∈ Cn, theinner productof x andy is defined to be

x∗y = x̄Ty = x̄1y1 + · · ·+ x̄nyn

Two vectors areorthogonalto one another if their inner product is0. The vector~0 is orthogonal to all
vectors. Two orthogonal non-zero vectors must be linearly independent. For, ifx∗y = 0 andax+by = 0,
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then0 = ax∗x + bx∗y = ax∗x. This impliesa = 0, which in turns impliesb = 0 also. With the
same reasoning, one easily shows that a set of pairwise orthogonal non-zero vectors must be linearly
independent.

If A is any complex matrix, recall that theHermitian transposeA∗ of A is defined to beĀT , and
that A is said to beHermitian if A = A∗. A real matrix is Hermitian if and only if it is symmetric.
Also notice that the diagonal entries of a Hermitian matrix must be real, because they are equal to their
respective complex conjugates. The next lemma lists several useful properties of a Hermitian matrix.

Lemma 2.6. LetA be a Hermitian matrix, then

(i) for all x ∈ Cn, x∗Ax is real.

(ii) every eigenvalue ofA is real.

(iii) the eigenvectors ofA, if correspond to distinct eigenvalues, are orthogonal to one another.

Proof. It is straightforward that

(i) (x∗Ax)∗ = x∗A∗x∗∗ = x∗Ax.

(ii) Ax = λx impliesλ = x∗Ax
x∗x .

(iii) SupposeAx = λ1x, Ay = λ2y, andλ1 6= λ2, then

(λ1x)∗y = (Ax)∗y = x∗Ay = x∗(λ2y).

Hence,(λ1 − λ2)x∗y = 0, implying x∗y = 0.

2.3 Orthonormal and unitary matrices

A real matrixQ is said to beorthogonalif QT Q = I. A complex matrixU is unitary if U∗U = I. In
other words, the columns ofU (andQ) areorthonormal. Obviously being orthogonal is a special case of
being unitary. We state without proof a simple proposition.

Proposition 2.7. LetU be a unitary matrix, then

(i) (Ux)∗(Uy) = x∗y, and‖Ux‖2 = ‖x‖2.

(ii) Every eigenvalueλ of U has modulus1 (i.e. |λ| = λ∗λ = 1).

(iii) Eigenvectors corresponding to distinct eigenvalues ofU are orthogonal.

(iv) If U ′ is another unitary matrix, thenUU ′ is unitary.

3 The Spectral Theorem and the Jordan canonical form

Two matricesA andB are said to besimilar iff there is an invertible matrixM such thatM−1AM =
B. Thus, a matrix is diagonalizable iff it is similar to a diagonal matrix. Similarity is obviously an
equivalence relation. The following proposition shows what is common among matrices in the same
similarity equivalent class.

Proposition 3.1. If B = M−1AM , thenA andB have the same eigenvalues. Moreover, an eigenvector
x of A corresponds to an eigenvectorM−1x of B.
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Proof. Ax = λx implies(M−1A)x = λM−1x, or (BM−1)x = λ(M−1x).

An eigenvector corresponding to an eigenvalueλ is called aλ-eigenvector. The vector space spanned
by all λ-eigenvectors is called theλ-eigenspace. We shall often useVλ to denote this space.

Corollary 3.2. If A andB are similar, then the corresponding eigenspaces ofA andB have the same
dimension.

Proof. SupposeB = M−1AM , then the mappingφ : x → M−1x is an invertible linear transformation
from one eigenspace ofA to the corresponding eigenspace ofB.1

If two matricesA andB are similar, then we can say a lot aboutA if we know B. Hence, we
would like to findB similar to A whereB is as “simple” as possible. The first “simple” form is the
upper-triangular form, as shown by the following Lemma, which is sometime referred to as the Jacobi
Theorem.

Lemma 3.3(Schur’s lemma). For anyn×n matrixA, there is a unitary matrixU such thatB = U−1AU
is upper triangular. Hence, the eigenvalues ofA are on the diagonal ofB.

Proof. We show this by induction onn. The lemma holds whenn = 1. Whenn > 1, overC A must
have at least one eigenvalueλ1. Let x′1 be a corresponding eigenvector. Use theGram-Schmidtprocess
to extendx′1 to an orthonormal basis{x1,x2, . . . ,xn} of Cn. Let U1 be the matrix whose columns are
these vectors in order. From the fact thatU−1

1 = U∗
1 , it is easy to see that

U−1
1 AU1 =


λ1 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
. . . . . . . . . . . . . . . . .
0 ∗ ∗ . . . ∗

 .

Now, let A′ = (U−1
1 AU1)11 (crossing off row1 and column1 of U−1

1 AU1). Then, by induction there
exists an(n − 1) × (n − 1) unitary matrixM such thatM−1A′M is upper triangular. LetU2 be the
n × n matrix obtained by adding a new row and new column toM with all new entries equal0 except
(U2)11 = 1. Clearly U2 is unitary andU−1

2 (U−1
1 AU1)U2 is upper triangular. LettingU = U1U2

completes the proof.

The following theorem is one of the most important theorems in elementary linear algebra, beside
the Jordan form.

Theorem 3.4(Spectral theorem). Every real symmetric matrix can be diagonalized by an orthogonal
matrix, and every Hermitian matrix can be diagonalized by a unitary matrix:

(real case) Q−1AQ = Λ, (complex case)U−1AU = Λ

Moreover, in both cases all the eigenvalues are real.

Proof. The real case follows from the complex case. Firstly, by Schur’s lemma there is a unitary matrix
U such thatU−1AU is upper triangular. Moreover,

(U−1AU)∗ = U∗A∗(U−1)∗ = U−1AU,

i.e. U−1AU is also Hermitian. But an upper triangular Hermitian matrix must be diagonal. The realness
of the eigenvalues follow from Lemma 2.6.

1I have not define linear transformation yet. The thing to remember is that if there is an invertible linear transformation
from one vector space to another, then the two vector spaces have the same dimension. Invertible linear transformations are
like isomorphisms or bijections, in some sense. A curious student should try to prove this fact directly without using the term
linear transformation.
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Theorem 3.5(The Jordan canonical form). If a matrix A hass linearly independent eigenvectors, then
it is similar to a matrix which is inJordan formwith s square blocks on the diagonal:

M−1AM =


B1 0 0 . . . 0
0 B2 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Bs


Each block has exactly one1-dimensional eigenspace, one eigenvalue, and1’s just above the diago-

nal:

Bj =


λj 1 0 . . . 0
0 λj 1 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . 1
0 0 0 . . . λj


Proof. A proof could be read from Appendix B of [8]. Another proof is presented in [3], which has a
nice combinatorial presentation in terms of digraphs. The fact that each Jordan block has exactly one1-
dimensional eigenspace is straightforward. The main statement is normally shown by induction in three
steps.

Corollary 3.6. Letn(λ) be the number of occurrences ofλ on the diagonal of the Jordan form ofA. The
following hold

1. rank(A) =
∑

λi 6=0 n(λi) + n(0)− dim(V0).

2. If A is Hermitian, then theλ-eigenspace has dimension equal the multiplicity ofλ as a solution to
equationpA(x) = 0.

3. In fact, in Hermitian caseCn =
⊕

i Vλi
whereVλi

denotes theλi-eigenspace.

Proof. This follows directly from theJordan formand our observation in Corollary 3.2. We are mostly
concerned with the dimensions of eigenspaces, so we can think aboutΛ instead ofA. Similar matrices
have the same rank, soA and its Jordan form have the same rank. The Jordan form ofA has rank equal
the total number of non-zero eigenvalues on the diagonal plus the number of1’s in the Jordan blocks
corresponding to the eigenvalue0, which is exactlyn(0)− dim(V0).

WhenA is Hermitian, it is diagonalizable. Every eigenvector corresponding to anoccurrenceof an
eigenvalueλ is linearly independent from all others (including the eigenvector corresponding to another
instance of the sameλ).

