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The Probabilistic Method - Basic ideas

We draw materials mainly from [2, 4].

To show that some (combinatorial) object exists, one can envision working on some probability space
which the object lives in, and show that the probability of such an existence is strictly positive.

We will often use the following notations:

0(@G) - the minimum degree of a gragh

A(G) - the maximum degree of a gragh

degv) - the degree of a vertexe V (G) of a graphG
x(v) - thechromatic numbeof a graphGG

Xe(v) - thechromatic indexof a graphGG

[n] :={1,...,n}

ak-subsets a subset of sizé of some set

2X - the superset of a sé&f

() - the set of all-subsets of a set

ahypergraphis a pairH = (V, E) whereV is a finite set, andv is a collection of subsets df.
Naturally, members o¥ are called vertices, anll are called edges of the hypergrafh

auniform hypergraphs a hypergraph all of whose edges have the same size

ann-uniform hypergraphs a hypergraph all of whose edges have siz€Thus, a simple graph is
a2-uniform hypergraph.)

Sy, - thesymmetric groupn [n], i.e. the set of all permutations ¢n| (or n symbols)

1 Ramsey numbers

The classical example to which Erslapplied the probabilistic method is the so-calketnsey numbers
In the simplest form, leR?(a, b) be the smallest integer such that in any-edge-coloring ofK,, with
RED and BLUE, there exists a REB, or a BLUE K. (You can also think along this line: what's the
smallest numben so that in any set af people there must hemutually acquainted people, bmutual
strangers. Try it withu = b = 3.)

Proposition 1.1(Erdds, 1947 [5]) If (2)21‘(@ < 1,thenR(k, k) > n. ConsequenthyR(k, k) > |2F/2]
forall £ > 3.



Proof. (Note thatR(k, k) is the minimumn such that a grapli on n vertices contains &, or the
complementy of G has aKj},.)

Considerk,, and a randor2-coloring on its edges, namely we color an edge BLUE with probability
1/2, and RED with probabilityl /2. For anyk-subsetS of vertices, letE's be the event that the induced

subgraph ort' is monochromatic. Then, Prps] = 21-(5), Thus, the probability thatomek-subset
forms a monochromatic subgraph is at m@;@tzl‘(g). Consequently, whe(“;j)Ql‘(;) < 1 there exists

some2-coloring for which there is no monochroma#g;. In other words K (k, k) > n.
Fork > 3, letn = |2¥/2]. Then,

(n) 21_(,;) _ nk  9l+k/2 ol+k/2 K

k WooeE < T gEp

Note:
e The previous argument can be made a perfectly fine and simple counting argument.

¢ In most results we shall see, however, the probability is essential. Straightforward counting nor-
mally is way too cumbersome or virtually impossible.

e One can give a randomized algorithm to fin@-aoloring with no monochromatié’;, based on

the proof above. We have seen that the probability of having some monochrdijasat most

21;!“2 < 1. (Infact, itis< 1 whenk is large.) Hence, aften trials of colorings - the probability
m

of having no monochromati&’;, is 1 — (21;—:@/2> , Which goes tal asm grows larger. We can

control the error probability easily.

Example 1.2. Prove that, if there is a reale [0, 1] such that

<Z>p<;> N (z) 1—p® <1, )

then the Ramsey numbé&(a, b) satisfiesR(a, b) > n. Use this to show

r(4,0) = Q (W) .
(Inb)3/2

Solution. Randomly color each edge BLUE with probabiliifand RED otherwise). The probability of
having a BLUEK, or a REDKj} is at most

<z)p<;> + (7;)(1 B <1

Hence,R(a,b) > n.
To this end, note that

<Z>p<;> N @ (1— ) < np® a1+ nbe O b1
Hence, as long as we maintain that

nap(g)/a! < 1/2 (2)
nbe= G < 1), 3)
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then 1 holds true. Put it another way, we want

(al/2)"/ ()
P = T2 4)

In (b!/(2nb

(2)
Now, we can just pick an as large as possible such that
In (b!/(20%) _ (al/2)"/(2)
G - el

It is tedious yet easy to see that= © ((b/ In b)3/2) suffices for the case = 4. O

2 Dominating set

Fact 2.1 (Linearity of expectation) For any random variableX, ..., X, E[c; X1 + -+ + et Xi| =
ClE[Xl] + -+ CkE[Xk]

Fact 2.2. To minimize a functionf (z) doubly differentiable, wher¢”(z) > 0 (i.e. f(x) is convey, we
find 2y such thatf’(x) = 0. Thisxz( is @ minima.

