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The Probabilistic Method - Basic ideas

We draw materials mainly from [2,4].
To show that some (combinatorial) object exists, one can envision working on some probability space

which the object lives in, and show that the probability of such an existence is strictly positive.
We will often use the following notations:

• δ(G) - the minimum degree of a graphG

• ∆(G) - the maximum degree of a graphG

• deg(v) - the degree of a vertexv ∈ V (G) of a graphG

• χ(v) - thechromatic numberof a graphG

• χe(v) - thechromatic indexof a graphG

• [n] := {1, . . . , n}

• ak-subsetis a subset of sizek of some set

• 2X - the superset of a setX

•
(
X
k

)
- the set of allk-subsets of a setX

• a hypergraphis a pairH = (V,E) whereV is a finite set, andE is a collection of subsets ofV .
Naturally, members ofV are called vertices, andE are called edges of the hypergraphH

• auniform hypergraphis a hypergraph all of whose edges have the same size

• ann-uniform hypergraphis a hypergraph all of whose edges have sizen. (Thus, a simple graph is
a2-uniform hypergraph.)

• Sn - thesymmetric groupon [n], i.e. the set of all permutations on[n] (or n symbols)

1 Ramsey numbers

The classical example to which Erdős applied the probabilistic method is the so-calledRamsey numbers.
In the simplest form, letR(a, b) be the smallest integern such that in any2-edge-coloring ofKn with
RED and BLUE, there exists a REDKa or a BLUEKb. (You can also think along this line: what’s the
smallest numbern so that in any set ofn people there must bea mutually acquainted people, orb mutual
strangers. Try it witha = b = 3.)

Proposition 1.1(Erdős, 1947 [5]). If
(
n
k

)
21−(k

2) < 1, thenR(k, k) > n. Consequently,R(k, k) > b2k/2c
for all k ≥ 3.
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Proof. (Note thatR(k, k) is the minimumn such that a graphG on n vertices contains aKk, or the
complementḠ of G has aKk.)

ConsiderKn and a random2-coloring on its edges, namely we color an edge BLUE with probability
1/2, and RED with probability1/2. For anyk-subsetS of vertices, letES be the event that the induced

subgraph onS is monochromatic. Then, Prob[ES ] = 21−(k
2). Thus, the probability thatsomek-subset

forms a monochromatic subgraph is at most
(
n
k

)
21−(k

2). Consequently, when
(
n
k

)
21−(k

2) < 1 there exists
some2-coloring for which there is no monochromaticKk. In other words,K(k, k) > n.

Fork ≥ 3, let n = b2k/2c. Then,(
n

k

)
21−(k

2) <
nk

k!
· 21+k/2

2k2/2
<

21+k/2

k!
· nk

2k2/2
< 1.

Note:

• The previous argument can be made a perfectly fine and simple counting argument.

• In most results we shall see, however, the probability is essential. Straightforward counting nor-
mally is way too cumbersome or virtually impossible.

• One can give a randomized algorithm to find a2-coloring with no monochromaticKk based on
the proof above. We have seen that the probability of having some monochromaticKk is at most
21+k/2

k! < 1. (In fact, it is� 1 whenk is large.) Hence, afterm trials of colorings - the probability

of having no monochromaticKk is 1 −
(

21+k/2

k!

)m
, which goes to1 asm grows larger. We can

control the error probability easily.

Example 1.2. Prove that, if there is a realp ∈ [0, 1] such that(
n

a

)
p(a

2) +
(

n

b

)
(1− p)(

b
2) < 1, (1)

then the Ramsey numberR(a, b) satisfiesR(a, b) > n. Use this to show

r(4, b) = Ω

(
b3/2

(ln b)3/2

)
.

Solution. Randomly color each edge BLUE with probabilityp (and RED otherwise). The probability of
having a BLUEKa or a REDKb is at most(

n

a

)
p(a

2) +
(

n

b

)
(1− p)(

b
2) < 1.