4 The Minimum Polynomial

I found the following very nice theorem stated without proof in a book called “Matrix Methods” by
Richard Bronson. I’m sure we could find a proof in either [6] or [4], but I wasn’t able to get them from
the library. Here I present my little proof.
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Theorem 4.1. SupposeBk is a Jordan block of size(l + 1) × (l + 1) corresponding to the eigenvalue
λk of A, i.e.

Bk =


λk 1 0 . . . 0
0 λk 1 . . . 0
...

...
... . . .

...
. . . . . . . . . . . . . . . . 1
0 0 0 . . . λk

 .

Then, for any polynomialq(λ) ∈ C[λ]

q(Bk) =



q(λk)
q′(λk)

1!
q′′(λk)

2! . . . q(l)(λk)
l!

0 q(λk)
q′(λk)

1! . . . q(l−1)(λk)
(l−1)!

...
...

... . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . q′(λk)
1!

0 0 0 . . . q(λk)


(9)

Proof. We only need to consider the caseq(x) = xj , j ≥ 0, and then extend linearly into all polynomials.
The casej = 0 is clear. Suppose equation (9) holds forq(x) = xj−1, j ≥ 1. Then, whenq(x) = xj we
have

q(Bk) = Bj−1
k Bk

=


λj−1

k

(
j−1
1

)
λj−2

k

(
j−1
2

)
λj−3

k . . .
(
j−1

l

)
λj−l−1

k

0 λj−1
k

(
j−1
1

)
λj−2

k . . .
(
j−1
l−1

)
λj−l

k
...

...
... . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
j−1
1

)
λj−2

k

0 0 0 0 λj−1
k




λk 1 0 . . . 0
0 λk 1 . . . 0
...

...
... . . .

...
. . . . . . . . . . . . . . . . 1
0 0 0 . . . λk



=


λj

k

(
j
1

)
λj−1

k

(
j
2

)
λj−2

k . . .
(
j
l

)
λj−l

k

0 λj
k

(
j
1

)
λj−1

k . . .
(

j
l−1

)
λj−l+1

k
...

...
... . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . .

(
j
1

)
λj−1

k

0 0 0 0 λj
k



The minimum polynomialmA(λ) of an n × n matrix A over the complex numbers is the monic
polynomial of lowest degree such thatmA(A) = 0.

Lemma 4.2. With the terminologies just stated, we have

(i) mA(λ) dividespA(λ).

(ii) Every root ofpA(λ) is also a root ofmA(λ). In other words, the eigenvalues ofA are roots of
mA(λ).

(iii) A is diagonalizable iffmA(λ) has no multiple roots.

(iv) If {λi}s
i=1 are distinct eigenvalues of a Hermitian matrixA, thenmA(λ) =

∏s
i=1(λ− λi).
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Proof. (i) mA(λ) must divide every polynomialq(λ) with q(A) = 0, since otherwiseq(λ) = h(λ)mA(λ)+
r(λ) implies r(A) = 0 while r(λ) has smaller degree thanmA(λ). On the other hand, by the
Cayley-Hamilton Theorem (theorem 5.1),pA(A) = 0.

(ii) Notice thatAx = λx impliesAix = λix. Thus, for anyλk eigenvectorx of A ~0 = mA(A)x =∑
i ciA

ix =
∑

i ciλ
i
kx = m(λk)x. This impliesλk is a root ofm(λ).

(iii) (⇒). SupposeM−1AM = Λ for some invertible matrixM , andλ1, . . . , λs are distinct eigen-
values ofA. By (i) and (ii), we only need to showA is a root ofmA(λ) =

∏s
i=1(λ − λi).

It is easy to see that for any polynomialq(λ), q(A) = Mq(Λ)M−1. In particular,mA(A) =
M−1mA(Λ)M = 0, sincemA(Λ) = 0.

(⇐). Now we assumemA(λ) has no multiple root, which impliesmA(λ) =
∏s

i=1(λ − λi). By
Proposition 2.2, we shall show thatA hasn linearly independent eigenvectors. Firstly, notice that
if the Jordan form ofA is

M−1AM =


B1 0 0 . . . 0
0 B2 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Bs

 .

Then, for anyq(λ) ∈ C[λ] we have

M−1q(A)M = q




B1 0 0 . . . 0
0 B2 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Bs





=


q(B1) 0 0 . . . 0

0 q(B2) 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . q(Bs)



So,
∏s

i=1(A− λiI) = 0 implies
∏s

i=1(Bk − λiI) = 0 for all k = 1, . . . , s. If A does not haven
linearly independent eigenvectors, one of the blocksBk must have size> 1. Applying Theorem
4.1 with q(λ) =

∏s
i=1(λ − λi), we see thatq(Bk) does not vanish sinceq′(λi) 6= 0,∀i ∈ [s].

Contradiction!

(iv) Follows from (iii) since a Hermitian matrix is diagonalizable.

5 Two Motivating Theorems

5.1 The statements

We examine two elegant theorems which illustrate beautifully the inter-relations between Combinatorics,
Algebra, and Graph Theory. These two theorems are presented not only for the purpose of demonstrating
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the relationships, but they will also be used to develop some of our later materials on Algebraic Graph
Theory.

Theorem 5.1(Cayley-Hamilton). LetA be ann× n matrix over any field. LetpA(x) := det(xI − A)
be the characteristic polynomial ofA. ThenpA(A) = 0.

I will give a proof of this theorem combinatorially, following the presentation in [7]. A typical
algebraic proof of this theorem would first shows that a weak version whereA is diagonal holds, then
extend to all matrices overC. To show the most general version we stated, the Fundamental Theorem of
Algebra is used. (FTA saysC is algebraically closed, or anyp ∈ C[x] has roots inC).

Theorem 5.2(Matrix-Tree). Let G be a labeled graph on[n] := {1, . . . , n}. Let A be the adjacency
matrix ofG anddi := deg(i) be the degree of vertexi. Then the number of spanning trees ofG is any
cofactor ofL, whereL = D −A, D is diagonal with diagonal entriesdii = di,

The matrix L is often referred to as theLaplacian of G. A cofactor of a square matrixL is
(−1)i+j det Lij whereLij is the matrix obtained by crossing off rowi and columnj of L. This the-
orem also has a beautiful combinatorial proof. See [7] for details. I will present the typical proof of this
theorem which uses the Cauchy-Binet theorem on matrix expansion. This proof is also very elegant and
helps us develope a bit of linear algebra. Actually, for weighted graphs, a minimum spanning tree can be
shown to be a tree which minimizes certain determinant.

5.2 The proofs

Combinatorial proof of Cayley-Hamilton Theorem.(by Straubing 1983 [9]).

pA(x) := det(xI −A) :=
∑
π∈Sn

sgn(π)
n∏

i=1

(xI −A)iπ(i)

Let the set fixed points of a permutationπ be denoted byfp(π) := {i ∈ [n] | π(i) = i}. Each
i ∈ fp(π) contributes eitherx or−aii to a term. Eachi /∈ fp(π) contributes−aiπ(i). Hence, thinking
of F as the set of fixed points contributingx, we get

pA(x) =
∑
π∈Sn

sgn(π)
∑

F⊆fp(π)

(−1)n−|F |x|F |
∏
i/∈F

aiπ(i)

=
∑
π∈Sn

sgn(π)
∑

S⊆[n],
[n]−S⊆fp(π)

(−1)|S|xn−|S|
∏
i∈S

aiπ(i).

Now we exchange the summation indices by first fixing a particular choice ofS. Theπ will be the ones
with [n] − S ⊆ fp(π), i.e. the permutations which fix everything not inS. Let P (S) be the set of
permutations onS, then

pA(x) =
n∑

k=0

xn−k
∑

S∈([n]
k )

∑
π∈P (S)

sgn(π)(−1)k
∏
i∈S

aiπ(i).