Given a graplG = (V, E), asubsets C V' is called adominating seif every vertex ofG is either
in S or adjacent to some vertex

Theorem 2.3. LetG = (V, E) be a graph om vertices withy(G) = § > 1. Then,G has a dominating

set of size at most 200,

Proof. Pick each vertex ofs at random with probability. Let X be the set of chosen vertices. Lét
be the subset o — X where noy € Y has a neighbor iX'. Clearly X UY is a dominating set. We

. . . . : 1+In(6+1)
estimate the average size ®fU Y. If the average size (accordinggpof X U Y is at mostn §+1 ,

then there must exist a choice &ffor which | X U Y| < n%
Foranyv € V,

Prolju € Y] = Proljv and its neighbors were not picKed (1 — p)'+d€9v) < (1 — p)1+3,

Hence,
E[YV]] = Profv € Y] < n(1 —p)'*°.

Consequently,
E[[X|+ Y]] < np+n(l - p)'*.

The right hand side is minimized a§ = 1 — (1 + §)'/9. Thus, we can prove a slightly stronger result:
there is a dominating set of size at magh + n(1 — po)**°. This bound, however, is not “clean.”
A cleaner bound can be obtained by noticing that

np+n(l — p)'0 < np 4 ne PUHI),
The right hand side is minimized at = hzgljg)s) yielding the bound stated in the theorem. O



3 Extremal set theory

A hypergraphH = (V, E) hasproperty B if it is two-colorable, i.e. there exists a two-coloring of the
vertices so that no edge is monochromatic. Obviously the fewer the number of edges, the more likely for
H to have property3. Letm(n) be the least number of edges so thatamiform hypergraph does not

have propertyB. We want to find a lower bound fon(n).

Theorem 3.1(Erdbs, 1963 [6]) Everyn-uniform hyper graph with< 2"~! edges has a propertis.
Hence,m(n) > 271,

Proof. To prove the existence of a certain type of coloring, we generate random colorings and show the
probability of the existence of the “type” is positive.

Color each vertex off = (V, E) with two colors at random (probability/2 for each color). The
probability that some € E is monochromatic i€/2". Hence, the probability that at least one edge in
E is monochromatic is at mogk| /2"~ < 1. Consequently, there exists a good coloring. O

Exercise 1. Suppose: > 4 and letH be ann-uniform hypergraph with at mogf*~!/3" edges. Prove
that there is a vertex coloring @f by 4 colors so that in every edge, all four colors are presented.

The following very well-known result is called the EretKo-Rado theorem [7]. We present a proof
by Kantona [8].

Theorem 3.2(Erdds-Ko-Rado) Letn > 2k be positive integers. Lef be a family ofk-subsets ofn|
for which A, B € F impliesA N B # (). Then,

n—1
< .
7= (1 2))

A direct counting proof of Erfis-Ko-Rado theoremConsider a permutation € S,,. Putr(1),...,m(n)
on a cycle in the clock-wise order. Call the cycle. A memberA € F is said to beconsecutiven C,;
if all elements ofA occur consecutively on the cycle. It is easy to see that there are atmusnbers
of F which are consecutive ofi; for a fixed=. Also, there are onlyn — 1)! different cycles, not:!
(why?). LetC be the set of all such cycles. Then,

> |{A € F| Aconsecutive o'} | < k- (n — 1)!
cec

Moreover,

Z l{A € F | A consecutive ol'}| = Z {C € C | A consecutive o' }| = | F|k!(n — k)!.

cec AeF
Hence,|F| < (7~1) as desired. O
A probabilistic proof of Erds-Ko-Rado theoremConsiderr € S,. For eachi € [n], the probability
that AT = {n(i),...,n(i + k — 1)} (taken circularly) is a member of is at mostk/n, because, as in
the previous proof, there can be at mbshember ofF that are consecutive afi;.

Moreover, PropT € 7| = |F|/(}). Hence|F| < (1) k/n = (}}). O

Exercise 2(Sperner Lemma, 1928 [9])The maximum size of a family of subsets[of none of whose
member is contained in another(i ), ).

The following theorem implies Sperner's Lemma, although no one noticed it until Tuza (1984, [10]).



