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A Probability Theory Primer

Some texts on Probability Theory are [1,4-7]. The absolute classic is William Feller's [2, 3]. There
are also two excellent free books on the Internet at

o http://www.dartmouth.edu/"chance/teaching _aids/
books _articles/probability _book/book.html ,

o http://www.mit.edu/people/dimitrib/Probability. html

1 Preliminaries

Through out this note, we often uge to denote{1,2,...,n}, (2) to denote the set of all-subsets of
a set given se2, and2* to denote the set of all subsets (also capledver sex of €.

An eventE is a subset of theample spacéor probability spacg 2 under consideration. For any
two eventsE and F', we useE' I’ to denote their intersection addU F' their union. Assume there is a
function Prob: 2 — [0, 1], defined on each eveft, such that

(i) 0 <ProgE] < 1.
(i) Prob[Q] = 1.

(iif) For any (finite or infinite) sequencé&, E,, ... of events such thak; E; = () wheneveri # j

(mutually exclusivevents),
Prob (U E) = ProgE;. (1)

ProdE] is called theprobability of eventE. By theinclusion-exclusiormprinciple (see, e.g., [8, 9]), the
following identity holds:
ProfEy U---UE,] =) (-D)"' Y~ ProlfE;, ... E;,]. 2)
k=1 {2177Zk}€([z])

Let £ andF be any two events. Theonditional probabilitythat £ occurs given thaf' has occurred,
denoted by ProliZ| F'] is defined to be

ProdEF|
Prol F

Note that this definition is only valid when Pridfj > 0. We can think ofF’ as being the new sample
space. The phrase “givari’ implies that the outcome belongs fa so the probability that the outcome
also belongs td’ (which must thus be it F') is the fraction given.

Two eventsE and F' are said to béndependent eventsEProb[EF] = Pro E] ProF], or equiva-
lently, ProdE|F] = ProE]. Intuitively, E and F’ are independent if the density éf over the whole
space is equal to the density BfF' over F' and vice versa. Put it another way, the probability that
occurs does not change even when we know ihagas occurred. I£ and F' are not independent, they
are said to belependent

ProE|F] :=



Example 1.1. Suppose we are tossirgdice fairly. LetF' be the event that the first dieds £ be the
event that the sum i8and F» be the event that the sumis Then,F; and F' are dependent ankl, and
F are independent. For, Pridd = 1/6, ProjE,] = 5/36, ProdE,] = 1/6, ProjE,|F] = 1/6, and
ProbEs|F] = 1/6.

AsetFy,..., E, of events are said to iedependeniff for any £ < n and{iy,...,ix} C [n] we
have
ProdE;, ... E;, ] = ProE;,]... ProbE;, |.
Intuitively, this means that the knowledge on the occurrence of any subset of these events does not affect
the probability of any other event.

Example 1.2. Rolling 3 dice, the events that each die takes a particular value are independent.

Example 1.3(Pair-wise independence does not imply independen&dip 2 coins in a row. Letr; be
the event that the first coin turns up hedd, be the event the the second coin turns up @il be the
event that the two coins are both heads or both tails. Then|Prpb- ProEs] = ProEs] = 1/2.
Moreover,

ProdE1Es] = 1/4 = ProdE;] ProgEs]
ProE 1 E3] = 1/4 = ProlE;]| ProEs]
ProbE2E3] = 1/4 = ProdEs] ProgEs],

hence the three events are pair-wise independent. However,
ProE; B2 Es] = 0 # ProE;| Prod Es] Pro Es] = 1/8,
namely they are not independent.

Supposé, . .., F,, are mutually exclusive events (i.&; F; = () whenever # j), and that J, F; =
Q. (We also say the events, . .., F, partition the sample space.) Intuitively, exactly one and only one
of the events; will occur. Firstly, notice that for any evetlt, E = U; E'F;, and that all event& F; are
also mutually exclusive. We have

Prol{E] = ) ~ProlEF;] = ) _ ProliE|F;] ProlF}] (3)

This states that PrgB] is the weighted average of the P{ébF;]. The equation also implies that

ProF;E]  ProlE|F;] ProdF}]
ProbE] Y., ProE|F;] ProfF]

Equation (4) is known aBayes’ formula

ProljFj|E] = (4)

Example 1.4. In multiple choice tests, assume a student knows the answer to any question with proba-
bility p (i.e. she guesses with probability— p). Letm be the number of alternatives for each question.
What is the probability that she knew the answer to a question given that she answered it correctly? What
is the sample space in this example?