Let c(π) be the number of cycles ofπ, it is easy to see that forπ ∈ P (S) with |S| = k, sgn(π)(−1)k =
(−1)c(π). Thus,

pA(x) =
n∑

k=0

xn−k
∑

S∈([n]
k )

∑
π∈P (S)

(−1)c(π)
∏
i∈S

aiπ(i)
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Our objective is to showpA(A) = 0. We’ll do so by showing(pA(A))ij = 0, ∀i, j ∈ [n]. Firstly,

(pA(A))ij =
n∑

k=0

(An−k)ij

∑
S∈([n]

k )

∑
π∈P (S)

(−1)c(π)
∏
l∈S

alπ(l)

Let Pk
ij be the set of all directed walks of lengthk from i to j in Kn - the complete directed graph

on n vertices. Let an edgee = (i, j) ∈ E(Kn) be weighted byw(e) = aij . For anyP ∈ Pk
ij , let

w(P ) =
∏

e∈P w(e). It follows that

(An−k)ij =
∑

P∈Pn−k
ij

w(P )

To this end, let(S, π, P ) be a triple satisfying (a)S ⊆ [n]; (b) π ∈ P (S); and (c)P ∈ Pn−|S|
ij .

Definew(S, π, P ) := w(P )w(π), wherew(π) =
∏

t∈S atπ(t). Let sgn(S, π, P ) := (−1)c(π), then

(pA(A))ij =
∑

(S,π,P )

w(S, π, P )sgn(S, π, P )

To show(pA(A))ij = 0, we seek a sign-reversing, weight-preserving involutionφ on the set of triples
(S, π, P ). Let v be the first vertex inP along the walk such that either (i)v ∈ S, or (ii) v completes a
cycle inP . Clearly,

• (i) and (ii) are mutually exclusive, since ifv completes a cycle inP andv ∈ S thenv was inS
before completing the cycle.

• One of (i) and (ii) must hold, since if nov satisfy (i) thenP induces a graph onn − |S| vertices
with n− |S| edges.P must have a cycle.

Lastly, given the observations above we can describeφ as follows. Take the firstv ∈ [n] satisfying
(i) or (ii). If v ∈ S then letC be the cycle ofπ containingv. Let P ′ beP with C added right afterv.
S′ = S − C andπ′ beπ with the cycleC removed. The image ofφ(S, π, P ) is then(S′, π′, P ′). Case
(ii) v completes a cycle inP before touchingS is treated in the exact opposite fashion, i.e. we add the
cycle intoπ, and remove it fromP .

To prove the Matrix-Tree Theorem, we first need to show a sequence of lemmas. The first (Cauchy-
Binet Theorem) is commonly stated withD = I.

Lemma 5.3(Cauchy-Binet Theorem). LetA andB be, respectively,r ×m andm× r matrices. LetD
be anm ×m diagonal matrix with diagonal entriesei, i ∈ [m]. For anyr-subsetS of [m], let AS and
BS denote, respectively, ther × r submatrices ofA andB consisting of the columns ofA, or the rows
of B, indexed byS. Then

det(ADB) =
∑

S∈([m]
r )

det AS det BS
∏
i∈S

ei.

Proof. We will prove this assuming thate1, . . . , em are indeterminates. With this assumption in mind,
since(ADB)ij =

∑m
k=1 aikbkjek, it is easy to see thatdet(ADB) is a homogeneous polynomial in

e1, . . . , em with degreer.
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Consider a monomialet1
1 et2

2 . . . etm
m , where the number ofdistinct variables that occur is< r, i.e.

|{i | ti > 0}| < r. Substitute0 for all other indeterminates thenet1
1 et2

2 . . . etm
m and its coefficient

are unchanged. But, after this substitution,rank(D) < r, which impliesrank(ADB) < r, making
det(ADB) = 0. So the coefficient of our monomial is0.

Put it another way, the coefficient of a monomialet1
1 . . . etm

m is 0 unless it is a product ofr distinct
indeterminates, i.e.∃S ∈

(
[m]
r

)
s.t. et1

1 . . . etm
m =

∏
i∈S ei.

The coefficient of
∏

i∈S ei can be calculated by settingei = 1 for all i ∈ S andej = 0 for all j /∈ S.
It is not hard to see that the coefficient isdet AS det BS .

Lemma 5.4. Given a directed graphH with incident matrixN . Let C(H) be the set of connected
component ofH, then

rank(N) = |V (H)| − |C(H)|

Proof. Recall thatN is defined to be a matrix whose rows are indexed byV (H), whose columns are
indexed byE(H), and

Ni,e =


0 if i is not incident toe or e is a loop

1 if e = j → i, j 6= i

−1 if e = i → j, j 6= i

To showrank(N) = |V (H)| − |C(H)| we only need to show thatdim(col(N)⊥) = |C(H)|. For
any row vectorg ∈ R|V (H)|, g ∈ col(N)⊥ iff gN = 0, i.e. for any edgee = x → y ∈ E(H) we must
haveg(x) = g(y). Consequently,g ∈ col(N)⊥ iff g is constant on the coordinates corresponding to any
connected component ofH. It is thus clear thatdim(col(N)⊥) = |C(H)|.

Lemma 5.5 (Poincaŕe, 1901). Let M be a square matrix with at most two non-zero entries in each
column, at most one1 and at most one−1, thendet M = 0,±1.

Proof. This can be done easily by induction. If every column has exactly a1 and a−1, then the sum
of all row vectors ofM is ~0, makingdet M = 0. Otherwise, expand the determinant ofM along the
column with at most one±1 and use the induction hypothesis.

Proof the Matrix-Tree Theorem.We will first show that the Theorem holds for theii-cofactors for all
i ∈ [n]. Then, we shall show that theij-cofactors are all equal for allj ∈ [n], which completes the
proof. We can safely assumem ≥ n− 1, since otherwise there is no spanning tree and at the same time
det(NNT ) = 0.

Step 1. IfG′ is any orientation ofG, andN is the incident matrix ofG′, thenL = NNT . (Recall
thatL is the Laplacian ofG.) For anyi 6= j ∈ [n], if i is adjacent toj then clearly(NNT )ij = −1. On
the other hand,(NNT )ii is obviously the number of edges incident toi.

Step 2. IfB is an (n − 1) × (n − 1) submatrix ofN , thendet B = 0 if the correspondingn − 1
edges contain a cycle, anddet B = ±1 if they form a spanning tree ofG. Clearly,B is obtained by
removing a row ofNS for some(n − 1)-subsetS of E(H). By Lemma 5.4,rank(NS) = n − 1 iff
the edges corresponding toS form a spanning tree. Moreover, since the sum of all rows ofNS is the
0-vector,rank(B) = rank(NS). Hence,det B 6= 0 iff S form a spanning tree. WhenS does not form
a spanning tree, Lemma 5.5 impliesdet B = ±1.

Step 3.Calculatingdet Lii, i.e. theii-cofactor ofL. Letm = |E(G)|. LetM be the matrix obtained
from N by deleting rowi of N , thenLii = MMT . Applying Cauchy-Binet theorem withei = 1, ∀i,
we get
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det(MMT ) =
∑

S∈( [m]
n−1)

det MS det(MT )S

=
∑

S∈( [m]
n−1)

(detMS)2

= # of spanning trees ofG

The following Lemma is my solution to exercise 2.2.18 in [10]. The Lemma completes the proof
becauseL is a matrix whose columns sum to the0-vector.

Lemma 5.6. Given ann × n matrix A = (aij) whose columns sum to the0-vector. Letbij =
(−1)i+j det Aij , then for a fixedi, we havebij = bij′ , ∀j, j′.

Proof. Let B = (bij)T = (bji), then

(AB)ij =
n∑

k=1

aikbjk

Obviously,(AB)ij = δij det A whereδij is the Kronecker delta. To see this, imagine replacing row
j of A by row i of A and expanddet A along rowj, we get exactly the expression above. In other words,
AB = (det A)I.

