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A Probability Theory Primer

Some texts on Probability Theory are [1, 4–7]. The absolute classic is William Feller’s [2, 3]. There
are also two excellent free books on the Internet at

• http://www.dartmouth.edu/˜chance/teaching aids/
books articles/probability book/book.html ,

• http://www.mit.edu/people/dimitrib/Probability.html

1 Preliminaries

Through out this note, we often use[n] to denote{1, 2, . . . , n},
(
Ω
k

)
to denote the set of allk-subsets of

a set given setΩ, and2Ω to denote the set of all subsets (also calledpower set) of Ω.
An eventE is a subset of thesample space(or probability space) Ω under consideration. For any

two eventsE andF , we useEF to denote their intersection andE ∪ F their union. Assume there is a
function Prob: 2Ω → [0, 1], defined on each eventE, such that

(i) 0 ≤ Prob[E] ≤ 1.

(ii) Prob[Ω] = 1.

(iii) For any (finite or infinite) sequenceE1, E2, . . . of events such thatEiEj = ∅ wheneveri 6= j
(mutually exclusiveevents),

Prob

(⋃
i

Ei

)
=
∑

i

Prob[Ei]. (1)

Prob[E] is called theprobability of eventE. By the inclusion-exclusionprinciple (see, e.g., [8, 9]), the
following identity holds:

Prob[E1 ∪ · · · ∪ En] =
n∑

k=1

(−1)k+1
∑

{i1,...,ik}∈([n]
k )

Prob[Ei1 . . . Eik ]. (2)

Let E andF be any two events. Theconditional probabilitythatE occurs given thatF has occurred,
denoted by Prob[E|F ] is defined to be

Prob[E|F ] :=
Prob[EF ]
Prob[F ]

Note that this definition is only valid when Prob[F ] > 0. We can think ofF as being the new sample
space. The phrase “givenF ” implies that the outcome belongs toF , so the probability that the outcome
also belongs toE (which must thus be inEF ) is the fraction given.

Two eventsE andF are said to beindependent eventsif Prob[EF ] = Prob[E] Prob[F ], or equiva-
lently, Prob[E|F ] = Prob[E]. Intuitively, E andF are independent if the density ofE over the whole
space is equal to the density ofEF overF and vice versa. Put it another way, the probability thatE
occurs does not change even when we know thatF has occurred. IfE andF are not independent, they
are said to bedependent.
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Example 1.1. Suppose we are tossing2 dice fairly. LetF be the event that the first die is4, E1 be the
event that the sum is6 andE2 be the event that the sum is7. Then,E1 andF are dependent andE2 and
F are independent. For, Prob[F ] = 1/6, Prob[E1] = 5/36, Prob[E2] = 1/6, Prob[E1|F ] = 1/6, and
Prob[E2|F ] = 1/6.

A setE1, . . . , En of events are said to beindependentiff for any k ≤ n and{i1, . . . , ik} ⊆ [n] we
have

Prob[Ei1 . . . Eik ] = Prob[Ei1 ] . . . Prob[Eik ].

Intuitively, this means that the knowledge on the occurrence of any subset of these events does not affect
the probability of any other event.

Example 1.2. Rolling 3 dice, the events that each die takes a particular value are independent.

Example 1.3(Pair-wise independence does not imply independence.). Flip 2 coins in a row. LetE1 be
the event that the first coin turns up head,E2 be the event the the second coin turns up tail,E3 be the
event that the two coins are both heads or both tails. Then, Prob[E1] = Prob[E2] = Prob[E3] = 1/2.
Moreover,

Prob[E1E2] = 1/4 = Prob[E1] Prob[E2]
Prob[E1E3] = 1/4 = Prob[E1] Prob[E3]
Prob[E2E3] = 1/4 = Prob[E2] Prob[E3],

hence the three events are pair-wise independent. However,

Prob[E1E2E3] = 0 6= Prob[E1] Prob[E2] Prob[E3] = 1/8,

namely they are not independent.

SupposeF1, . . . , Fn are mutually exclusive events (i.e.FiFj = ∅ wheneveri 6= j), and that
⋃

i Fi =
Ω. (We also say the eventsF1, . . . , Fn partition the sample space.) Intuitively, exactly one and only one
of the eventsFi will occur. Firstly, notice that for any eventE, E = ∪iEFi, and that all eventsEFi are
also mutually exclusive. We have

Prob[E] =
∑

i

Prob[EFi] =
∑

i

Prob[E|Fi] Prob[Fi] (3)

This states that Prob[E] is the weighted average of the Prob[E|Fi]. The equation also implies that

Prob[Fj |E] =
Prob[FjE]
Prob[E]

=
Prob[E|Fj ] Prob[Fj ]∑
i Prob[E|Fi] Prob[Fi]

(4)

Equation (4) is known asBayes’ formula.

Example 1.4. In multiple choice tests, assume a student knows the answer to any question with proba-
bility p (i.e. she guesses with probability1− p). Let m be the number of alternatives for each question.
What is the probability that she knew the answer to a question given that she answered it correctly? What
is the sample space in this example?

