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Introduction to Linear Programming

1 Preliminaries

1.1 Different forms of linear programs

There are a variety of ways to write linear programs, and a variety of names to refer to them. We shall
stick to two forms: the standard and the canonical forms. Different authors have different opinions
on what standard is and what canonical is. Each form has two versions: the maximization and the
minimization versions. Fortunately, all versions and forms are equivalent.

The min version of the standard form generally reads

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

... . . .
... =

...
am1x1 + am2x2 + . . . + amnxn = bm

xi ≥ 0,∀i = 1, . . . , n,

where theaij , cj , andbi are given real constants, and thexj are the variables. The linear function
c1x1 + c2x2 + · · · + cnxn is called theobjective function. To solve a linear program is to find some
combination ofxj satisfying the constraint set, at the same time minimize the objective function. The
constraintsxi ≥ 0 are also referred to as thenon-negativity constraints. If the objective is to maximize
instead of minimize, we have the max version of the standard form.

In canonical form, the min version reads

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≥ b1

a21x1 + a22x2 + . . . + a2nxn ≥ b2
...

... . . .
... ≥

...
am1x1 + am2x2 + . . . + amnxn ≥ bm

xi ≥ 0,∀i = 1, . . . , n ,

and the max version is nothing but

max c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2
...

... . . .
... ≤

...
am1x1 + am2x2 + . . . + amnxn ≤ bm

xi ≥ 0,∀i = 1, . . . , n .

One of the reasons we change≥ to≤ when moving from the min to the max version is that it might be
intuitively easier to remember: if we are trying to minimize some function ofx, there should be some
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“lower bound” on how smallx can get, and vice versa. Obviously, exchanging the terms on both sides
and the inequalities are reversed. Another reason for changing≥ to≤ has to do with the notion of duality,
as we will see later.

Henceforth, when we say “vector” we mean column vector, unless explicitly specify otherwise. To
this end, define the following vectors and a matrix

c =


c1

c2
...

cn

 ,x =


x1

x2
...

xn

 ,A =


a11 a12 . . . a1n

a21 a22 . . . a2n
... . . . . . .

...
am1 am2 . . . amn

 ,b =


b1

b2
...

bm

 .

(We shall use bold-face letters to denote vectors and matrices.) Then, we can write the min and the max
versions of the standard form as

min
{
cTx |Ax = b,x ≥ 0

}
, and max

{
cTx |Ax = b,x ≥ 0

}
.

You get the idea? The versions for the canonical form are

min
{
cTx |Ax ≥ b,x ≥ 0

}
, and max

{
cTx |Ax ≤ b,x ≥ 0

}
.

A vectorx satisfying the constraints is called afeasible solution. Feasible solutions are not neces-
sarily optimal. Anoptimal solutionis a feasible vectorx which, at the same time, also minimizes (or
maximizes) the objective function. A linear program (LP) isfeasibleif it has a feasible solution. Later,
we shall develop conditions for an LP to be feasible.

1.2 Converting general LPs to standard and canonical forms

In general, a linear program could be of any form and shape. There may be a few equalities, inequalities;
there may not be enough non-negativity constraints, there may also be non-positivity constraints; the
objective might be to maximize instead of minimize; etc.

We resort to the following rules to convert one LP to another.

• max cTx = min(−c)Tx

•
∑

j aijxj = bi is equivalent to
∑

j aijxj ≤ bi and
∑

j aijxj ≥ bi.

•
∑

j aijxj ≤ bi is equivalent to−
∑

j aijxj ≥ −bi

•
∑

j aijxj ≤ bi is equivalent to
∑

j aijxj + si = bi, si ≥ 0. The variablesi is called aslack
variable.

• Whenxj ≤ 0, replace all occurrences ofxj by−x′
j , and replacexj ≤ 0 by x′

j ≥ 0.

• Whenxj is not restricted in sign, replace it by(uj − vj), anduj , vj ≥ 0.

Exercise 1. Write
min x1 − x2 + 4x3

subject to 3x1 − x2 = 3
− x2 + 2x4 ≥ 4

x1 + x3 ≤ −3
x1, x2 ≥ 0

in all four forms.
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Exercise 2. Write
max

{
cTx |Ax ≤ b

}
in all four forms.

Exercise 3. Write
min

{
cTx |Ax ≥ b

}
in all four forms.

Exercise 4. Write
max

{
cTx |Ax = b

}
in all four forms.

Exercise 5. Convert each form to each of the other three forms.

Exercise 6. Consider the following linear program

max aTx + bTy + cTz
subject to A11x + A12y + A13z = d

A21x + A22y + A23z ≤ e
A31x + A32y + A33z ≥ f
x ≥ 0,y ≤ 0.

Note thatAij are matrices anda,b, c,d, e, f ,x,y, z are vectors. Rewrite the linear program in standard
form (max version) and in canonical form (max version).

Because the forms are all equivalent, without loss of generality we can work with the min version of
the standard form. The reason for choosing this form is technical, as shall be seen in later sections.