Answer.Let A be the event that she answered it corrediybe the event that she guessed &hdhe
knew the answer. We know U C' is the sample space. We want Pi@hA]. Using Bayes’ formula we

get
_ Prod A|C] ProlC] B P
ProCIA] = B oHATB] Proki B + ProbA|C] Profic] T1—p)+p
The sample space consists of pdirsy) wherezx is the outcome of her answer (true, false) grd the
fact that she guessed or not. O




Exercise 1(Monty Hall Problem) There are three closed doors at the conclusion of a game show. A
contestant chooses one of the doors, behind which he or she hopes lies the GRAND PRIZE. The host of
the show opens one of the remaining two doors to reveal a wimpy prize. The contestant is then given the
choice to stay with the original choice of a door or to switch and choose the remaining door that the host
did not open. The problem is: Should the contestant stick with the original door choice or switch and
choose the other door? Argue intuitively first and rigorously later. There is an intriguing story behind
this also called “let's make a deal” problem. For more information, see, e.g.,
http://www.nadn.navy.mil/MathDept/courses/pre97/sm230/MONTYHAL.HTM

for a sample discussion.

Exercise 2(Red or Black problem)An acquaintance of mine Harry enjoys a good bet. He always keeps
the bet small enough to be affordable, but big enough to keep him in pocket money. One of his favorites
uses three cards and a brown bag:

Harry: | have an empty brown bag and three cards. One card is black on both sides, one card is red
on both sides and the other is black on one side and red on the other. I'll put all three cards in the bag
and mix them well. Now you carefully pull one card out so that we see only one side. Look, its red. That
means it can’t be the card that is black on both sides. So its one of the other two cards and an even bet
that its black on the other side. What do you say we each bet $1. You get black and | get red.

Harry likes this game so much he wants to continue playing, always giving you the color not showing.
Since the color showing has already been used once making it less likely and he just plays for the
entertainment.

One of the following statements about Harry is true. Select the true statement and show that it is true.

1. Inthe long run Harry will win about as much as he loses.
2. Inthe long run Harry will win a lot more than he loses.
3. Inthe long run Harry will lose a lot more than he wins.

Exercise 3(Bertrand Paradox)Consider the following problemGiven a circle. Find the probability
that a chord chosen at random be longer than the radius.
Try to come up with three different answers, all of whose reasonings appear to be correct.

Exercise 4. Tom is torn between two lovers Alice and Barb. They three live on the same street, where
Tom’s house is in between Alice’s and Barb’s houses. Buses going the Alice to Barb direction and Barb
to Alice direction at the exact same speed and regularity (say, an hour each).

Tom decides to randomly go to the bus station at his house, and take the first available bus. If the bus
goes to Barb’s direction, he'd to to Barb’s house, and vice versa.

After a long period of time, Tom realizes that he spends 3 times more at Barb’s place than at Alice’s
place. How is that possible?

2 Random variables

In many cases, we are more interested in some function on the events rather than the event itself. For
example, we might want to know the probability of tossing two dice whose sarilisese quantities of
interest, or more formally these real-valued functions defined on the events, areaatleth variables

For example, suppose a coin has probabjlibf coming up head. LeX be the random variable that
is defined as the number of fair tosses of a coin until it comes up head, then clearly

ProdX =n] = (1 —p)" !p.



We usually want to know if an everif happens or not, and define a random varidl¢o bel if £
happens and otherwise. The variablé is said to be théndicator random variable for everit.

The cumulative distribution functiod’(-) (cdf), often referred to as thdistribution function of a
random variableX is defined for every € R by

F(z) = ProX < z]

2.1 Discrete random variables

Random variables that can take on only a countable number of values aredisdledde random vari-
ables To each discrete random variable we associate arobability mass functiom(a), or simply
probability function defined by

p(a) = ProfX = a.

If X can take on only values,, zo, .. ., then we must have

Y opl@) = 1
=1
Fla) = ) pli),

wherer is the distribution function ofX.

Definition 2.1 (Bernoulli random variable)Suppose an experiment is performed with two outcomes
“success” and “failure”, where the probability of a succegs(and a failure isl — p). Let X bel if the
outcome is a success aad the outcome is a failure, then

p(0) = 1-p

p(1) = p. 5)
X is said to be &8ernoulli random variablef its probability function is defined by (5).
Definition 2.2 (Binomial distribution) Suppose: independent trials are performed, each with success
probabilityp. Let X be the number of successes in theials, then clearly

. ny n—i \y;
p(i) = (i)p (I=p)" ", Vi=0,....n

Such anX is called abinomial random variableor is said to have binomial distributionwith parameters
(n,p). We also writeX € Binomial(n, p).

Definition 2.3 (Geometric distribution) Suppose: independent trials, each with success probabjiljty
are performed until a success occurs. Kebe the number of trials, then

p(i)=1—-p)'p, Vi=1,2,.... (6)

Such anX is called ageometric random variabjeand said to have geometric distributiorwith param-
eterp. We also writeX € geometricp).

Definition 2.4 (Poisson distribution) X is called aPoisson random variable with parameter> 0 if it
takes on values iiY, and its probability function is defined by

p(i) = ProfX = i) = e—AA,T, Vi € N.
1!
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Such anX is said to have ®oisson distributiorwith parameten\, and we writeX € Poissori\).