Let ~ai denote columni of A, then by assumption
∑

i ~ai = ~0. Hence,det A = 0 anddim(col(A)) ≤
n− 1. If dim(col(A)) < n− 1 thenrank(Aij) < n− 1, makingbij = 0. Otherwise, ifdim(col(A)) =
n− 1 thenn− 1 vectors~aj − ~a1, 2 ≤ j ≤ n are linearly independent. Moreover,AB = (detA)I = 0
and

∑
i ~ai = ~0 implies that for alli

(bi2 − bi1)( ~a2 − ~a1) + (bi3 − bi1)( ~a3 − ~a1) + . . . (bin − bi1)( ~an − ~a1) = ~0

So,bij − bi1 = 0, ∀j ≥ 2.

Corollary 5.7 (Cayley Formula). The number of labeled trees on[n] is nn−2.

Proof. Cayley formula is usually proved by using Prufer correspondence. Here I use the Matrix-Tree
theorem to give us a different proof. Clearly the number of labeled trees on[n] is the number of spanning
trees ofKn. Hence, by the Matrix-Tree theorem, it isdet(nI − J) whereJ is the all1’s matrix, andI
andJ are matrices of ordern− 1 (we are taking the11-cofactor).
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det(nI − J) = det


n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 −1 −1 . . . n− 1



= det


n− 1 −1 −1 . . . −1

0 n(n−2)
n−1

−n
n−1 . . . −n

n−1

0 −n
n−1

n(n−2)
n−1 . . . −n

n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −n
n−1

−n
n−1 . . . n(n−2)

n−1



= det


n− 1 −1 −1 . . . −1

0 n(n−2)
n−1

−n
n−1 . . . −n

n−1

0 0 n(n−3)
n−2 . . . −n

n−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 −n
n−2 . . . n(n−3)

n−2


= . . .

= det


n− 1 −1 −1 . . . −1

0 n(n−2)
n−1

−n
n−1 . . . −n

n−1

0 0 n(n−3)
n−2 . . . −n

n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . n(n−(n−1))
n−(n−2)


= nn−2

6 Positive definite matrices

The purpose of this section is to develop a necessary and sufficient conditions for a real symmetric matrix
A (or Hermitian in general) to bepositive definite. This is essentially the conditions for aquadratic form
onRn to have a minimum at some point.

6.1 Some analysis

Let us first recall two key theorems from real analysis, stated without proofs. Forf : Rn → R, if for
somea ∈ Rn ∂f

∂xi
(a) = 0, thena is called astationary pointof f .

Theorem 6.1(The second derivative test). Supposef : Rn → R and its partial derivatives up to and
including order2 are continuous in a ballB(a, r) (centered ata ∈ Rn, radiusr). Suppose thatf has a
stationary point ata. For h = (h1, . . . , hn), define∆f(a, h) = f(a + h)− f(a); also define

Q(h) =
1
2!

n∑
i,j=1

∂2f

∂xi∂xj
(a)hihj

then,

1. If Q(h) > 0 for h 6= 0, thenf has a strict local minimum ata.
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2. If Q(h) < 0 for h 6= 0, thenf has a strict local maximum ata.

3. If Q(h) has a positive maximum and a negative minimum, then∆f(a, h) changes sign in any ball
B(a, ρ) such thatρ < r.

Note. (3.) says that at any close neighborhood ofa, there are some pointsb andc such thatf(b) > f(a)
andf(c) < f(a).

Example 6.2. Let us look at a quadratic formF (x1, . . . , xn) with all real coefficients, i.e. every term of
F has degree at most2. Let A be the matrix defined byaij = ∂2F

∂xi∂xj
(a). Clearly,A is a real symmetric

matrix. For any vectorh ∈ Rn,

hT Ah =
[
h1 h2 . . . hn

] 
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann




h1

h2
...

hn


=

n∑
i,j=1

aijhihj

= 2Q(h)

So,F (x1, . . . , xn) has a minimum at(0, . . . , 0) (which is a stationary point ofF ) iff hT Ah > 0 for
all h 6= 0.

Definition 6.3. A non-singularn× n Hermitian matrixA is said to bepositive definiteif x∗Ax > 0 for
all non zero vectorx ∈ Cn. A is positive semidefiniteif we only requirex∗Ax ≥ 0. The termsnegative
definiteandnegative semidefinitecan be defined similarly.

Note. Continuing with our example, clearlyF (x1, . . . , xn) has a minimum at(0, . . . , 0) iff A is positive
definite. Also, since we already showed that ifA is Hermitian, thenx∗Ax is real, the definitions given
above make sense.

A functionf is in C1 on some domainD ⊆ Rn if f and all its first order derivatives are continuous
onD. Fora ∈ D,5f(a) := ( ∂f

∂x1
(a), . . . , ∂f

∂xn
(a)).

Theorem 6.4(Lagrange’s multiplier rule). Suppose thatf, ϕ1, . . . , ϕk are C1 functions on an open set
D in Rn containing a pointa, that the vectors5ϕ1(a), . . . ,5ϕk(a) are linearly independent, and that
f takes on its minimum among all points ofD0 at x0, whereD0 is the subset ofD so that for allx ∈ D0,

ϕi(x1, . . . , xn) = 0, i = 1, . . . , k

Then, ifF : Rn+k → R is defined to be

F (x, λ) = f(x)−
k∑

i=1

λiϕi(x)

then there existsλ0 ∈ Rk such that

∂F

∂xi
(a, λ0) = 0 i = 1, . . . , n

∂F

∂λ0
j

(a, λ0) = 0 i = 1, . . . , k
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Note. This theorem essentially says that the maxima (or minima) off subject to theside conditions
ϕ1 = · · · = ϕk = 0 are among the maxima (or minima) of the functionF without any constraints.

Example 6.5. To find the maximum off(x) = x1 + 3x2 − 2x3 on the sphere14− (x2
1 + x2

2 + x2
3) = 0,

we let
F (x, λ) = x1 + 3x2 − 2x3 + λ(x2

1 + x2
2 + x2

3 − 14)

Then, ∂F
∂x1

= 1+2λx1, ∂F
∂x2

= 3+2λx2, ∂F
∂x3

= −2+2λx3, and∂F
∂λ = x2

1+x2
2+x2

3−14. Solving ∂F
∂xi

= 0
we obtain two solutions(x, λ) = (1, 3,−2,−1/2) and(−1,−3, 2, 1/2). Which of these solutions give a
maximum or a minimum ? We apply the second derivative test. All second derivatives ofF are0 except
∂2F/∂x2

1 = ∂2F/∂x2
2 = ∂2F/∂x2

3 = 2λ. Q(h) = 2λ(h2
1 + h2

2 + h2
3) has the same sign asλ. Hence,

the first solution gives the maximum value of14, the second solution gives the minimum value of−13.

6.2 Conditions for positive-definiteness

Now we are ready to specify the necessary and sufficient conditions for a Hermitian matrix to be positive
definite, or positive semidefinite for that matter.

Theorem 6.6. Each of the following tests is a necessary and sufficient condition for the real symmetric
matrixA to be positive definite.

(a) xT Ax > 0 for all non-zero vectorx.

(b) All the eigenvalues ofA are positive.

(c) All the upper left submatricesAk of A have positive determinants.

(d) If we apply Gaussian elimination onA without row exchanges, all the pivots satisfypi > 0.

Note. (a) and (b) hold for Hermitian matrices also.

Proof. (a ⇒ b). Supposexi is a unitλi-eigenvector, then0 < xT
i Axi = xT

i λixi = λi.
(b ⇒ a). SinceA is real symmetric, it has a full set of orthonormal eigenvectors{x1, . . . , xn} by the

Spectral theorem. For each non-zero vectorx ∈ Rn, supposex = c1x1 + · · ·+ cnxn, then

Ax = A(c1x1 + · · ·+ cnxn) = c1λ1x1 + · · ·+ cnλnxn

Because thexi are orthonormal, we get

xT Ax = (c1x
T
1 + · · ·+ cnxT

n )(c1λ1x1 + · · ·+ cnλnxn)
= λ1c

2
1 + · · ·+ λnc2

n.