Hence,R(a, b) > n.
To this end, note that(

n

a

)
p(a

2) +
(

n

b

)
(1− p)(

b
2) < nap(a

2)/a! + nbe−(b
2)p/b!.

Hence, as long as we maintain that

nap(a
2)/a! ≤ 1/2 (2)

nbe−(b
2)p/b! ≤ 1/2, (3)
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then 1 holds true. Put it another way, we want

p ≤ (a!/2)1/(a
2)

n2/(a−1)
, (4)

p ≥
ln
(
b!/(2nb)

)(
b
2

) . (5)

Now, we can just pick ann as large as possible such that

ln
(
b!/(2nb)

)(
b
2

) ≤ (a!/2)1/(a
2)

n2/(a−1)
.

It is tedious yet easy to see thatn = Θ
(
(b/ ln b)3/2

)
suffices for the casea = 4.

2 Dominating set

Fact 2.1 (Linearity of expectation). For any random variablesX1, . . . , Xk, E[c1X1 + · · · + ckXk] =
c1E[X1] + · · ·+ ckE[Xk].

Fact 2.2. To minimize a functionf(x) doubly differentiable, wheref ′′(x) ≥ 0 (i.e. f(x) is convex), we
find x0 such thatf ′(x0) = 0. Thisx0 is a minima.

Given a graphG = (V,E), a subsetS ⊆ V is called adominating setif every vertex ofG is either
in S or adjacent to some vertex inS.

Theorem 2.3. LetG = (V,E) be a graph onn vertices withδ(G) = δ > 1. Then,G has a dominating

set of size at mostn1+ln(δ+1)
δ+1 .

Proof. Pick each vertex ofG at random with probabilityp. Let X be the set of chosen vertices. LetY
be the subset ofV −X where noy ∈ Y has a neighbor inX. ClearlyX ∪ Y is a dominating set. We
estimate the average size ofX ∪ Y . If the average size (according top) of X ∪ Y is at mostn1+ln(δ+1)

δ+1 ,

then there must exist a choice ofX for which |X ∪ Y | ≤ n1+ln(δ+1)
δ+1 .

For anyv ∈ V ,

Prob[v ∈ Y ] = Prob[v and its neighbors were not picked] = (1− p)1+deg(v) ≤ (1− p)1+δ.

Hence,
E[|Y |] =

∑
v

Prob[v ∈ Y ] ≤ n(1− p)1+δ.

Consequently,
E[|X|+ |Y |] ≤ np + n(1− p)1+δ.

The right hand side is minimized atp0 = 1 − (1 + δ)1/δ. Thus, we can prove a slightly stronger result:
there is a dominating set of size at mostnp0 + n(1− p0)1+δ. This bound, however, is not “clean.”

A cleaner bound can be obtained by noticing that

np + n(1− p)1+δ ≤ np + ne−p(1+δ).

The right hand side is minimized atp1 = ln(1+δ)
(1+δ) , yielding the bound stated in the theorem.
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3 Extremal set theory

A hypergraphH = (V,E) haspropertyB if it is two-colorable, i.e. there exists a two-coloring of the
vertices so that no edge is monochromatic. Obviously the fewer the number of edges, the more likely for
H to have propertyB. Let m(n) be the least number of edges so that ann-uniform hypergraph does not
have propertyB. We want to find a lower bound form(n).

Theorem 3.1(Erdős, 1963 [6]). Everyn-uniform hyper graph with< 2n−1 edges has a propertyB.
Hence,m(n) ≥ 2n−1.

Proof. To prove the existence of a certain type of coloring, we generate random colorings and show the
probability of the existence of the “type” is positive.

Color each vertex ofH = (V,E) with two colors at random (probability1/2 for each color). The
probability that somee ∈ E is monochromatic is2/2n. Hence, the probability that at least one edge in
E is monochromatic is at most|E|/2n−1 < 1. Consequently, there exists a good coloring.