Itis easy to verify thap(:) above actually defines a proper probability function si¢g , p(i) = 1.
Given thatn is large ang is small, a Poisson random variable with= np can be used to approximate
a binomial random variable with parametérs p). Basically, ifp — 0, np — A asn — oo, then

(?)pi(l _p)n—i N e—,\%i.

2.2 Continuous random variables

A random variableX taking on uncountably many possible values is said to berdinuous random
variableif there exists a functiorf : R — R, having the property that for every C R:

MwXGM:Lﬂ@M
The functionf(z) is called theprobability density functioof X. Obviously, we must have
1:PmmX€Gammﬂ:/wf@Mm
Notice that PropX = a] = 0, and that the distribution functioR(-) of X could be calculated as
F(a) =Prob[X € (—o0,d]] = /a f(x)dz.

Differentiating both sides of the preceding equation yieﬁ{gﬁ(a) = f(a), that is the density is the
derivative of the distribution.
Definition 2.5 (Uniform distribution) X is said to beuniformly distributedon the interval«a, 3) if its
density is
L ifre(a,p
fla) =7 (@ 5]
0 otherwise

As F(a) = [*_ f(x)dz, we get

0 a <«
Fla)={ %2 ae(af)
1 a>f

Definition 2.6 (Exponential distribution) X is said to beexponentially distributedvith parameten\ if

its density is
e ™ jfxr >0
ﬂ@_{o if 2+ < 0
Clearly, its cdfF' is
F(a) = / f(z)dz=1—e% a>0.

This kind of random variables occur a lot in the studies of Poisson processes. We shall have much more
to say about the exponential distribution later on.

Definition 2.7 (Gamma distribution) X is called agamma random variableith parametersy, A if its

density is
)\e*)‘m(/\x)"‘*l .
fla) = ey if £ >0
0 if 2 <0



where the gamma function is defined by

o0
INa) = / e T .
0
This is a generalization of the factorial function, as it is easy to show by inductiontbatI'(n) =
(n—1)L

Definition 2.8 (Normal distribution) Lastly, a continuous random variahlé is normally distributed
with parameterg ando? if the density ofX is given by

1 20 2
— —(z—p)?/20 cR.
1@ = gt i

Normal variables are also call€égaussiarvariables. This function is a Bell-shaped curve peaking at
and symmetric around. More importantly, ifX is normally distributed with parametessando?, then
Y = aX + 3 is normally distributed with parametets: + 3 and (ac)? (why?). Wheny = 0 and
0% =1, X is said to haveinit or standardnormal distribution.

3 [Expectations, moments and variances

Definition 3.1 (Expectation of a discrete variablepiven a discrete random variablée with probability
mass functiorp(z), then theexpected valuef X is defined as

E[X] = pr(a:)

In other words, the expected value &f is the weighted average of all possible valuesXaof each
weighted by the corresponding probability.

It is not difficult to see that

e If X is a Bernoulli random variable with paramegethen EX| = p.

e If X is a binomial random variable with parameténsp), then EX| = np.

e If X is a geometric random variable with parametethen EX] = 1/p.

¢ If X is a Poisson random variable with parametethen EX| = .

Definition 3.2 (Expectation of a continuous variablépiven a continuous random variab¥ewith den-
sity f(z), we define thexpected valuef X as

provided that the integral
€] = [ falf(e)da

is finite.
The above definition is “expected” since the integral is the continuous analog of the sum. Simple
calculations show that

e WhenX is uniformly distributed ovefa, ), E[X]| = (o + ) /2.
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e WhenX is exponentially distributed with parameterE[X] = 1/A.

e WhenX is normally distributed with parametefs, o2), E[X] = u. This is why we use:, which
stands for “mean”.

Many times, we are interested in calculating the expectation of a random variakl®se value is
a function of a random variabl¥, sayY = ¢(X) for someg : R — R. The following theorem follows
directly from definition.

Theorem 3.3. Let g be any real-valued function, then
(i) If X is a discrete random variable with probability mass functigm), then

= g(@)p(x)
(i) If X is a continuous random variable with probability density functfgm), then

Elg(X)] = / " g(@) fla)de

Before showing the theorem, we need a lemma.
Lemma 3.4. LetY be a continuous random variable, then

E[Y] = /000 ProdY > y|dy — /000 PlY < —y|dy. (7)

Proof. We have

/Oooprob[Y>y]dy—/ooop[Y<—y]dy _ /Ooo<yoofy( )dac) / (/ fr(o dw)
_ /Ooo/yoofy( ©)dady — // fy (@) dady
=/0°o</0 >fy()dw—/oo</mdy>fy(m)dﬂf

o0

0
= ; xfy(x)dib‘+/_oo$fY($)dx
= E[Y].