Thus, everyλi > 0 impliesxT Ax > 0 wheneverx 6= 0.
(a ⇒ c). We knowdet A = λ1 . . . λn > 0. To prove the same result for allAk, we look at a non-zero

vectorx whose lastn− k components are0, then

0 < xT Ax =
[
xT

k 0
] [Ak ∗

∗ ∗

] [
xk

0

]
= xT

k Akx
k.

Thus,det Ak > 0 follows by induction.
(c ⇒ d). Without row exchanges, the pivotpk in Gaussian elimination isdet Ak/ det Ak−1. This

can also be proved easily by induction.
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(d ⇒ a). Gaussian elimination gives us aLDU factorization ofA where all diagonal entries ofL
andU are1. Also, the diagonal entriesdi of D is exactly theith pivot pi. The fact thatA is symmetric
impliesL = UT , henceA = LDLT , which gives

xT Ax = (xT L)(D)(LT x) = d1(LT x)21 + d2(LT x)22 + · · ·+ dn(LT x)2n

SinceL is fully ranked,LT x 6= 0 wheneverx 6= 0. So the pivotsdi > 0 implies xT Ax > 0 for all
non-zero vectorsx.

7 The Rayleigh’s quotient and the variational characterizations

For a Hermitian matrixA, the following is known as theRayleigh’s quotient:

R(x) =
x∗Ax

x∗x
.

Theorem 7.1(Rayleigh-Ritz). Supposeλ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of a real symmetric
matrixA. Then, the quotientR(x) is maximized at anyλ1-eigenvectorx = x1 with maximum valueλ1.
R(x) is minimized at anyλn-eigenvectorx = xn with minimum valueλn,

Proof. Let Q be a matrix whose columns are a set of orthonormal eigenvectors{x1, . . . , xn} of A corre-
sponding toλ1, . . . , λn, respectively. Writingx as a linear combination of columns ofQ: x = Qy, then
sinceQT AQ = Λ we have

R(x) =
xT Ax

xT x
=

(QT y)T A(QT y)
(QT y)T (QT y)

=
yT Λx

yT y
=

λ1y
2
1 + · · ·+ λny2

n

y2
1 + · · ·+ y2

n

Hence,

λ1 ≥ R(x) =
λ1y

2
1 + · · ·+ λny2

n

y2
1 + · · ·+ y2

n

≥ λn

Moreover,R(x) = λ1 wheny1 6= 0 andyi = 0, ∀i > 1. This meansx = Qy is aλ1-eigenvector. The
caseR(x) = λn case is proved similarly.

The theorem above is also referred to as theRayleigh principle, which also holds whenA is Hermi-
tian. The proof is identical, except that we have to replace transposition (T) by Hermitian transposition
(*). An equivalent statement of the principle is as follows.

Corollary 7.2. Supposeλ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of a real symmetric matrixA. Over
all non-zero unit vectorsx ∈ Rn, xT Ax is maximized at a unitλ1-eigenvector, with maximum valueλ1,
and minimized at a unitλn-eigenvector, with minimum valueλn.

Rayleigh’s principle essentially states that

λ1 = max
x∈Rn

R(x) and λn = min
x∈Rn

R(x)

What about the rest of the eigenvalues ? Here is a simple answer, stated without proof. The proof is
simple enough.

Theorem 7.3. Supposeλ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of a Hermitian matrixA, and
u1, . . . , un are the corresponding set of orthonormal eigenvectors. Then,

λk = max
0 6=x∈Cn

x⊥u1,...,uk−1

RA(x)

λk = min
0 6=x∈Cn

x⊥uk+1,...,un

RA(x)
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The theorem has a pitfall that sometime we don’t know the eigenvectors. The following generaliza-
tion of Rayleigh’s principle, sometime referred to as theminimax and maximin principles for eigenvalues,
fill the hole by not requiring us to know that eigenvectors.

Theorem 7.4(Courant-Fisher). LetVk be the set of allk-dimensional subspaces ofCn. Letλ1 ≥ λ2 ≥
· · · ≥ λn be the eigenvalues of a Hermitian matrixA. Then,

λk = max
S∈Vk

min
x∈S
x 6=0

R(x)


= min

S∈Vn−k+1

max
x∈S
x 6=0

R(x)


Note. It should be noted that the previous two theorems are often referred to as thevariational charac-
terizationof the eigenvalues.

Proof. Let U = [u1, u2, . . . , un] be the unitary matrix with unit eigenvectorsu1, . . . , un corresponding
to the eigenvaluesλ1, . . . , λn. Let us first fixS ∈ Vk and letS′ be the image ofS under the invertible
linear transformation represented byU∗. Obviously,dim(S′) = k. We have already known thatR(x) is
bounded, so it is safe to say the following, withx 6= 0, y 6= 0 being implicit.

inf
x∈S

R(x) = inf
x∈S

x∗Ax

x∗x

= inf
x∈S

(U∗x)∗Λ(U∗x)
(U∗x)∗(U∗x)

= inf
y∈S′

y∗Λy

y∗y

≤ inf
y∈S′

y1=···=yk−1=0

y∗Λy

y∗y

= inf
y∈S′

y1=···=yk−1=0

λ1y
2
1 + · · ·+ λny2

n

y2
1 + · · ·+ y2

n

= inf
y∈S′

y1=···=yk−1=0

λky
2
k + · · ·+ λny2

n

y2
k + · · ·+ y2

n

≤ λk

The inequality in line 4 is justified by the fact that there is a non zero vectory ∈ S′ such thaty1 = · · · =
yk−1 = 0. To get this vector, putk basis vectors ofS′ into the rows of ak × n matrix and do Gaussian
elimination.

Now, S was chosen arbitrarily, so it is also true that

sup
S∈Vk

inf
x∈S

R(x) ≤ λk

Moreover,R(uk) = (U∗uk)∗Λ(U∗uk) = ekΛek = λk. Thus, the infimum and supremum can be
changed to minimum and maximum, and the inequality can be changed to equality. The other equality
can be proven similarly.
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This theorem has a very important and beautiful corollary, called theInterlacing of eigenvaluesto be
presented in the next section. Let us introduce a simple corollary.

Corollary 7.5. Let A be ann × n Hermitian matrix, letk be a given integer with1 ≤ k ≤ n, let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues ofA, and letSk be a givenk-dimensional subspace ofCn. The
following hold

(a) If there existsc1 such thatR(x) ≤ c1 for all x ∈ Sk, thenc1 ≥ λn−k+1 ≥ · · · ≥ λn.

(b) If there existsc2 such thatR(x) ≥ c2 for all x ∈ Sk, thenλ1 ≥ · · · ≥ λk ≥ c2.

Proof. It is almost straightforward from the Courant-Fisher theorem that

(a)
c1 ≥ max

0 6=x∈Sk

R(x) ≥ min
dim(S)=n−(n−k+1)+1

max
0 6=x∈S

R(x) = λn−k+1

(b)
c2 ≤ min

0 6=x∈Sk

R(x) ≤ max
dim(S)=k

min
0 6=x∈S

R(x) = λk

8 Other proofs of the variational characterizations

The presentation below follows that in [2]. LetA be a Hermitian matrix of ordern with eigenvalues
λ1 ≥ · · · ≥ λn. Let U = [u1, . . . , un] be the unitary matrix whereui is the unitλi-eigenvector ofA.
Then,

A =
∑

j

λjuju
∗
j . (10)

This equation is called thespectral resolutionof A. From the equation we obtain

〈x,Ax〉 =
∑

j

λj

(
u∗jx
)∗ (u∗jx) =

∑
j

λj |u∗jx|2

When|x| = 1, we have ∑
j

|u∗jx|2 =
∑

j

(
u∗jx
)∗ (u∗jx) = x∗UU∗x = 1.

As we can always normalizex, we shall only consider unit vectorsx in this section from here on.

Lemma 8.1. Suppose1 ≤ i < k ≤ n, then

{〈x,Ax〉 | |x| = 1, x ∈ span{ui, . . . , uk}} = [λk, λi].