Exercise 1. Supposen ≥ 4 and letH be ann-uniform hypergraph with at most4n−1/3n edges. Prove
that there is a vertex coloring ofH by 4 colors so that in every edge, all four colors are presented.

The following very well-known result is called the Erdős-Ko-Rado theorem [7]. We present a proof
by Kantona [8].

Theorem 3.2(Erdős-Ko-Rado). Let n ≥ 2k be positive integers. LetF be a family ofk-subsets of[n]
for whichA,B ∈ F impliesA ∩B 6= ∅. Then,

|F| ≤
(

n− 1
k − 1

)
.

A direct counting proof of Erd̋os-Ko-Rado theorem.Consider a permutationπ ∈ Sn. Putπ(1), . . . , π(n)
on a cycle in the clock-wise order. Call the cycleCπ. A memberA ∈ F is said to beconsecutiveonCπ

if all elements ofA occur consecutively on the cycle. It is easy to see that there are at mostk members
of F which are consecutive onCπ for a fixedπ. Also, there are only(n − 1)! different cycles, notn!
(why?). LetC be the set of all such cycles. Then,∑

C∈C
|{A ∈ F | A consecutive onC}| ≤ k · (n− 1)!

Moreover,∑
C∈C

|{A ∈ F | A consecutive onC}| =
∑
A∈F

|{C ∈ C | A consecutive onC}| = |F|k!(n− k)!.

Hence,|F | ≤
(
n−1
k−1

)
as desired.

A probabilistic proof of Erd̋os-Ko-Rado theorem.Considerπ ∈ Sn. For eachi ∈ [n], the probability
thatAπ

i = {π(i), . . . , π(i + k − 1)} (taken circularly) is a member ofF is at mostk/n, because, as in
the previous proof, there can be at mostk member ofF that are consecutive onCπ.

Moreover, Prob[Aπ
i ∈ F ] = |F|/

(
n
k

)
. Hence,|F| ≤

(
n
k

)
k/n =

(
n−1
k−1

)
.

Exercise 2(Sperner Lemma, 1928 [9]). The maximum size of a family of subsets of[v] none of whose
member is contained in another is

(
v

bv/2c
)
.

The following theorem implies Sperner’s Lemma, although no one noticed it until Tuza (1984, [10]).
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Theorem 3.3(Bollobás, 1965 [3]). LetX = {X1, . . . , Xm}, andY = {Y1, . . . , Ym} be two set systems
of [n] such that

(i) Xi ∩ Yi = ∅,∀i.

(ii) Xi ∩ Yj 6= ∅,∀i 6= j.

Then,
m∑

i=1

1(|Xi|+|Yi|
|Xi|

) ≤ 1. (6)

Proof. Let xi = |Xi|, andyj = |Yj |. Consider a randomπ ∈ Sn. Let Ei be the event that elements of
Xi come before elements ofYi in π. Then,

Prob[Ei] =

(
n

xi+yi

)
xi!yi!(n− xi − yi)!

n!
=

1(
xi+yi

xi

) .
It’s easy to see that the eventsEi are mutually exclusive. The theorem follows easily.

Corollary 3.4. If xi = x, yi = x, for all i = 1, . . . ,m in the previous theorem, thenm ≤
(
x+y

x

)
.

Exercise 3. Prove that Bolĺobas’ Theorem implies Sperner’s Lemma.

Exercise 4. Let F = {(Ai, Bi), 1 ≤ i ≤ m} be a family of pairs of subsets of the set of integers such
that|Ai| = a, |Bi| = b, for all i, Ai ∩Bi = ∅, and(Ai ∩Bj) ∪ (Aj ∩Bi) 6= ∅ for all i 6= j. Show that

m ≤ (a + b)a+b

aabb
. (7)

4 Coding Theory

Note that the following theorems hold forq-ary codes, also. We only stated the binary versions for clarity
of presentation.