Answer.Let A be the event that she answered it correctly,B be the event that she guessed andC she
knew the answer. We knowB ∪ C is the sample space. We want Prob[C|A]. Using Bayes’ formula we
get

Prob[C|A] =
Prob[A|C] Prob[C]

Prob[A|B] Prob[B] + Prob[A|C] Prob[C]
=

p
1
m(1− p) + p

The sample space consists of pairs(x, y) wherex is the outcome of her answer (true, false) andy is the
fact that she guessed or not.
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Exercise 1(Monty Hall Problem). There are three closed doors at the conclusion of a game show. A
contestant chooses one of the doors, behind which he or she hopes lies the GRAND PRIZE. The host of
the show opens one of the remaining two doors to reveal a wimpy prize. The contestant is then given the
choice to stay with the original choice of a door or to switch and choose the remaining door that the host
did not open. The problem is: Should the contestant stick with the original door choice or switch and
choose the other door? Argue intuitively first and rigorously later. There is an intriguing story behind
this also called “let’s make a deal” problem. For more information, see, e.g.,
http://www.nadn.navy.mil/MathDept/courses/pre97/sm230/MONTYHAL.HTM

for a sample discussion.

Exercise 2(Red or Black problem). An acquaintance of mine Harry enjoys a good bet. He always keeps
the bet small enough to be affordable, but big enough to keep him in pocket money. One of his favorites
uses three cards and a brown bag:

Harry: I have an empty brown bag and three cards. One card is black on both sides, one card is red
on both sides and the other is black on one side and red on the other. I’ll put all three cards in the bag
and mix them well. Now you carefully pull one card out so that we see only one side. Look, its red. That
means it can’t be the card that is black on both sides. So its one of the other two cards and an even bet
that its black on the other side. What do you say we each bet $1. You get black and I get red.

Harry likes this game so much he wants to continue playing, always giving you the color not showing.
Since the color showing has already been used once making it less likely and he just plays for the
entertainment.

One of the following statements about Harry is true. Select the true statement and show that it is true.

1. In the long run Harry will win about as much as he loses.

2. In the long run Harry will win a lot more than he loses.

3. In the long run Harry will lose a lot more than he wins.

Exercise 3(Bertrand Paradox). Consider the following problem:Given a circle. Find the probability
that a chord chosen at random be longer than the radius.

Try to come up with three different answers, all of whose reasonings appear to be correct.

Exercise 4. Tom is torn between two lovers Alice and Barb. They three live on the same street, where
Tom’s house is in between Alice’s and Barb’s houses. Buses going the Alice to Barb direction and Barb
to Alice direction at the exact same speed and regularity (say, an hour each).

Tom decides to randomly go to the bus station at his house, and take the first available bus. If the bus
goes to Barb’s direction, he’d to to Barb’s house, and vice versa.

After a long period of time, Tom realizes that he spends 3 times more at Barb’s place than at Alice’s
place. How is that possible?

2 Random variables

In many cases, we are more interested in some function on the events rather than the event itself. For
example, we might want to know the probability of tossing two dice whose sum is7. These quantities of
interest, or more formally these real-valued functions defined on the events, are calledrandom variables.

For example, suppose a coin has probabilityp of coming up head. LetX be the random variable that
is defined as the number of fair tosses of a coin until it comes up head, then clearly

Prob[X = n] = (1− p)n−1p.
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We usually want to know if an eventE happens or not, and define a random variableIE to be1 if E
happens and0 otherwise. The variableIE is said to be theindicator random variable for eventE.

The cumulative distribution functionF (·) (cdf), often referred to as thedistribution function, of a
random variableX is defined for everyx ∈ R by

F (x) = Prob[X ≤ x]

2.1 Discrete random variables

Random variables that can take on only a countable number of values are calleddiscrete random vari-
ables. To each discrete random variableX, we associate aprobability mass functionp(a), or simply
probability function, defined by

p(a) = Prob[X = a].

If X can take on only valuesx1, x2, . . . , then we must have

∞∑
i=1

p(xi) = 1

F (a) =
∑
xi≤a

p(xi),

whereF is the distribution function ofX.

Definition 2.1 (Bernoulli random variable). Suppose an experiment is performed with two outcomes
“success” and “failure”, where the probability of a success isp (and a failure is1− p). Let X be1 if the
outcome is a success and0 if the outcome is a failure, then

p(0) = 1− p

p(1) = p. (5)

X is said to be aBernoulli random variableif its probability function is defined by (5).

Definition 2.2 (Binomial distribution). Supposen independent trials are performed, each with success
probabilityp. Let X be the number of successes in then trials, then clearly

p(i) =
(

n

i

)
pi(1− p)n−i, ∀i = 0, . . . , n

Such anX is called abinomial random variable, or is said to have abinomial distributionwith parameters
(n, p). We also writeX ∈ Binomial(n, p).

Definition 2.3 (Geometric distribution). Supposen independent trials, each with success probabilityp,
are performed until a success occurs. LetX be the number of trials, then

p(i) = (1− p)i−1p, ∀i = 1, 2, . . . . (6)

Such anX is called ageometric random variable, and said to have ageometric distributionwith param-
eterp. We also writeX ∈ geometric(p).

Definition 2.4 (Poisson distribution). X is called aPoisson random variable with parameterλ > 0 if it
takes on values inN, and its probability function is defined by

p(i) = Prob[X = i] = e−λ λi

i!
, ∀i ∈ N.
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Such anX is said to have aPoisson distributionwith parameterλ, and we writeX ∈ Poisson(λ).
It is easy to verify thatp(i) above actually defines a proper probability function since

∑∞
i=0 p(i) = 1.

Given thatn is large andp is small, a Poisson random variable withλ = np can be used to approximate
a binomial random variable with parameters(n, p). Basically, if p → 0, np → λ asn → ∞, then(
n
i

)
pi(1− p)n−i → e−λ λi

i! .