Additionally,
〈ui, Aui〉 = λi, ∀i
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Proof. The fact that〈ui, Aui〉 = λi is trivial. Assumex is a unit vector inspan{ui, . . . , uk}, then

〈x,Ax〉 =
∑

i≤j≤k

λj |u∗jx|2,

which yields easily
{〈x,Ax〉 | |x| = 1, x ∈ span{ui, . . . , uk}} ⊆ [λk, λi].

For the converse, letλ ∈ [λk, λi]. Let y ∈ Cn be a column vector all of whose components are0, except
that

yi =

√
λ− λk

λi − λk

yk =

√
λi − λ

λi − λk
.

Then,x = Uy ∈ span{ui, uk} ⊆ span{ui, . . . , uk}, x is obviously a unit vector. Moreover,

〈x,Ax〉 = (Uy)∗A(Uy) = y∗Λy = λiy
2
i + λky

2
k = λ.

Lemma 8.1 gives an interesting proof of Theorem 7.4.

Another proof of Courant-Fisher Theorem.We shall show that

λk = max
S∈Vk

min
x∈S
x6=0

R(x)

 .

The other equality is obtained similarly. FixS ∈ Vk, let W = span{uk, . . . , un}, thenW andS have
total dimensionn+1. Thus, there exists a unit vectorx ∈ W ∩S. Lemma 8.1 impliesR(x) = 〈x,Ax〉 ∈
[λn, λk]. Consequently,

min
x∈S
x 6=0

R(x) ≤ λk.

Equality is obtained by picking anyk-dimensional subspaceS containinguk, andx = uk.

9 Applications of the variational characterizations and minimax princi-
ple

Throughout the rest of this section, we useMn to denote the set of alln × n matrices overC (i.e.
Mn ≈ Cn2

). The first application is a very important and beautiful theorem named theInterlacing of
Eigenvalues Theorem.

Theorem 9.1(Interlacing of eigenvalues). Let A be a Hermitian matrix with eigenvaluesα1 ≥ α2 ≥
· · · ≥ αn. LetB be the matrix obtained fromA by removing rowi and columni, for anyi ∈ [n]. Suppose
B has eigenvaluesβ1 ≥ · · · ≥ βn−1, then

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ βn−1 ≥ αn

Note. A proof of this theorem using Spectral Decomposition Theorem can also be given, but it is not
very instructive.
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Proof. We can safely assume thati = n for the ease of presentation. We would like to show that as
1 ≤ k ≤ n − 1, αk ≥ βk ≥ αk+1. Let x = [yT xn]T ∈ Cn wherey ∈ Cn−1. Note that ifxn = 0 then
x∗Ax = y∗By. We first use the maximin form of Courant-Fisher theorem to write

αk = max
S⊆Cn

dim(S)=k

min
0 6=x∈S

x∗Ax

x∗x

≥ max
S⊆{en}⊥
dim(S)=k

min
0 6=x∈S

x∗Ax

x∗x

= max
S⊆{en}⊥
dim(S)=k

min
0 6=x∈S
xn=0

x∗Ax

x∗x

= max
S⊆Cn−1

dim(S)=k

min
0 6=y∈S

y∗By

y∗y

= βk

Now, we use the minimax form of the theorem to obtainαk+1 ≤ βk.

αk+1 = min
S⊆Cn

dim(S)=n−(k+1)+1

max
0 6=x∈S

x∗Ax

x∗x

≤ min
S⊆{en}⊥

dim(S)=n−k

max
0 6=x∈S

x∗Ax

x∗x

= min
S⊆{en}⊥

dim(S)=n−k

max
0 6=x∈S
xn=0

x∗Ax

x∗x

= min
S⊆Cn−1

dim(S)=(n−1)−k+1

max
0 6=y∈S

y∗By

y∗y

= βk

The converse of the Interlacing of Eigenvalues Theorem is also true.

Theorem 9.2. Given real numbers

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ βn−1 ≥ αn. (11)

Let B = diag[β1, . . . , βn−1. Then, there exist a vectory ∈ Rn−1 and a real numbera such that the
matrix

A =
[

B y
yT a

]
has eigenvaluesα1, . . . , αn.
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Proof. Firstly, a =
∑n

i=1 αi −
∑n−1

i=1 βi. To determine the vectory = [y1, . . . , yn−1]T , we evaluate
f(x) = det(Ix−A).

det(Ix−A) = det


x− β1 . . . 0 y1

...
...

...
...

0 . . . x− βn−1 yn−1

y1 . . . yn−1 x− a


= (x− β1) . . . (x− βn−1)

(
x− a− y2

1

x− β1
− · · · −

y2
n−1

x− βn−1

)
.

Let g(x) = (x− β1) . . . (x− βn−1), then

f(x) = g(x)(x− a) + r(x),

where

r(x) = −y2
1

g(x)
x− β1

− · · · − y2
n−1

g(x)
x− βn−1

(12)

is a polynomial of degreen− 2. We wantf(x) = (x− α1) . . . (x− αn), which could be used to solve
for theyi.

If the βi are all distinct, thenr(x) is determined atn− 1 points:r(βi) = f(βi). Lagrange interpola-
tion gives:

r(x) =
n−1∑
i=1

f(βi)
g(x)

g′(βi)(x− βi)
(13)

Comparing (12) and (13), we conclude that if for alli = 1, . . . , n− 1,

f(βi)
g′(βi)

=
(βi − α1) . . . (βi − αi−1)(βi − αi)(βi − αi+1) . . . (βi − αn)

(βi − β1) . . . (βi − βi−1)(βi − βi+1) . . . (βi − βn)
≤ 0,

then we can solve for theyi. The interlacing condition (11) implies that(βi−αj) and(βi−βj) have the

same sign except whenj = i. Hence,f(βi)
g′(βi)

≤ 0 as desired.
If, say,β1 = · · · = βk > βk+1 ≥ . . . , then the interlacing condition (11) forcesβ1 = · · · = βk =

α2 · · · = αk. Hence, we can divide both sides off(x) = g(x)(x−a)+r(x) by (x−β1)k−1 to eliminate
the multiple rootβ1 of g(x). After all multiple roots have been eliminated this way, we can proceed as
before.

Hermann Weyl (1912, [11]) derived a set of very interesting inequalities concerning the eigenvalues
of three Hermitian matricesA, B, andC whereC = A + B. We shall follow the notations used in [2].
For any matrixA, let λ↓j (A) andλ↑j (A) denote thejth eigenvalue ofA when all eigenvalues are weakly
ordered decreasingly and increasingly, respectively. When given three Hermitian matricesA, B, andC
whereC = A + B, implicitly we defineαj = λ↓j (A), βj = λ↓j (B), andγj = λ↓j (C), unless otherwise
specified.

Theorem 9.3(Weyl, 1912). Given Hermitian matricesA, B, andC of ordern such thatC = A + B.
Then,

γi+j−1 ≤ αi + βj for i + j − 1 ≤ n. (14)
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Proof. For k = 1, . . . , n, let uk, vk, andwk be the unitαk, βk, andγk eigenvectors ofA, B, andC,
respectively. The three vector spaces spanned by{ui, . . . , un}, {vj , . . . , vn}, and{w1, . . . , wi+j−1}
have total dimension2n + 1. Hence, they have a non-trivial intersection. Letx be a unit vector in the
intersection, then by Lemma 8.1

〈x, Ax〉 ∈ [αn, αi]
〈x,Bx〉 ∈ [βn, βj ]
〈x,Cx〉 ∈ [γi+j−1, β1].

Thus,
γi+j−1 ≤ 〈x,Cx〉 = 〈x,Ax〉+ 〈x,Bx〉 ≤ αi + βj .

A few interesting consequences are summarized as follows.

Corollary 9.4. (i) For all k = 1, . . . , n.

αk + βn ≥ γk ≥ αk + β1,

(ii)

γ1 ≤ α1 + β1

γn ≥ αn + βn

Proof. (i) The second inequality is obtained by specializingj = 1, i = k in Theorem 9.3. The first
inequality follows from the first by noting that−C = −A−B.