O

Proof of Theorem 3.3We prove the continuous case with the help of Lemma 3.4. The discrete case is
shown similarly.

EY] = /“pmqg< ) > yldy - /OOP[g<X>< ~yldy

= / / x)dxdy — / / x)dxdy
z: 9($)>y z:g(z
9(z) —g(z)
-/ ( / dy) fx(@da+ [ ( / dy> fx(@)da
x:g(z)>0 0 x:9(x)<0 —00

= [ s

—00



Corollary 3.5. If a andb are constants, theB[a X + b] = aE[X] + b.

Definition 3.6 (Moments) E[X] is usually called théirst momenbf X. Similarly, EX?] is thesecond
momentand EX"] is thenth moment ofX . Note that

E[X"] = > oL x"p(x) if X is discrete
| S, 2" f(x)dx if X is continuous
We shall see the use of these moments later on.

Definition 3.7 (Variance) Another quantity of interest is thearianceof X denoted by VajX], which
is defined by
Var[X] = E[(X — E[X])?] = E[(X — u)?].

The variance ofX is often denoted by, or simplys? if X is clear from context. The number
(> 0) is called thestandard deviation of X. The following very useful identity can be proven easily by
considering separately the continuous and discrete cases.

Theorem 3.8. Var[X] = E[X?] — (E[X])?

Proof. We prove the continuous case:

Var[X] = E[(X - )’
- / (& — 1) fx (x)dx

= /OO 22 fx (z)dx — 2p /Oo xfx(2)dx + p /OO fx(x)dx

—00 —

= E[X? -2

We list here some simple facts mostly without proofs. In the discrete case, we have
e The variance ofX € Poissoj)) is Var[X] = A.
e The variance ofX € geometri¢p) is Var[X] = (1 — p)/p>.
In the continuous case, we get
e The variance ofX € exponential\) is Var[X] = 1/)2.
e The variance ofX € uniform(a,b) is Var[X] = (b — a)?/12.
e The variance ofX € normalu, o?) is Var[X] = o2.
Here are some other nice facts about variances:
Theorem 3.9.If X is a real-valued random variable ands any real constant, then
(@) Var[cX] = ¢?Var[X].

(b) Var[X + ¢] = Var[X].



4 Multiple Random Variables

We are often interested in probability statements concerning a set of random variablds, Let X,
be a set ofr random variables, thpint cumulative probability distribution function ofy, ..., X, is
defined by

F(ay,...,ap) = P[Xl <ai,...,X, < an]

The cdfFx,(-) of any X; can be obtained frori'(-) as follows.

FXZ.(CL) = PrquiSCL]
= ProdX; <oo,...,X; <a,..., X, < ]

= F(c0,...,a,00,...,00).
When all.X; are discrete, we define thaint probability mass functioof the X; by
p(z1,...,xn) = ProfX; = z1,..., X, = z,).

Given the joint PMF, the individual PMF of variablé; (denoted by, (z)) can be obtained by

px,(z) = Z p(T1, ..,y Tp).

T1yeeesTi—1,Li4 1500 Tn

The functiongx, (z) gives themarginal distributionsof the variablesx;.
We say thatX, ..., X, arejointly continuousf there is a functionf(z1, . .., z,) onR™ having the
property that for all setdly, ..., A, of real numbers

Prqu1€A1,...,Xn€An]:/ / f(:zl,...,:cn)dazl...dmn
Aq An

This function is naturally called th@int probability density functiorf the X;. The marginal density
fx, of each individualX; can be obtained by observing that

ProX; € A] = ProfX; <oo,...,X;€A4,..., X, < x]

—/ // flze, .. 2. xp)day .. day,

—o0 A —0

= /</ / f(xl,...,x,...,xn)d:cl...dxn>dw
A —00 —00

in(x):/::.../_Zf(xl,...,x,...,xn)dml...dacn

Similar to Theorem 3.3 and Corollary 3.5 we obtain:

Hence,

Theorem 4.1. Let g(x) be any real-valued function an € R", then
() If X; are discrete random variables with joint probability mass functi¢r), then

Elg(X1,.... Xa) = Y, gx)p(x)

x:p(x)>0

(i) If X; are continuous random variables with joint probability density functfér), then

[e.e]

Elg(X1,...,X,)] = / 9(x)f(x)dzy .. .dx,

—00



Corollary 4.2 (Linearity of Expectation) If X1,..., X,, are n random variables, then for any con-
stantsay, ..., an,
Elai X1+ -+ anXpn| = aE[X1] + -+ + a,E[X,)]

This corollary holds regardless of the dependence or independenceXf.tiidis fact is extremely
useful in applying the probabilistic methods to solve problems. We will see many applications of this
corollary later on. Let’s start with a simple example.

Example 4.3. What is the expected number of people getting their own hat back ampegple who
throw their hats to a pile and then each gets one back at random?

Answer. Let X be the number of people with their own hat back. D&tbe the indicator variable
indicating if person gets his own hat back, then

X=X+ +Xn.