2.2 Continuous random variables

A random variableX taking on uncountably many possible values is said to be acontinuous random
variable if there exists a functionf : R → R, having the property that for everyB ⊆ R:

Prob[X ∈ B] =
∫

B
f(x)dx

The functionf(x) is called theprobability density functionof X. Obviously, we must have

1 = Prob[X ∈ (−∞,∞)] =
∫ ∞

−∞
f(x)dx.

Notice that Prob[X = a] = 0, and that the distribution functionF (·) of X could be calculated as

F (a) = Prob
[
X ∈ (−∞, a]

]
=
∫ a

−∞
f(x)dx.

Differentiating both sides of the preceding equation yieldsd
daF (a) = f(a), that is the density is the

derivative of the distribution.

Definition 2.5 (Uniform distribution). X is said to beuniformly distributedon the interval(α, β) if its
density is

f(x) =

{
1

β−α if x ∈ (α, β)

0 otherwise

As F (a) =
∫ a
−∞ f(x)dx, we get

F (a) =


0 a ≤ α
a−α
β−α a ∈ (α, β)

1 a ≥ β

Definition 2.6 (Exponential distribution). X is said to beexponentially distributedwith parameterλ if
its density is

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0

Clearly, its cdfF is

F (a) =
∫ a

−∞
f(x)dx = 1− e−λa, a ≥ 0.

This kind of random variables occur a lot in the studies of Poisson processes. We shall have much more
to say about the exponential distribution later on.

Definition 2.7 (Gamma distribution). X is called agamma random variablewith parametersα, λ if its
density is

f(x) =

{
λe−λx(λx)α−1

Γ(α) if x ≥ 0

0 if x < 0
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where the gamma function is defined by

Γ(α) =
∫ ∞

0
e−xxα−1dx.

This is a generalization of the factorial function, as it is easy to show by induction onn that Γ(n) =
(n− 1)!.

Definition 2.8 (Normal distribution). Lastly, a continuous random variableX is normally distributed
with parametersµ andσ2 if the density ofX is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
, x ∈ R.

Normal variables are also calledGaussianvariables. This function is a Bell-shaped curve peaking atµ
and symmetric aroundµ. More importantly, ifX is normally distributed with parametersµ andσ2, then
Y = αX + β is normally distributed with parametersαµ + β and(ασ)2 (why?). Whenµ = 0 and
σ2 = 1, X is said to haveunit or standardnormal distribution.

3 Expectations, moments and variances

Definition 3.1 (Expectation of a discrete variable). Given a discrete random variableX with probability
mass functionp(x), then theexpected valueof X is defined as

E[X] :=
∑

x

xp(x).

In other words, the expected value ofX is the weighted average of all possible values ofX, each
weighted by the corresponding probability.

It is not difficult to see that

• If X is a Bernoulli random variable with parameterp, then E[X] = p.

• If X is a binomial random variable with parameters(n, p), then E[X] = np.

• If X is a geometric random variable with parameterp, then E[X] = 1/p.

• If X is a Poisson random variable with parameterλ, then E[X] = λ.

Definition 3.2 (Expectation of a continuous variable). Given a continuous random variableX with den-
sity f(x), we define theexpected valueof X as

E[X] =
∫ ∞

−∞
xf(x)dx,

provided that the integral

E[X] =
∫ ∞

−∞
|x|f(x)dx

is finite.

The above definition is “expected” since the integral is the continuous analog of the sum. Simple
calculations show that

• WhenX is uniformly distributed over(α, β), E[X] = (α + β)/2.
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• WhenX is exponentially distributed with parameterλ, E[X] = 1/λ.

• WhenX is normally distributed with parameters(µ, σ2), E[X] = µ. This is why we useµ, which
stands for “mean”.

Many times, we are interested in calculating the expectation of a random variableY whose value is
a function of a random variableX, sayY = g(X) for someg : R → R. The following theorem follows
directly from definition.

Theorem 3.3. Letg be any real-valued function, then

(i) If X is a discrete random variable with probability mass functionp(x), then

E[g(X)] =
∑

x

g(x)p(x)

(ii) If X is a continuous random variable with probability density functionf(x), then

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx

Before showing the theorem, we need a lemma.

Lemma 3.4. LetY be a continuous random variable, then

E[Y ] =
∫ ∞

0
Prob[Y > y]dy −

∫ ∞

0
P [Y < −y]dy. (7)

Proof. We have∫ ∞

0
Prob[Y > y]dy −

∫ ∞

0
P [Y < −y]dy =

∫ ∞

0

(∫ ∞

y
fY (x)dx

)
dy −

∫ ∞

0

(∫ −y

−∞
fY (x)dx

)
dy

=
∫ ∞

0

∫ ∞

y
fY (x)dxdy −

∫ ∞

0

∫ −y

−∞
fY (x)dxdy

=
∫ ∞

0

(∫ x

0
dy

)
fY (x)dx−

∫ 0

−∞

(∫ 0

−x
dy

)
fY (x)dx

=
∫ ∞

0
xfY (x)dx +

∫ 0

−∞
xfY (x)dx

= E[Y ].

Proof of Theorem 3.3.We prove the continuous case with the help of Lemma 3.4. The discrete case is
shown similarly.

E[Y ] =
∫ ∞

0
Prob[g(X) > y]dy −

∫ ∞

0
P [g(X) < −y]dy

=
∫ ∞

0

∫
x:g(x)>y

fX(x)dxdy −
∫ ∞

0

∫
x:g(x)<−y

fX(x)dxdy

=
∫

x:g(x)>0

(∫ g(x)

0
dy

)
fX(x)dx +

∫
x:g(x)<0

(∫ −g(x)

−∞
dy

)
fX(x)dx

=
∫ ∞

−∞
g(x)fX(x)dx.
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Corollary 3.5. If a andb are constants, thenE[aX + b] = aE[X] + b.