(ii) Applying Theorem 9.3 withi = j = 1 yields the first inequality. The second follows by the
−C = −A−B argument.

The following is a trivial consequence of the minimax principle.

Corollary 9.5 (Monotonicity principle). Define a partial order of all Hermitian matrices as follows.

A ≤ B iff 〈x, Ax〉 ≤ 〈x,Bx〉 ∀x. (15)

Then, for allj = 1, . . . , n we haveλj(A) ≤ λj(B) wheneverA ≤ B.
Equivalently, ifA andB are Hermitian withB being positive semidefinite, then

λ↓k(A) ≤ λ↓k(A + B)

10 Sylvester’s law of inertia

Material in this section follows closely that in the bookMatrix Analysisby Horn and Johnson [5].

Definition 10.1. Let A,B ∈ Mn be given. If there exists a non-singular matrixS such that

• B = SAS∗, thenB is said to be∗-congruent toA.

• B = SAST , thenB is said to beT -congruent toA.
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Note. These two notion of congruence must be closely related; they are the same ifS is a real matrix.
When it is not important to distinguish between the two, we use the termcongruencewithout a prefix.
SinceS was required to be non-singular, congruent matrices have the same rank. Also note that, ifA is
Hermitian then so isSAS∗; if A is symmetric, thenSAST is also symmetric.

Proposition 10.2. Both∗-congruence andT -congruence are equivalent relations.

Proof. It is easy to verify that the relations are reflexive, symmetric and transitive. Only need to notice
thatS is non-singular.

The setMn, therefore, is partitioned into equivalence classes by congruence. As an abstract prob-
lem, we may seek a canonical representative of each equivalence class under each type of congruence.
Sylvester’s law of inertiagives us the affirmative answer for the∗-congruence case, and thus also gives
the answer for the set of real symmetric matrices.

Definition 10.3. Let A ∈ Mn be a Hermitian matrix. Theinertia of A is the ordered triple

i(A) = (i+(A), i−(A), i0(A))

wherei+(A) is the number of positive eigenvalues ofA, i−(A) is the number of negative eigenvalues of
A, andi0(A) is the number of zero eigenvalues ofA, all counting multiplicity. Thesignatureof A is the
quantityi+(A)− i−(A).

Note. Sincerank(A) = i+(A) + i−(A), the signature and the rank ofA uniquely identify the inertia of
A.

Theorem 10.4(Sylvester’s law of inertia). Let A,B ∈ Mn be Hermitian matrices.A and B are ∗-
congruent if and only ifA andB have the same inertia.

Proof. (⇒). Firstly, for any Hermitian matrixC ∈ Mn, C can be diagonalized by a unitary matrix
U , i.e. C = UΛU∗, with Λ being diagonal containing all eigenvalues ofC. By multiplying U with a
permutation matrix, we can safely assume that down the main diagonal ofΛ, all positive eigenvalues
go first: λ1, . . . , λi+ , then the negatives:λi++1, . . . , λi++i− , and the rest are0’s. Thus, if we setD =
diag(

√
|λ1|, . . . ,

√
|λi++i− |, 0, . . . , 0), then

Λ = D



1
...

1
−1

...
−1

0
...

0


D = DICD

with the entries not shown being0. IC is called theinertia matrixof C. Consequently, lettingS = UD
(S is clearly non-singular) we get

C = UΛU∗ = UDICDU∗ = SICS∗ (16)

Hence, ifA andB have the same inertia, then they could be written in the form (16) with possibly
a differentS for each, butIA = IB. Since∗-congruence is transitive,A is ∗-congruent toB as they are
both congruent toIA.
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(⇐). Now, assumeA = SBS∗ for some non-singular matrixS. A andB have the same rank,
so i0(A) = i0(B). We are left to show thati+(A) = i+(B). For convenience, leta = i+(A) and
b = i+(B). Let u1, . . . , ua be the orthonormal eigenvectors for the positive eigenvalues ofA, so that
dim(Span{u1, . . . , ua}) = a. If x = c1u1 + · · ·+ caua, thenx∗Ax = λ1|c1|2 + · · ·+λa|ca|2 > 0. But
then

x∗Ax = x∗SBS∗x = (S∗x)∗B(S∗x) > 0

soy∗By > 0 for all vectory in Span{S∗u1, . . . , S
∗ua}, which also has dimensiona. By Corollary 7.5,

b ≥ a. A similar argument shows thata ≥ b, which completes the proof.

Corollary 10.5. Givenx ∈ Rn, if xT Ax can be written as the sum ofm products involving two linear
factors, that is

xT Ax =
m∑

k=1

(
∑
i∈Sk

bi,kxi)(
∑
j∈Tk

cj,kxj)

Further assume thatA hasp positive eigenvalues andq positive eigenvalues (counting multiplicities),
thenm ≥ max(p, q).

Proof. I have not been able to see why this corollary follows from Sylvester’s law yet. A proof of the
corollary can be given, but that’s not the point.

11 Majorizations

Several results in linear algebra are best presented through the concept of majorization. We first need a
few definitions.

Let v1, . . . , vm be vectors inRn. The vector

v = λ1v1 + · · ·+ λmvm

is called thelinear combinationof thevj ; when
∑

λj = 1, we get anaffine combination; a canonical
combinationis a linear combination in whichλj ≥ 0,∀j; and aconvex combinationis an affine combi-
nation which is also canonical. Thelinear (affine, canonical, convex) hullof {v1, . . . , vm} is the set of
all linear (affine, canonical, convex) combinations of thevj . Note that in the above definitions,m could
be infinite. The convex hull of a finite set of vectors is called a(convex polyhedral) cone.

Let x = (x1, . . . , xn) be a vector inRn. The vectorx↓ = (x↓1, . . . , x
↓
n) is obtained fromx by

rearranging all coordinates in weakly decreasing order. The vectorx↑ can be similarly defined.
Supposex, y ∈ Rn. We sayx is weakly majorizedby y and writex ≺w y if

k∑
j=1

x↓j ≤
k∑

j=1

y↓j , ∀k = 1, . . . , n. (17)

Additionally, if
n∑

j=1

x↓j =
n∑

j=1

y↓j , (18)

thenx is said to bemajorizedby y and we writex ≺ y.
The concept of majorization is very important in the theory of inequalities, as well as in linear algebra.

We develop here a few essential properties of majorization.

Theorem 11.1.LetA ∈ Mn be Hermitian. Leta be the vector of diagonal entries ofA, andα = λ(A)
the vector of all eigenvalues ofA. Then,a ≺ α.
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Proof. Whenn = 1, there is nothing to show. In general, letB ∈ Mn−1 be a Hermitian matrix obtained
from A by removing the row and the column corresponding to a smallest diagonal entry ofA. Let
β1, . . . , βn−1 be the eigenvalues ofB. Then,α1 ≥ β1 ≥ · · · ≥ βn−1 ≥ αn. Moreover, induction
hypothesis yields

k∑
i=1

a↓i ≤
k∑

i=1

βi, 1 ≤ k ≤ n− 1.

Hence,
k∑

i=1

a↓i ≤
k∑

i=1

αi, 1 ≤ k ≤ n− 1.

Lastly, tr(A) =
∑

ai =
∑

αi finishes the proof.

It turns out of the converse also holds. Before showing the converse, we need a technical lemma.

Lemma 11.2. Letx, y ∈ Rn such thatx � y. Then, there exists a vectorz ∈ Rn−1 such that

x↓1 ≥ z1 ≥ x↓2 ≥ z2 · · · ≥ zn−1 ≥ x↓n,

andz � [y↓1, . . . , y
↓
n−1]

T .

Proof. Whenn = 2, we must havex↓1 ≥ y↓1 ≥ y↓2 ≥ x↓2. Hence, pickingz1 = y↓1 suffices.
Supposen ≥ 3. Let D ⊆ Rn−1 be defined by

D =

{
v ∈ Rn−1 | x↓1 ≥ v1 ≥ · · · ≥ vn−1 ≥ x↓n, and

k∑
i=1

vi ≥
k∑

i=1

y↓k, 1 ≤ k ≤ n− 2

}
.