Moreover, since EX;] = ProdX; = 1] = 1/n we get
E[X] = Z E[X,] =n(1/n) = 1.

This says that only one person gets his own hat back on average, independent of the number of people.
Thus, if those people who haven't got their hats back keep playing the game, intuitively on average it
will take n rounds until no-one is left to play. This is indeed the truth as we shall see. O

Definition 4.4 (Independent random variables)wo random variable andY are independent if for
all a,b,
ProdX <a,Y <b] = ProjX < a]ProdY <]

In other words X andY” are independent iff for all andb, the events, = {X < a} andE;, = {Y < b}
are independent. In terms of the joint distribution functiorof X andY, X andY are independent if
F(a,b) = F(a)F(b).

WhenX andY are discrete, the independence condition reduces to

p(x,y) = px(x)py (y),

while when they are jointly continuous, we have

flzy) = fx(@)fy (y).
It is not difficult to show the above two facts. Another important fact is the following theorem.

Theorem 4.5. If X andY are independent then for any functibrand g,

Exercise 5. SupposeX € Poissofi\;) andY” € Poissori)\z) are independent. Show thadt= X +Y ¢
PoissoliA; + A2).

Exercise 6. SupposeX € binomialn,p) andY € binomialm, p) are independent. Show that =
X +Y € binomialm + n, p).
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Definition 4.6 (Covariance and variance of sums of random variabl€kg covarianceof two random
variablesX andY is defined by

Cov[X, Y] := E[(X — E[X])(Y — E[Y])].

We have
Cov[X,Y] = E[(X —pux)(Y — py)]
= E[(XY —uxY — puy X + pxpy)]
= E[XY]— puxE[Y] — pyE[X] + pxpy
— E[XY] — UxX MY .

In other words,
Cov[X,Y] := E[XY] — E[X]E[Y].

The two variables arencorrelatedvhen Co X, Y] = 0. Two independent variables are uncorrelated.
Itis also easy to see the following

1. Cov[X, X] = Var[X].

2. Cov[X,Y] = Cov[Y, X].

3. Cov[cX,Y]| = cCov[X,Y].

4. Cov[X,Y + Z] =Cov[X,Y] + Cov[X, Z].

Example 4.7(Variance of a sum of variablesfrrom properties (1) and (4) above, we have

= ZZCOV[Xi,Xj]

= ZV&I‘ [Xz] + ZZCOV[XDXJ]

i jFi

Var

In particular, when theX; are pairwise independent, we have

> Xi] = Var[X;]

Definition 4.8 (Sample mean and sample variandé)X;,: = 1,...,n, are independent and identically
distributed (i.i.d.) random variables, then the random variable

Var

11



is called thesample variancef the X;. Actually, some authors use the definition

n L ¥\2
2, =3 K= %)

‘ n—1
=1

for sample variance (hence the subscript), since this makes the sample variance an unbiased estimator
for the population variance. The distinction betwe¥hand S2_, is a common source of confusion.
Extreme care should be exercised when consulting the literature to determine which convention is in use,
especially since the uninformative notatiSfis commonly used for both.

Proposition 4.9. If X;,i = 1,...,n, are i.i.d. random variables with meanand variances2, then
(@) E[X] = p.
(b) Var [X] = o?/n.
(c) Cov[X,X; — X]| =0,fori =1,2,...,n.
(d) E[S?] = o2

Proof. Except partd), other parts are easy to prove. To show pdjtwe could use the moment gener-
ating function introduced next. O

Definition 4.10 (Moment generating function)The moment generating function(¢) of the random
variable X is defined for all values by

tx . . .
6(1) = E[e!X] = Zoif e'"p(x) if X is discrete
[ et f(z)dx if X is continuous

¢(t) gets its name because all moments¥otan be obtained by taking derivativesqg(f) evaluated at
0. In general, it's easy to see that

¢™(0) = E[X™], foralln > 1.
The following theorem is important, where the first part is easy to prove.
Theorem 4.11.We have

(i) the moment generating function of the sum of independent random variables is just the product of
the individual moment generating functions.

(i) the moment generating function &f uniquely determines the distribution &f (i.e. its cdf and
mass or density.)

5 Limit Theorems

Theorem 5.1(Markov’s Inequality) If X is a random variable taking only non-negative values, then
foranya > 0

E[X]

a

ProdX > a] < (8)

Proof. We show this for the discrete case only, the continuous case is similar. By definition, we have

E[X] = Z xp(z) = Z xp(z) + Z zp(x) > Z ap(z) = aProdX > aj.

z<a T>a r>a
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Intuitively, whena < E[X] the inequality is trivial. For > E[X], it means the larget is relative to
the mean, the harder it is to ha%e > a. Thus, the inequality meets common sense.