Definition 3.6 (Moments). E[X] is usually called thefirst momentof X. Similarly, E[X2] is thesecond
momentand E[Xn] is thenth moment ofX. Note that

E[Xn] =

{∑
x xnp(x) if X is discrete∫∞

−∞ xnf(x)dx if X is continuous

We shall see the use of these moments later on.

Definition 3.7 (Variance). Another quantity of interest is thevarianceof X denoted by Var[X], which
is defined by

Var [X] = E
[
(X − E[X])2

]
= E[(X − µ)2].

The variance ofX is often denoted byσ2
X , or simplyσ2 if X is clear from context. The numberσ

(> 0) is called thestandard deviationof X. The following very useful identity can be proven easily by
considering separately the continuous and discrete cases.

Theorem 3.8. Var [X] = E[X2]− (E[X])2

Proof. We prove the continuous case:

Var [X] = E[(X − µ)2]

=
∫ ∞

−∞
(x− µ)2fX(x)dx

=
∫ ∞

−∞
x2fX(x)dx− 2µ

∫ ∞

−∞
xfX(x)dx + µ2

∫ ∞

−∞
fX(x)dx

= E[X2]− µ2.

We list here some simple facts mostly without proofs. In the discrete case, we have

• The variance ofX ∈ Poisson(λ) is Var[X] = λ.

• The variance ofX ∈ geometric(p) is Var[X] = (1− p)/p2.

In the continuous case, we get

• The variance ofX ∈ exponential(λ) is Var[X] = 1/λ2.

• The variance ofX ∈ uniform(a, b) is Var[X] = (b− a)2/12.

• The variance ofX ∈ normal(µ, σ2) is Var[X] = σ2.

Here are some other nice facts about variances:

Theorem 3.9. If X is a real-valued random variable andc is any real constant, then

(a) Var [cX] = c2 Var [X].

(b) Var [X + c] = Var [X].
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4 Multiple Random Variables

We are often interested in probability statements concerning a set of random variables. LetX1, . . . , Xn

be a set ofn random variables, thejoint cumulative probability distribution function ofX1, . . . , Xn is
defined by

F (a1, . . . , an) = P
[
X1 ≤ a1, . . . , Xn ≤ an

]
The cdfFXi(·) of anyXi can be obtained fromF (·) as follows.

FXi(a) = Prob[Xi ≤ a]
= Prob[X1 ≤ ∞, . . . , Xi ≤ a, . . . , Xn ≤ ∞]
= F (∞, . . . , a,∞, . . . ,∞).

When allXi are discrete, we define thejoint probability mass functionof theXi by

p(x1, . . . , xn) = Prob[X1 = x1, . . . , Xn = xn].

Given the joint PMF, the individual PMF of variableXi (denoted bypXi(x)) can be obtained by

pXi(x) =
∑

x1,...,xi−1,xi+1,...,xn

p(x1, . . . , x, . . . , xn).

The functionspXi(x) gives themarginal distributionsof the variablesXi.
We say thatX1, . . . , Xn arejointly continuousif there is a functionf(x1, . . . , xn) onRn having the

property that for all setsA1, . . . , An of real numbers

Prob[X1 ∈ A1, . . . , Xn ∈ An] =
∫

A1

. . .

∫
An

f(x1, . . . , xn)dx1 . . . dxn

This function is naturally called thejoint probability density functionof theXi. Themarginal density
fXi of each individualXi can be obtained by observing that

Prob[Xi ∈ A] = Prob[X1 < ∞, . . . , Xi ∈ A, . . . ,Xn < ∞]

=
∫ ∞

−∞
. . .

∫
A

. . .

∫ ∞

−∞
f(x1, . . . , xi, . . . , xn)dx1 . . . dxn

=
∫

A

(∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , x, . . . , xn)dx1 . . . dxn

)
dx

Hence,

fXi(x) =
∫ ∞

−∞
. . .

∫ ∞

−∞
f(x1, . . . , x, . . . , xn)dx1 . . . dxn

Similar to Theorem 3.3 and Corollary 3.5 we obtain:

Theorem 4.1. Letg(x) be any real-valued function onx ∈ Rn, then

(i) If Xi are discrete random variables with joint probability mass functionp(x), then

E[g(X1, . . . , Xn)] =
∑

x:p(x)>0

g(x)p(x)

(ii) If Xi are continuous random variables with joint probability density functionf(x), then

E[g(X1, . . . , Xn)] =
∫ ∞

−∞
g(x)f(x)dx1 . . . dxn
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Corollary 4.2 (Linearity of Expectation). If X1, . . . , Xn are n random variables, then for anyn con-
stantsa1, . . . , an,

E
[
a1X1 + · · ·+ anXn

]
= a1E[X1] + · · ·+ anE[Xn]

This corollary holds regardless of the dependence or independence of theXi. This fact is extremely
useful in applying the probabilistic methods to solve problems. We will see many applications of this
corollary later on. Let’s start with a simple example.

Example 4.3. What is the expected number of people getting their own hat back amongn people who
throw their hats to a pile and then each gets one back at random?

Answer.Let X be the number of people with their own hat back. LetXi be the indicator variable
indicating if personi gets his own hat back, then

X = X1 + · · ·+ Xn.

Moreover, since E[Xi] = Prob[Xi = 1] = 1/n we get

E[X] =
∑

i

E[Xi] = n(1/n) = 1.