Theorem 4.1(Kraft inequality). LetC be a finite collection of finite binary strings such that no string is
a prefix of another. Letni be the number of strings of lengthi in C. Then,∑

i

ni

2i
≤ 1.

Proof. Letm be the length of longest string in the collection. Flip a fair coinm times to generate a binary
string s of lengthm. No two strings inC can both be prefixes ofs at the same time. For a particular
codewordw ∈ C (i.e. a string inC) of lengthi, the probability thats hasw as a prefix is1/2i. These
possibilities are mutually exclusive for all codewordsw, hence the total probability is≤ 1, namely∑

i

ni

2i
≤ 1,

as desired.

Kraft showed that the converse is also true, i.e. given the numbersni satisfying the inequality, then
there exists a prefix-free code withni codewords of lengthi.

McMillan later discovered that the inequality is also the necessary condition for a code to beuniquely
decipherable, which is the content of the following theorem. (Sufficiency, again, follows from Kraft’s
result.)
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Theorem 4.2(Kraft-McMillan inequality). Let C be a finite collection of finite binary strings such that
no two distinct concatenations of two finite sequences of codewords result in the same binary sequence.
Letni be the number of strings ofni in C. Then,∑

i

ni

2i
≤ 1.

A typical proof. Let m be the largest string length. A trivial combinatorial reasoning shows that(
m∑

i=1

ni

2i

)k

≤ mk, (8)

for all integersk. Since(mk)1/k → 1 ask →∞, the desired inequality follows.
One can show (8) with a somewhat messy probabilistic argument.

5 Number Theory

Exercise 5(Legendre Theorem). For any primep, the power ofp in the factorization ofn! is
∑

k≥1

⌊
n
pk

⌋
.

Exercise 6(Erdős). Let q = 2m + 1 be an odd prime. Show that∏
m+1<p≤2m+1

p ≤
(

2m + 1
m

)
≤ 22m,

where the product goes over all primesp. Use this fact to prove by induction that∏
p≤x

≤ 4x−1, for all realx ≥ 2.

Again, the product is taken over primesp.

Joseph Bertrand conjectured that, for every integern ≥ 1, there is a primep such thatn < p ≤ 2n.
This is known as theBertrand’s postulate, which is also referred to as theChebyshev theorembecause
Chebyshev proved it in 1850. The genius Ramanujan gave a simpler proof. In 1932, Paul Erdős published
his first paper which gave a proof of the theorem. This proof does not appear to be probabilistic, but it
contains all spirit of a probabilistic proof: the pigeonhole principle and a counting argument. A yet
simpler proof from Erd̋os is presented below and is taken from the superb text [1].

Theorem 5.1. For every integern ≥ 1, there is a primep such thatn < p ≤ 2n.

Proof. Suppose the postulate is false, then
(
2n
n

)
has only prime factors at mostn. In fact, it is easy to see

that
(
2n
n

)
has no prime factorp such that2n/3 < p ≤ n. Consequently, we can write(

2n

n

)
=

∏
p≤2n/3

pep ,

where the product goes over all primesp, andep is the exponent ofp in this factorization.
The following fact can be shown from Legendre theorem.

Fact 5.2. in the factorization of
(
2n
n

)
, pep ≤ 2n for any primep. Hence,ep ≤ 1 for any primep >

√
2n.
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Combining the fact and Exercise 6, we have

4n

2n
≤
(

2n

n

)
≤

∏
p≤

√
2n

pep ·
∏

√
2n<p≤2n/3

p ≤ (2n)
√

2n · 42n/3.

This cannot happen forn ≥ 4000 (simple calculus would confirm it). Forn ≤ 4000, the following
sequence of primes, where the next is not more than twice the previous, proves the postulate:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001.
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[3] B. BOLLOBÁS, On generalized graphs, Acta Math. Acad. Sci. Hungar, 16 (1965), pp. 447–452.
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