Theorem 5.2(Chebyshev’s Inequality)lf X is a random variable with mean and variances?, then

foranyk > 0,
2

Probf| X — p| > k] < % 9)

Proof. This inequality makes a lot of sense. The probability thais far from its mean gets smaller
whenX is further, and smaller when its variance is smaller. The proof is almost an immediate corollary
of Markov's. LetZ = (X — p)?, then EZ] = o2 by definition of variance. SinceX — u| > k iff

Z > k2, applying Markov’s inequality completes the proof. O

Theorem 5.3 (One-sided Chebyshev Inequality)let X be a random variable witlE[X] = x and
Var [ X] = o2, then for anya > 0,

2

o
Prog X > < 7 10
HX > p+a] < a2 (10)
0.2
ProdX < y—a] < —00 . 11
HX <p a]_0,2+a2 (11)

Proof. Lett > —pu be a variable. Thert, = (X + ¢)? has and
E[Y] = E[X?] + 2tu + t* = o + (t + p)*.

Thus, by Markov’s inequality we get

2 2
+(t+pw)

ProjXx > < ProHY > < VTR
HX > p+ a] < Prof _(M+a+)]_(a+t+ﬂ)2

The right most expession is minimized whes: o2 /a — p, in which case it becomes® /(02 + a?) as
desired. The other inequality is proven similarly. O

Theorem 5.4(Chernoff bound) Let X be a random variable with moment generating functidiit) =
E[e*X]. Then,

ProgX > aj
ProiX < aj

“tapr(t) forall t>0

<e
<etpM(t) forall t<O.

Proof. The best bound can be obtained by minimizing the function on the right hand side. We show the
first relation, the second is similar. When- 0, by Markov’s inequality we get
ProX > a] = Prolde!® > €] < E[e!¥]ete.
[

A twice-differentiable functiory is convexf f”(x) > 0 for all zz, andconcavewhen f”(z) > 0 for
all x.

Theorem 5.5(Jenssen’s inequality) et f(x) be a convex function, then

E[f(X)] = f(E[X]). (12)

The same result holds for multiple random variables.

13



Proof. Taylor's theorem gives
f@)=f) + f' ()@ —p) + (O - n)?/2,
where¢ is some number betweanandyu. Whenf(x) is convex,f” (&) > 0, which implies
f@) > f(p) + f () (@ = p).

Consequently,
E[f(X)] > f() + f/(WEX — u] = f(n).

The following are the two most well known results in probability theory.

Theorem 5.6(Weak law of large humber)Let X1, X5, ... be a sequence of i.i.d. variables, and with
finite mearE[X;] = p. Then for any > 0

lim (Prob[X1+X2+'”+X”—M‘>ED:o. (13)

n—oo n

Theorem 5.7(Strong law of large number)Let X, X»,... be a sequence of i.i.d. variables, and let
E[X;] = u. Then with probabilityl,

Xi4Xo+ -+ Xy
n

— [, asn — oo,

in other words,

Prob| lim 2122t "=l =1

n—00 n

Theorem 5.8(The Central Limit Theorem)Let X;, X, ... be a sequence of i.i.d. random variables
with mean.: and variances2. Then the distribution of
X1+ Xo+ -+ Xy —np
ov/n
tends to the standard normal distribution as— oco. That is
X1+X2+---+Xn—nu<a] 1 /“ =2
—0o0

ovn - _>\/7277r

Prob

asn — o0.

6 Conditional expectation and probability

Similar to conditional probability of events, we define the followings.

Definition 6.1. If X andY are discrete random variables, then doaditional PMFof X given that
Y =yis

pxjy(@|y) = ProfX =z|Y =y]
B ProdX = z,Y = y]
a ProdY = 9]
_ p(x,y)
py(y)

14



Similarly, theconditional CDFof X givenY = y is defined for allt” such that Proy” = y| > 0 by

Fxiy(z|y):=ProfX <z |Y =y] = ZPXD/(G | y)-

a<x

Finally, theconditional expectatioE[X | Y = y] of X givenY = y is defined by
E[X |Y =y]:=> aProfX =z |Y =y| =) apxyy(x]|y).

Definition 6.2. We have an identical analog in the continuous case as follows. Suppesel Y are
continuous random variables with joint density functifix, y), then theconditional probability density
functionof X given thatY” = y, is defined for all values af such thatfy (y) > 0, by

fX|Y(5U ly) = )

The conditional expectationf X given thatY” = y, is defined for all values af such thatfy (y) > 0,
by

o0

ELX |V =y = / ey (& | v)de.

—00

The following two theorems are easy to show, but are very important tools whose values can not be
overestimated.