This says that only one person gets his own hat back on average, independent of the number of people.
Thus, if those people who haven’t got their hats back keep playing the game, intuitively on average it
will take n rounds until no-one is left to play. This is indeed the truth as we shall see.

Definition 4.4 (Independent random variables). Two random variablesX andY are independent if for
all a,b,

Prob[X ≤ a, Y ≤ b] = Prob[X ≤ a] Prob[Y ≤ b]

In other words,X andY are independent iff for alla andb, the eventsEa = {X ≤ a} andEb = {Y ≤ b}
are independent. In terms of the joint distribution functionF of X andY , X andY are independent if
F (a, b) = F (a)F (b).

WhenX andY are discrete, the independence condition reduces to

p(x, y) = pX(x)pY (y),

while when they are jointly continuous, we have

f(x, y) = fX(x)fY (y).

It is not difficult to show the above two facts. Another important fact is the following theorem.

Theorem 4.5. If X andY are independent then for any functionh andg,

E[h(X)g(Y )] = E[h(X)]E[g(Y )].

Exercise 5.SupposeX ∈ Poisson(λ1) andY ∈ Poisson(λ2) are independent. Show thatZ = X +Y ∈
Poisson(λ1 + λ2).

Exercise 6. SupposeX ∈ binomial(n, p) andY ∈ binomial(m, p) are independent. Show thatZ =
X + Y ∈ binomial(m + n, p).
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Definition 4.6 (Covariance and variance of sums of random variables). Thecovarianceof two random
variablesX andY is defined by

Cov[X, Y ] := E
[
(X − E[X])(Y − E[Y ])

]
.

We have

Cov[X, Y ] = E[(X − µX)(Y − µY )]
= E[(XY − µXY − µY X + µXµY )]
= E[XY ]− µXE[Y ]− µY E[X] + µXµY

= E[XY ]− µXµY .

In other words,
Cov[X, Y ] := E[XY ]− E[X]E[Y ].

The two variables areuncorrelatedwhen Cov[X, Y ] = 0. Two independent variables are uncorrelated.
It is also easy to see the following

1. Cov[X, X] = Var [X].

2. Cov[X, Y ] = Cov[Y, X].

3. Cov[cX, Y ] = c Cov[X, Y ].

4. Cov[X, Y + Z] = Cov[X, Y ] + Cov[X, Z].

Example 4.7(Variance of a sum of variables). From properties (1) and (4) above, we have

Var

[∑
i

Xi

]
= Cov

[∑
i

Xi,
∑

i

Xi

]
=

∑
i

∑
j

Cov[Xi, Xj ]

=
∑

i

Var [Xi] +
∑

i

∑
j 6=i

Cov[Xi, Xj ]

In particular, when theXi are pairwise independent, we have

Var

[∑
i

Xi

]
=
∑

i

Var [Xi]

Definition 4.8 (Sample mean and sample variance). If Xi, i = 1, . . . , n, are independent and identically
distributed (i.i.d.) random variables, then the random variable

X̄ := (
n∑

i=1

Xi)/n

is called thesample mean, and the random variable

S2
n =

n∑
i=1

(Xi − X̄)2

n

11



is called thesample varianceof theXi. Actually, some authors use the definition

S2
n−1 =

n∑
i=1

(Xi − X̄)2

n− 1

for sample variance (hence the subscript), since this makes the sample variance an unbiased estimator
for the population variance. The distinction betweenS2

n andS2
n−1 is a common source of confusion.

Extreme care should be exercised when consulting the literature to determine which convention is in use,
especially since the uninformative notationS2 is commonly used for both.

Proposition 4.9. If Xi, i = 1, . . . , n, are i.i.d. random variables with meanµ and varianceσ2, then

(a) E[X̄] = µ.

(b) Var
[
X̄
]

= σ2/n.

(c) Cov
[
X̄,Xi − X̄

]
= 0, for i = 1, 2, . . . , n.

(d) E[S2] = σ2.

Proof. Except part(d), other parts are easy to prove. To show part(d) we could use the moment gener-
ating function introduced next.

Definition 4.10 (Moment generating function). The moment generating functionφ(t) of the random
variableX is defined for all valuest by

φ(t) := E[etX ] =

{∑
x etxp(x) if X is discrete∫∞

−∞ etxf(x)dx if X is continuous

φ(t) gets its name because all moments ofX can be obtained by taking derivatives ofφ(t) evaluated at
0. In general, it’s easy to see that

φ(n)(0) = E[Xn], for all n ≥ 1.

The following theorem is important, where the first part is easy to prove.

Theorem 4.11.We have

(i) the moment generating function of the sum of independent random variables is just the product of
the individual moment generating functions.

(ii) the moment generating function ofX uniquely determines the distribution ofX (i.e. its cdf and
mass or density.)

5 Limit Theorems

Theorem 5.1(Markov’s Inequality). If X is a random variable taking only non-negative values, then
for anya > 0

Prob[X ≥ a] ≤ E[X]
a

. (8)

Proof. We show this for the discrete case only, the continuous case is similar. By definition, we have

E[X] =
∑

x

xp(x) =
∑
x<a

xp(x) +
∑
x≥a

xp(x) ≥
∑
x≥a

ap(x) = a Prob[X ≥ a].

12



Intuitively, whena ≤ E[X] the inequality is trivial. Fora > E[X], it means the largera is relative to
the mean, the harder it is to haveX ≥ a. Thus, the inequality meets common sense.