Theorem 3.3(Bollobas, 1965 [3]) LetX = {X1,...,X,»}, andY = {Y1,...,Y,,} be two set systems
of [n] such that

() X;NY; =0,Vi.
(i) XsnY; #0,Vi#j.
Then,

m

1
> <L ©)
= i)

Proof. Let z; = |X;|, andy; = |Y;|. Consider a random € S,,. Let E; be the event that elements of
X, come before elements &t in 7. Then,

n NPTA . — )]
G milln -z —y)t
ProqEz] - TZ' - (xi—i-yi) .
T
It's easy to see that the everifs are mutually exclusive. The theorem follows easily. O
Corollary 3.4. If z; = z, y; = z, forall i = 1,..., min the previous theorem, then < (“7Y).

Exercise 3. Prove that Bolbbas’ Theorem implies Sperner’'s Lemma.

Exercise 4. Let F = {(A;, Bi),1 < i < m} be a family of pairs of subsets of the set of integers such
that|A;| = a, |B;| = b, foralli, A; N B; = 0, and(A; N B;) U (A; N B;) # 0 for all i # j. Show that

(a + b)‘”‘b
a®bb

()

4 Coding Theory

Note that the following theorems hold fgrary codes, also. We only stated the binary versions for clarity
of presentation.

Theorem 4.1(Kraft inequality) LetC be a finite collection of finite binary strings such that no string is
a prefix of another. Let; be the number of strings of lengtltin C. Then,

3 % <1
Proof. Letm be the length of longest string in the collection. Flip a fair ceitimes to generate a binary
string s of lengthm. No two strings inC can both be prefixes of at the same time. For a particular
codewordw € C (i.e. a string inC) of lengthi, the probability that hasw as a prefix isl /2¢. These
possibilities are mutually exclusive for all codewordshence the total probability is 1, namely

Syst

7
as desired. O

Kraft showed that the converse is also true, i.e. given the numbesatisfying the inequality, then
there exists a prefix-free code with codewords of length.

McMillan later discovered that the inequality is also the necessary condition for a codanajely
decipherablewhich is the content of the following theorem. (Sufficiency, again, follows from Kraft's
result.)



Theorem 4.2(Kraft-McMillan inequality). LetC be a finite collection of finite binary strings such that
no two distinct concatenations of two finite sequences of codewords result in the same binary sequence.
Letn; be the number of strings af, in C. Then,

Yl
— 2
(2

A typical proof. Let m be the largest string length. A trivial combinatorial reasoning shows that

m k

e
(z 2) <, ®
=1

for all integersk. Since(mk)l/k — 1 ask — oo, the desired inequality follows.
One can show (8) with a somewhat messy probabilistic argument. O

5 Number Theory

Exercise 5(Legendre Theorem)}-or any primep, the power op in the factorization of.! is Zkz1 L%J .

Exercise 6(Erdds). Letq = 2m + 1 be an odd prime. Show that

[I »< (2’”“) < 92,
m

m+1<p<2m+1

where the product goes over all primedJse this fact to prove by induction that

H < 4% 1 forall realz > 2.
p<z

Again, the product is taken over primgs

Joseph Bertrand conjectured that, for every integer 1, there is a prime such thaty < p < 2n.
This is known as th8ertrand’s postulatewhich is also referred to as tiéhebyshev theoretvecause
Chebyshev proved it in 1850. The genius Ramanujan gave a simpler proof. In 1932, Reyp&tished
his first paper which gave a proof of the theorem. This proof does not appear to be probabilistic, but it
contains all spirit of a probabilistic proof: the pigeonhole principle and a counting argument. A yet
simpler proof from Er@s is presented below and is taken from the superb text [1].

Theorem 5.1. For every integen > 1, there is a prime such thatn < p < 2n.

Proof. Suppose the postulate is false, tt(élﬁ) has only prime factors at most In fact, it is easy to see
that (27:‘) has no prime factop such thatn /3 < p < n. Consequently, we can write

2n
< > = H pepa
n
p<2n/3

where the product goes over all primgsande,, is the exponent of in this factorization.
The following fact can be shown from Legendre theorem.

Fact 5.2. in the factorization of>"), p° < 2n for any primep. Henceg, < 1 for any primep > v/2n.



Combining the fact and Exercise 6, we have

4m 2n V2n  42n/3
2n§<n>S [T e I p<wras
p<V2n V2n<p<2n/3

This cannot happen fat > 4000 (simple calculus would confirm it). Fot < 4000, the following
sequence of primes, where the next is not more than twice the previous, proves the postulate:

2,3,5,7,13,23,43, 83,163, 317,631, 1259, 2503, 4001.
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