Theorem 6.3.LetE[X | Y] denote the function with indetermindtevhose value a&t” = yisE[X | Y =
y]. Note thatE[ X | Y] is itself a random variable. We have

E[X] = E[E[X | Y]], (14)
which in the discrete case means
E[X] =) E[X | Y = y|ProlY =y, (15)
Yy
and in the continuous case means
Bl = [ EX|Y = uliv (). (16)

Proof. For the discrete case, we have

D EX|Y =ylProfy =y = Y > xProfX =x|Y =y|Prolfy =y

= Zm <ZPFO[Z{X:33 | Y:y] Prot{YZy]>

= Y (Zproqx—x,Y—y]>

= ) zProfX =1
_ EX).

15



For the continuous case, TBD.

/OO EIX|Y =ylfy(y)dy = /OO (/OO a:fxydx> fy (y)dy

—00 —00 —00

B /_Z:C(/_Zf(%y)dy) dz

= /OO zfx(x)dx

—00

= E[X].
L]

Example 6.4. A rat is trapped in a cage. There are three doors from the cage. The first door leads to
a tunnel going back to the cage which takes the rat 2 minutes. The second door leads to another tunnel
which takes 3 minutes. The third door leads to a tunnel out of the cage in 4 minutes. Suppose at any
moment the rat is equally likely to take any one of the three doors. What is the expected number of
minutes before she goes free?

Answer. Let X be the number of minute¥, be the door number she takes in the first trial. We have
1 1 1
EX] = E[X\Yzl]ngE[X|Y:2]§+E[X]Y:?,]§
1
= g(2+E[X] + 3+ E[X]+4+0),

namely EX] = 9. O

Exercise 7(The Matching Round ProblemfConsider the hat game again. Suppose those people who
got their own hats back leave the game, the rest keep playing: betthe initial number of peopl&?,,

the number of rounds until no one is leff, the number of selections made in all roun@d's,the number

of selections made by person number 1. Calculate the expected valBgs®f andC,,.

Exercise 8. A coin is flipped until there aré consecutive heads. What's the mean number of flips?

Example 6.5(Analysis of Quick Sort) We can sort a sequence wofdistinct numbersiy, ..., a, by
selecting a numbet = a; at random, partition the rest into two sequengesnd.S; consisting of other
elements less than and larger thanrespectively. Sorfy, Ss recursively. Then, concatenate them with
a; in between. What's the expected number of comparisons?

Answer. Let M, be the expected number of comparisons we are looking forXLbe the number of
comparisons. Conditioning on how largés relative to the rest, we get

n

. 1

M, =EX] = E E[X | ais thejth Ieastnumb@rﬁ
j=1

1 n
= =~ ((0=1)+Mj1 + My)
7j=1

n—1 2
= R

16



Replacingr by n — 1 we have

n—2
—1 —1 -2

S g = "y, (D)

: 2 2

7=0
hence,

2(n—1 1
a, = 2= (D,
n
Divide both sides byn + 1, solve the recurrence for the sequendg/(n + 1) we getM,, =

O(nlogn). O
Example 6.6(Analysis of Slow Sort) We can also sort a sequenceroflistinct numbers, . .., a, by

repeating the following two steps:
1. Check if the sequence is sorted. If it is, then stop.
2. Pick two distinct elements at random and swap them. Go back to step 1.
What'’s the expected number of comparisons? (Whieh-is1 times the number of rounds.)

Answer. This problem actually relates to random walks on graphs. We shall come back to this problem
later. O

Theorem 6.7. Let E be a random event, then we have

>, ProdE | Y = y|ProdY =y] if Y is discrete,

17
[ ProbE | Y =y]fy (y)dy if Y is continuous. a7

ProbE] = {

Example 6.8(The Best Prize ProblemBuppose you are presented withoxes of money in a sequence.

You don’t know how much money is in each box, but you are told when seeing a new box how the amount

of money in the box compared to all the ones you have seen. You will either accept the box or go on.

Devise a strategy to attempt the get the box with the most amount of money, and calculate the probability
of getting that box.

Solution. One strategy is to reject the firsboxes () < k& < n) and accept the first box whose amount of
money is larger than all the firgtboxes’ amounts. We will calculatig,, the probability that this strategy
gives the best box, and then optimiZg over all values of. Do you think thatP, — oo asn — oo?

17



Let ¥ be the event that we succeed aXide the position of the best price. We have

ProgE] = zn:ProqE | X =i ProgX =]
i=1

n
= > ProiE| X =i ProfX =i
i=k+1

= 1 E Probbest of first(i — 1) is among firstk]
n
i=k+1

2
S|
?r\s

L
S
o8

&

¢
3|
=}
o3
—
>3
~

As a function ofk, this function is optimized at ~ n/e, giving a probabilityl /e ~ 0.36788 of
success. Surprising? O

Example 6.9. Given a complete graph network each of whose link fails with probahilit¢iven two
fixed verticesu andv.

(i) Calculate theP,, probability that there is a path of lengehavailable fromu to v given that all
paths of length are not.

(i) Repeat parti) with 1, 2 replaced by2, 3 respectively.