Theorem 5.2(Chebyshev’s Inequality). If X is a random variable with meanµ and varianceσ2, then
for anyk > 0,

Prob
[
|X − µ| ≥ k

]
≤ σ2

k2
. (9)

Proof. This inequality makes a lot of sense. The probability thatX is far from its mean gets smaller
whenX is further, and smaller when its variance is smaller. The proof is almost an immediate corollary
of Markov’s. LetZ = (X − µ)2, then E[Z] = σ2 by definition of variance. Since|X − µ| ≥ k iff
Z ≥ k2, applying Markov’s inequality completes the proof.

Theorem 5.3 (One-sided Chebyshev Inequality). Let X be a random variable withE[X] = µ and
Var [X] = σ2, then for anya > 0,

Prob[X ≥ µ + a] ≤ σ2

σ2 + a2
(10)

Prob[X ≤ µ− a] ≤ σ2

σ2 + a2
. (11)

Proof. Let t ≥ −µ be a variable. Then,Y = (X + t)2 has and

E[Y ] = E[X2] + 2tµ + t2 = σ2 + (t + µ)2.

Thus, by Markov’s inequality we get

Prob[X ≥ µ + a] ≤ Prob[Y ≥ (µ + a + t)2] ≤ σ2 + (t + µ)2

(a + t + µ)2
.

The right most expession is minimized whent = σ2/a − µ, in which case it becomesσ2/(σ2 + a2) as
desired. The other inequality is proven similarly.

Theorem 5.4(Chernoff bound). LetX be a random variable with moment generating functionM(t) =
E[etX ]. Then,

Prob[X ≥ a] ≤ e−taM(t) for all t > 0
Prob[X ≤ a] ≤ e−taM(t) for all t < 0.

Proof. The best bound can be obtained by minimizing the function on the right hand side. We show the
first relation, the second is similar. Whent > 0, by Markov’s inequality we get

Prob[X ≥ a] = Prob[etX ≥ eta] ≤ E[etX ]e−ta.

A twice-differentiable functionf is convexif f ′′(x) ≥ 0 for all x, andconcavewhenf ′′(x) ≥ 0 for
all x.

Theorem 5.5(Jenssen’s inequality). Letf(x) be a convex function, then

E[f(X)] ≥ f(E[X]). (12)

The same result holds for multiple random variables.

13



Proof. Taylor’s theorem gives

f(x) = f(µ) + f ′(µ)(x− µ) + f ′′(ξ)(x− µ)2/2,

whereξ is some number betweenx andµ. Whenf(x) is convex,f ′′(ξ) ≥ 0, which implies

f(x) ≥ f(µ) + f ′(µ)(x− µ).

Consequently,
E[f(X)] ≥ f(µ) + f ′(µ)E[X − µ] = f(µ).

The following are the two most well known results in probability theory.

Theorem 5.6(Weak law of large number). Let X1, X2, . . . be a sequence of i.i.d. variables, and with
finite meanE[Xi] = µ. Then for anyε > 0

lim
n→∞

(
Prob

[∣∣∣∣X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

])
= 0. (13)

Theorem 5.7(Strong law of large number). Let X1, X2, . . . be a sequence of i.i.d. variables, and let
E[Xi] = µ. Then with probability1,

X1 + X2 + · · ·+ Xn

n
→ µ, asn →∞,

in other words,

Prob

[
lim

n→∞

X1 + X2 + · · ·+ Xn

n
= µ

]
= 1.

Theorem 5.8(The Central Limit Theorem). Let X1, X2, . . . be a sequence of i.i.d. random variables
with meanµ and varianceσ2. Then the distribution of

X1 + X2 + · · ·+ Xn − nµ

σ
√

n

tends to the standard normal distribution asn →∞. That is

Prob

[
X1 + X2 + · · ·+ Xn − nµ

σ
√

n
≤ a

]
→ 1√

2π

∫ a

−∞
e−x2/2dx

asn →∞.

6 Conditional expectation and probability

Similar to conditional probability of events, we define the followings.

Definition 6.1. If X andY are discrete random variables, then theconditional PMFof X given that
Y = y is

pX|Y (x | y) := Prob[X = x | Y = y]

=
Prob[X = x, Y = y]

Prob[Y = y]

=
p(x, y)
pY (y)

.
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Similarly, theconditional CDFof X givenY = y is defined for allY such that Prob[Y = y] > 0 by

FX|Y (x | y) := Prob[X ≤ x | Y = y] =
∑
a≤x

pX|Y (a | y).

Finally, theconditional expectationE[X | Y = y] of X givenY = y is defined by

E[X | Y = y] :=
∑

x

x Prob[X = x | Y = y] =
∑

x

xpX|Y (x | y).

Definition 6.2. We have an identical analog in the continuous case as follows. SupposeX andY are
continuous random variables with joint density functionf(x, y), then theconditional probability density
functionof X given thatY = y, is defined for all values ofy such thatfY (y) > 0, by

fX|Y (x | y) :=
f(x, y)
fY (y)

.

Theconditional expectationof X given thatY = y, is defined for all values ofy such thatfY (y) > 0,
by

E[X | Y = y] :=
∫ ∞

−∞
xfX|Y (x | y)dx.

The following two theorems are easy to show, but are very important tools whose values can not be
overestimated.