Then, the existence of a pointz ∈ D for which
∑n−1

i=1 zi =
∑n−1

i=1 y↓i = c would complete the proof.
Notice that as[x↓1, . . . , x

↓
n−1]

T ∈ D, D is not empty. Define a continuous functionf : D → R by

f(v) = v1 + · · · + vn−1. Then,f([x↓1, . . . , x
↓
n−1]

T ) ≥ c. SinceD is a connected domain, if we could
find v ∈ D for which f(v) ≤ c, then there must exist the vectorz for which f(z) = c. Let v̂ ∈ D be a
vector such that̂v = min{f(z) | z ∈ D}. If f(v̂) ≤ c, then we are done. Supposef(v̂) > c, we shall
show thatf(v̂) ≥ c to reach a contradiction. We have

k∑
i=1

v̂i ≥
k∑

i=1

y↓k, 1 ≤ k ≤ n− 1 (19)

v̂k ≥ x↓k+1, 1 ≤ k ≤ n− 1. (20)

Suppose first that all inequalities (19) are strict. Then, it must be the case thatv̂k = x↓k+1, k =
1, . . . , n − 1. Otherwise, one could reduce somev̂k to makef(v̂k) smaller. Consequently,f(v̂) =
f([x↓2, . . . , x

↓
n]T ) ≤ c.

If not all of the inequalities (19) are strict, then letr be the largest index for which

r∑
i=1

v̂i =
r∑

i=1

y↓i (21)

k∑
i=1

v̂i >
k∑

i=1

y↓i , r < k ≤ n− 1 (22)
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(Notice the fact thatr ≤ n− 2, since we assumedf(v̂) > c.) By the same reasoning as before, we must
havev̂k = x↓k+1 for k = r + 1, . . . , n− 1. Thus,

f(v̂)− c =
n−1∑
i=1

v̂i −
n−1∑
i=1

y↓i

=
r∑

i=1

v̂i +
n−1∑

i=r+1

v̂i −
n−1∑
i=1

y↓i

=
r∑

i=1

y↓i +
n∑

i=r+2

x↓i −
n−1∑
i=1

y↓i

≤
r∑

i=1

y↓i + +
n∑

i=r+2

y↓i −
n−1∑
i=1

y↓i

=
n∑

i=r+2

y↓i −
n−1∑

i=r+1

y↓i

=
n∑

i=r+2

(
y↓i − y↓i−1

)
≤ 0

We are now ready to show the converse of Theorem 11.1.

Theorem 11.3. Let a andα be two vectors inRn. If a ≺ α, then there exists a real symmetric matrix
A ∈ Mn which has diagonal entriesai, andλ(A) = α.

Proof. The casen = 1 is trivial. In general, assume without loss of generality thata = a↓, andα = α↓.
Also, letb = [a1, . . . , an−1]. Then, Lemma 11.2 implies the existence of a vectorβ ∈ Rn−1 such that

α1 ≥ β1 ≥ · · · ≥ βn−1 ≥ αn,

and thatβ � b. The induction hypothesis ensures the existence of a real symmetric matrixB which has
diagonal entriesb and eigenvaluesβ. Now, Theorem 9.2 allows us to extendB into a real symmetric
matrixA′ ∈ Mn:

A′ =
[

Λ y
yT b

]
,

whereΛ = diag(β1, . . . , βn−1), andA′ has eigenvaluesα. One more step needs to be done to turnA′

into matrixA we are looking for. We know that there exists a orthonormal matrixQ ∈ Mn−1 for which
B = QΛQT . Hence, letting

A =
[
Q 0
0 1

] [
Λ y
yT b

] [
QT 0
0 1

]
=
[
QΛQT Qy
(Qy)T a

]
=
[

B Qy
(Qy)T a

]
finishes the proof.

For anyπ ∈ Sn andy ∈ Rn, let yπ := (yπ(1), . . . , yπ(n)).

Theorem 11.4.Given vectorsx, y ∈ Rn, the following three statements are equivalent.

(i) x � y.
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(ii) There exists a doubly stochastic matrixM for whichx = My.

(iii) x is in the convex hull of alln! pointsyπ, π ∈ Sn.

Proof. We shall show(i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Firstly, assumex ≺ y. By Theorem 11.3 there is a Hermitian matrixA ∈ Mn with diagonal entriesy

andλ(A) = x. There thus must exist a unitary matrixU = (uij) for whichA = Udiag(y1, . . . , yn)U∗,
which implies

xi = aii =
n∑

j=1

yj |uij |2.

Hence, takingM = (|uij |2) completes the proof.
Secondly, supposex = My whereM is a doubly stochastic matrix. Birkhoff Theorem implies that

there are non-negative real numberscπ, π ∈ Sn such that∑
π∈Sn

cπ = 1

M =
∑
π∈Sn

cπPπ,

wherePπ is the permutation matrix corresponding toπ. Consequently,

x = My =
∑
π∈Sn

cπPπy =
∑
π∈Sn

cπyπ.

Lastly, suppose there are non-negative real numberscπ, π ∈ Sn such that∑
π∈Sn

cπ = 1

x =
∑
π∈Sn

cπyπ.

Without loss of generality, we assumey = y↓. We can writexi is the following form:

xi =
n∑

j=1

yj

 ∑
π∈Sn
π(i)=j

cπ

 =
n∑

j=1

yjdij .

Note that
∑

i dij =
∑

j dij = 1. (This is rather like having(iii) ⇒ (ii) first, and then we show
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(ii) ⇒ (i).) The following is straightforward:

k∑
i=1

xi =
k∑

i=1

n∑
j=1

yjdij

=
n∑

j=1

yj

k∑
i=1

dij

≤ y1

k∑
i=1

di1 + · · ·+ yk

k∑
i=1

dik + yk+1

 n∑
j=k+1

k∑
i=1

dij


= y1 + · · ·+ yk − y1

(
1−

k∑
i=1

di1

)
− · · · − yk

(
1−

k∑
i=1

dik

)
+ yk+1

 n∑
j=k+1

k∑
i=1

dij


≤ y1 + · · ·+ yk − yk+1

k −
k∑

j=1

k∑
i=1

dij

+ yk+1

 n∑
j=k+1

k∑
i=1

dij


= y1 + · · ·+ yk − yk+1

k −
n∑

j=1

k∑
i=1

dij


= y1 + · · ·+ yk − yk+1

k −
k∑

i=1

n∑
j=1

dij


= y1 + · · ·+ yk.

References
[1] M. A RTIN, Algebra, Prentice-Hall Inc., Englewood Cliffs, NJ, 1991.

[2] R. BHATIA , Linear algebra to quantum cohomology: the story of Alfred Horn’s inequalities, Amer. Math. Monthly, 108
(2001), pp. 289–318.

[3] R. A. BRUALDI , The Jordan canonical form: an old proof, Amer. Math. Monthly, 94 (1987), pp. 257–267.

[4] F. R. GANTMACHER, The theory of matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. Translated from
the Russian by K. A. Hirsch, Reprint of the 1959 translation.

[5] R. A. HORN AND C. R. JOHNSON, Matrix analysis, Cambridge University Press, Cambridge, 1985.

[6] P. LANCASTER AND M. T ISMENETSKY, The theory of matrices, Academic Press Inc., Orlando, Fla., second ed., 1985.

[7] D. STANTON AND D. WHITE, Constructive combinatorics, Springer-Verlag, New York, 1986.

[8] G. STRANG, Linear algebra and its applications, Academic Press [Harcourt Brace Jovanovich Publishers], New York,
second ed., 1980.

[9] H. STRAUBING, A combinatorial proof of theCayley-Hamilton theorem, Discrete Math., 43 (1983), pp. 273–279.

[10] D. B. WEST, Introduction to graph theory, Prentice Hall Inc., Upper Saddle River, NJ, 1996.

[11] H. WEYL, Das asymptotische verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann.,
71 (1912), pp. 441–479.

30