Answer. (i) There are exactly. — 2 paths of lengtt2 from u to v, which are edge disjoint.
P, = 1— Prolno path of lengtf2 available
= 1-(-a-p)"

(i) TBD.
0

Exercise 9. Given the same assumption as in Example 6.9, calculate the probability that a path of length
k is available given that all shorter paths are not.

7 Stochastic processes

Definition 7.1. A stochastic process a collection of random variables indexed by somelset
{X(t),teT}.

Elements of théndex sefl” are often thought of as points in time, and th0§ ) is referred to as the
stateof the process at time The set of all possible values of tfi&(t) are called thestate spacef the
process. Naturally, wheh is countable the process is said todiscrete-timewhile if 7" is an interval
of the real line, then the process is calledomtinuous-timgrocess.

18



Example 7.2(Bernoulli process)A sequenced X, X», ... } ofindependent Bernoulli random variables
each with parameteris called aBernoulli ProcessRecall thatP[.X; = 1] = p, andP[X; =0] =1—p
for eachi. EachX; could be thought of as an indicator variable for a successful trial atstionef an
arrival of an item (customer) at time Also recall that

ElXi] = p
Var(X;] = p(—p),Vi.

We are often interested in several stochastic processes associated with a Bernoulli process:
{Sn,n >0}, {T,,n > 1}, and{Y,,,n > 1}.

Here,S, = > " | X,, is the number of arrivals in time slots,T,, the number of slots from right after
the (n — 1)st arrival up to and including theth arrival, andY,, = >~ , 7; the number of slots from the
beginning up to and including théh arrival.

For each random variabl&, we usepx(-) to denote the PMF oX as usual, namelyx (k) =
P[X = k]. Itis then obvious that

ps, (k) = (Z)p’“(l —p)"F0<k<n
pr.(k) = (1—p)*'p
) = (501 )ra-p ez

The mass function oY}, is called thePascal probability mass functioof ordern. From these we can
calculate the expectations and variances of the variables of interest as follows.

B, = kiok(’,j)p’fu —p

" /n—1 _ e
= npz<k_1>p’“ M1 —p)*
k=1
= np.

We actually calculated|[S,,] the hard way. Linearity of expectations gives quickly

B[Sa] = > E[Xi] = np.
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The variance of,, can be calculated similarly

Var[S,] = E[S:] — (E[Sh))?
= Syt
k=0
_ - n—1\ 34 n—k 2
= ank:(k ~ 1>p (1—=p)" " = (np)
k=1
_ - n—1\ 1 n—k - =1\ x n—k 2
= npy (k 1)(k B 1>p L=p)" F+np> (k ~ )p (1—=p)" " = (np)
k=1 k=1
n—1 n—1 n—1 n—1
= np) (k—1) <k ~ 1)19’“‘1(1 —p)" Ftnp) (k - 1>p’“‘1(1 —p)" " = (np)’
k=0 k=0
= np(n —1)p+np— (np)’
= np(l—p).
T, is just a geometric random variable, hence
L) = o
p
1—p
Var|T,| = .
[T e
Lastly,Y,, = >, T; implies
ElY,] ="
p
The variance is slightly more difficult to compute. We need to make use of the following binomial
formula:
1 = (i+n—1\
—(1—2)" = 3 1
o) ;(n_l)x 18)

Moreover, differentiating both sides we get

ZZ<Z _;11; 1)567;1 =n(l—z) "L (19)

i=1

Differentiating both sides again yields

S i) ( W 1) — n(n+1)(1—2) " (20)

n—1
i=2
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Now, in the following calculation we let= k& — n andg = 1 — p from line 3 on:

Var[Y,] = E[T;]— (E[T,])
. 2 k—1 n k—n n ?
= > k Pt =p) = =
n—1 P
k=n
0 . 2
_ n N\ 2 i+n—1 T ﬁ
=y ()= ()
=0
) 2
2 n t+n i n fi+n—=1\ , oft+n—1Y\ ; n
= 2 =
n Z( 1>q+anz<n_1>q+p z( 1 q »
=0 1=0 1=0
2 o] .
-1
= n2p”(1—q)"—<> +2np”2 <Z+Til >’
i=0
t+n—1Y\ , > 9 t+n—1
*pnz ( ) >q2+p”A (i l)< o )ql
=0 =0
1 . fi+n—1\ . >, fi+n—1\
= n2<1—pQ>+(2n+1)anz< "1 )qz—&—p"Z(zQ—z)( S )ql.
i=0 i=0

To this end, formulas (18), (19), and (20) help complete the calculation:

1 = [fi+n—1)\ , > i+n—1\ ,
VarlY. — 2 1— — ) 1)p"™ . i—1 n 2 2 1—2
il = ot (1) wen e (0 e e e o ()

= n? <1 - pl2> +(2n+ D)p"gn(1 — ¢) " + p"¢*n(n + 1)(1 — ¢) "2
n(l—p)
P
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