Theorem 6.3.LetE[X | Y ] denote the function with indeterminateY whose value atY = y isE[X | Y =
y]. Note thatE[X | Y ] is itself a random variable. We have

E[X] = E[E[X | Y ]], (14)

which in the discrete case means

E[X] =
∑

y

E[X | Y = y] Prob[Y = y], (15)

and in the continuous case means

E[X] =
∫ ∞

−∞
E[X | Y = y]fY (y)dy. (16)

Proof. For the discrete case, we have∑
y

E[X | Y = y] Prob[Y = y] =
∑

y

∑
x

x Prob[X = x | Y = y] Prob[Y = y]

=
∑

x

x

(∑
y

Prob[X = x | Y = y] Prob[Y = y]

)

=
∑

x

x

(∑
y

Prob[X = x, Y = y]

)
=

∑
x

x Prob[X = x]

= E[X].
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For the continuous case, TBD.∫ ∞

−∞
E[X | Y = y]fY (y)dy =

∫ ∞

−∞

(∫ ∞

−∞
xfX|Y dx

)
fY (y)dy

=
∫ ∞

−∞
x

(∫ ∞

−∞
f(x, y)dy

)
dx

=
∫ ∞

−∞
xfX(x)dx

= E[X].

Example 6.4. A rat is trapped in a cage. There are three doors from the cage. The first door leads to
a tunnel going back to the cage which takes the rat 2 minutes. The second door leads to another tunnel
which takes 3 minutes. The third door leads to a tunnel out of the cage in 4 minutes. Suppose at any
moment the rat is equally likely to take any one of the three doors. What is the expected number of
minutes before she goes free?

Answer.Let X be the number of minutes,Y be the door number she takes in the first trial. We have

E[X] = E[X | Y = 1]
1
3

+ E[X | Y = 2]
1
3

+ E[X | Y = 3]
1
3

=
1
3
(
2 + E[X] + 3 + E[X] + 4 + 0

)
,

namely E[X] = 9.

Exercise 7(The Matching Round Problem). Consider the hat game again. Suppose those people who
got their own hats back leave the game, the rest keep playing. Letn be the initial number of people,Rn

the number of rounds until no one is left,Sn the number of selections made in all rounds,Cn the number
of selections made by person number 1. Calculate the expected values ofRn, Sn andCn.

Exercise 8. A coin is flipped until there arek consecutive heads. What’s the mean number of flips?

Example 6.5 (Analysis of Quick Sort). We can sort a sequence ofn distinct numbersa1, . . . , an by
selecting a numbera = ai at random, partition the rest into two sequencesS1 andS2 consisting of other
elements less than and larger thanai, respectively. SortS1, S2 recursively. Then, concatenate them with
ai in between. What’s the expected number of comparisons?

Answer.Let Mn be the expected number of comparisons we are looking for. LetX be the number of
comparisons. Conditioning on how largea is relative to the rest, we get

Mn = E[X] =
n∑

j=1

E[X | a is thejth least number]
1
n

=
1
n

n∑
j=1

(
(n− 1) + Mj−1 + Mn−j

)
=

n− 1
n

+
2
n

n−1∑
j=0

Mj
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Replacingn by n− 1 we have

n−2∑
j=0

Mj =
n− 1

2
Mn−1 −

(n− 1)(n− 2)
2

,

hence,

Mn =
2(n− 1)

n
+

(n + 1)
n

Mn−1.

Divide both sides byn + 1, solve the recurrence for the sequenceMn/(n + 1) we getMn =
Θ(n log n).

Example 6.6(Analysis of Slow Sort). We can also sort a sequence ofn distinct numbersa1, . . . , an by
repeating the following two steps:

1. Check if the sequence is sorted. If it is, then stop.

2. Pick two distinct elements at random and swap them. Go back to step 1.

What’s the expected number of comparisons? (Which isn− 1 times the number of rounds.)

Answer.This problem actually relates to random walks on graphs. We shall come back to this problem
later.

Theorem 6.7. LetE be a random event, then we have

Prob[E] =

{∑
y Prob[E | Y = y] Prob[Y = y] if Y is discrete,∫∞

−∞ Prob[E | Y = y]fY (y)dy if Y is continuous.
(17)

Example 6.8(The Best Prize Problem). Suppose you are presented withn boxes of money in a sequence.
You don’t know how much money is in each box, but you are told when seeing a new box how the amount
of money in the box compared to all the ones you have seen. You will either accept the box or go on.
Devise a strategy to attempt the get the box with the most amount of money, and calculate the probability
of getting that box.

Solution. One strategy is to reject the firstk boxes (0 ≤ k < n) and accept the first box whose amount of
money is larger than all the firstk boxes’ amounts. We will calculatePk, the probability that this strategy
gives the best box, and then optimizePk over all values ofk. Do you think thatPk → ∞ asn → ∞?
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Let E be the event that we succeed andX be the position of the best price. We have

Prob[E] =
n∑

i=1

Prob[E | X = i] Prob[X = i]

=
n∑

i=k+1

Prob[E | X = i] Prob[X = i]

=
1
n

n∑
i=k+1

Prob[best of first(i− 1) is among firstk]

=
1
n

n∑
i=k+1

k

i− 1

≈ k

n

∫ n−1

k

1
x

dx

=
k

n
log
(

n− 1
k

)
≈ k

n
log
(n

k

)
As a function ofk, this function is optimized atk ≈ n/e, giving a probability1/e ≈ 0.36788 of

success. Surprising?

Example 6.9. Given a complete graph network each of whose link fails with probabilityp. Given two
fixed verticesu andv.

(i) Calculate theP2, probability that there is a path of length2 available fromu to v given that all
paths of length1 are not.

(ii) Repeat part(i) with 1, 2 replaced by2, 3 respectively.

Answer. (i) There are exactlyn− 2 paths of length2 from u to v, which are edge disjoint.

P2 = 1− Prob[no path of length2 available]

= 1−
(
1− (1− p)2

)n−2

(ii) TBD.

Exercise 9.Given the same assumption as in Example 6.9, calculate the probability that a path of length
k is available given that all shorter paths are not.

7 Stochastic processes

Definition 7.1. A stochastic processis a collection of random variables indexed by some setT :

{X(t), t ∈ T}.

Elements of theindex setT are often thought of as points in time, and thusX(t) is referred to as the
stateof the process at timet. The set of all possible values of theX(t) are called thestate spaceof the
process. Naturally, whenT is countable the process is said to bediscrete-time; while if T is an interval
of the real line, then the process is called acontinuous-timeprocess.

18



Example 7.2(Bernoulli process). A sequence{X1, X2, . . . } of independent Bernoulli random variables
each with parameterp is called aBernoulli Process. Recall thatP [Xi = 1] = p, andP [Xi = 0] = 1− p
for eachi. EachXi could be thought of as an indicator variable for a successful trial at timei or of an
arrival of an item (customer) at timei. Also recall that

E[Xi] = p

Var [Xi] = p(1− p),∀i.

We are often interested in several stochastic processes associated with a Bernoulli process:

{Sn, n ≥ 0}, {Tn, n ≥ 1}, and{Yn, n ≥ 1}.

Here,Sn =
∑n

i=1 Xn is the number of arrivals inn time slots,Tn the number of slots from right after
the(n− 1)st arrival up to and including thenth arrival, andYn =

∑n
i=1 Ti the number of slots from the

beginning up to and including thenth arrival.
For each random variableX, we usepX(·) to denote the PMF ofX as usual, namelypX(k) =

P [X = k]. It is then obvious that

pSn(k) =
(

n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n

pTn(k) = (1− p)k−1p

pYn(k) =
(

k − 1
n− 1

)
pn(1− p)k−n, k ≥ n.

The mass function ofYn is called thePascal probability mass functionof ordern. From these we can
calculate the expectations and variances of the variables of interest as follows.

E[Sn] =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

= np

n∑
k=1

(
n− 1
k − 1

)
pk−1(1− p)n−k

= np.

We actually calculatedE[Sn] the hard way. Linearity of expectations gives quickly

E[Sn] =
n∑

i=1

E[Xi] = np.

19



The variance ofSn can be calculated similarly

Var [Sn] = E[S2
n]− (E[Sn])2

=
n∑

k=0

k2

(
n

k

)
pk(1− p)n−k − (np)2

= np
n∑

k=1

k

(
n− 1
k − 1

)
pk−1(1− p)n−k − (np)2

= np
n∑

k=1

(k − 1)
(

n− 1
k − 1

)
pk−1(1− p)n−k + np

n∑
k=1

(
n− 1
k − 1

)
pk−1(1− p)n−k − (np)2

= np

n−1∑
k=0

(k − 1)
(

n− 1
k − 1

)
pk−1(1− p)n−k + np

n−1∑
k=0

(
n− 1
k − 1

)
pk−1(1− p)n−k − (np)2

= np(n− 1)p + np− (np)2

= np(1− p).

Tn is just a geometric random variable, hence

E[Tn] =
1
p

Var [Tn] =
1− p

p2
.

Lastly,Yn =
∑n

i=1 Ti implies

E[Yn] =
n

p
.

The variance is slightly more difficult to compute. We need to make use of the following binomial
formula:

1
(1− x)n

= (1− x)−n =
∞∑
i=0

(
i + n− 1

n− 1

)
xi. (18)

Moreover, differentiating both sides we get

∞∑
i=1

i

(
i + n− 1

n− 1

)
xi−1 = n(1− x)−n−1. (19)

Differentiating both sides again yields

∞∑
i=2

(i2 − i)
(

i + n− 1
n− 1

)
xi−2 = n(n + 1)(1− x)−n−2. (20)
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Now, in the following calculation we leti = k − n andq = 1− p from line3 on:

Var [Yn] = E[T 2
n ]− (E[Tn])2

=
∞∑

k=n

k2

(
k − 1
n− 1

)
pn(1− p)k−n −

(
n

p

)2

= pn
∞∑
i=0

(n + i)2
(

i + n− 1
n− 1

)
qi −

(
n

p

)2

= n2pn
∞∑
i=0

(
i + n− 1

n− 1

)
qi + 2npn

∞∑
i=0

i

(
i + n− 1

n− 1

)
qi + pn

∞∑
i=0

i2
(

i + n− 1
n− 1

)
qi −

(
n

p

)2

= n2pn(1− q)−n −
(

n

p

)2

+ 2npn
∞∑
i=0

i

(
i + n− 1

n− 1

)
qi

+pn
∞∑
i=0

i

(
i + n− 1

n− 1

)
qi + pn

∞∑
i=0

(i2 − i)
(

i + n− 1
n− 1

)
qi

= n2

(
1− 1

p2

)
+ (2n + 1)pn

∞∑
i=0

i

(
i + n− 1

n− 1

)
qi + pn

∞∑
i=0

(i2 − i)
(

i + n− 1
n− 1

)
qi.

To this end, formulas (18), (19), and (20) help complete the calculation:

Var [Yn] = n2

(
1− 1

p2

)
+ (2n + 1)pnq

∞∑
i=0

i

(
i + n− 1

n− 1

)
qi−1 + pnq2

∞∑
i=0

(i2 − i)
(

i + n− 1
n− 1

)
qi−2

= n2

(
1− 1

p2

)
+ (2n + 1)pnqn(1− q)−n−1 + pnq2n(n + 1)(1− q)−n−2

=
n(1− p)

p2
.
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