2 A geometric view of linear programming

2.1 Polyhedra

Consider an LP in canonical form with two variables, it is easy to see that the feasible points lie in a
certain region defined by the inequalities. The objective function defines adirection of optimization.
Consequently, if there is an optimal solution, there is a vertex on the feasible region which is optimal.
We shall develop this intuition into more rigorous analysis in this section.

Definition 2.1. A polyhedronis the set of points satisfyingAx ≤ b (or equivalentlyA′x ≥ b′) for
somem × n matrix A, andb ∈ Rm. In other words, Apolyhedronin Rn is the intersection of a finite
set of half spaces ofRn.

Consider the standard form of an LP:

min
{
cTx |Ax = b,x ≥ 0

}
.

Let P := {x |Ax = b,x ≥ 0}, i.e. P consists of all feasible solutions to the linear program; then,P is
a polyhedron inRn. For, we can rewriteP as

P =

x :

 A
−A
−I

x ≤

 b
−b
0

 .
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cT x = d2

vertex

cT x = d1

moving along
this direction

cT x is improved

d2 < d1

Figure 1: Polyhedron, vertices, and direction of optimization

(Actually, this polyhedron lies in an(n − 1)-dimensional space since each equality inAx = b reduces
the dimension by one.)

Refer to Figure 1 following the discussion below. Geometrically, each equation in the system
Ax = b defines a hyperplane of dimensionn − 1. In general, a vectorx satisfyingAx = b lies in
the intersection of allm hyperplanes defined byAx = b. The intersection of two(n − 1)-dimensional
hyperplanes is generally a space of dimensionn − 2. On the same line of reasoning, the solution space
to Ax = b is generally an(n − m)-dimensional space. The non-negativity conditionx ≥ 0 restricts
our region to the non-negative orthant of the originaln-dimensional space. The part of the(n − m)-
dimensional space which lies in the non-negative orthant is a polyhedral-shaped region, which we call a
polyhedron. For example, whenn = 3 andm = 1, we look at the part of a plane defined byAx = b
which lies in the non-negative orthant of the usual three dimensional space. This part is a triangle if the
(only) equality inAx = b is, say,x1 + x2 + x3 = d > 0.

It is sometime easier to look at the LP in its canonical formmin
{
cTx |Ax ≥ b,x ≥ 0

}
. Each

inequality inAx ≥ b defines a half space. (See Figure 2.) Each inequality inx ≥ 0 also defines a half
space. Hence, the feasible region is the intersection ofm + n half spaces.

Now, let us take into account the objective functioncTx. For each real constantd, cTx = d defines
a plane. Asd goes from−∞ to∞, cTx = d defines a set of parallel planes. The first plane which hits
the feasible region defines the optimal solution(s). Think of sweeping a line from left to right until it
touches a polygon on a plane. Generally, the point of touching is a vertex of the polygon. In some cases,
we might touch an edge of the polygon first, in which case we have infinitely many optimal solutions. In
the case the polygon degenerates into an infinite band, we might not have any optimal solution at all.

Definition 2.2. A vertexof a polyhedronP is a pointx ∈ P such that there is no non-zero vectory for
whichx + y andx− y are both inP . A polyhedron which has a vertex is called apointed polyhedron.

Exercise 7. We can define a pointv in a polyhedronP to be a vertex in another way:v ∈ P is a vertex
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a

aTx ≥ b

aTx ≤ b

Figure 2: Each inequalitycTx ≤ d defines a halfspace.

if and only if there are no distinct pointsu,w ∈ P such thatv = (u + w)/2. Show that this definition
is equivalent to the definition given in Definition 2.2.

The following exercise confirms a different intuition about vertices: a vertex is at the intersection of
n linearly independent hyperplanes of the polyhedronAx ≤ b. Henceforth, for any positive integerm
we use[m] to denote the set{1, . . . ,m}.

Exercise 8. Let P = {x |Ax ≤ b}, whereA is anm× n matrix. For eachi ∈ [m], let a(i) denote the
ith row vector ofA. Show thatv ∈ P is a vertex iff rank

{
a(i) | a(i)v = bi

}
= n.

We now can convert our observation about an optimal solution at a vertex into rigorous analysis. We
would like to know a few things:

1. When is an LP feasible? Or, equivalently, when is a polyhedron not empty?

2. When is a polyhedron pointed?

3. When is a point in a polyhedron a vertex? Characterize vertices.

4. If a polyhedron is pointed, and if it is bounded at the direction of optimization, is it true that there
is an optimal vertex?

5. If there is an optimal vertex, how do we find one?

We shall put off the first and the fifth questions for later. Let us attempt to answer the middle three
questions.

Theorem 2.3. A non-empty polyhedron is pointed if and only if it does not contain a line.

Proof. We give a slightly intuitive proof. The proof can be turned completely rigorous easily.
Consider a non-empty polyhedronP = {x | Ax ≤ b} which does not contain any line. LetS be

the set ofm hyperplanes defined byAx = b. Consider a particular point̄x ∈ P . Note that̄x must lie
on or strictly on one side of each of the hyperplanes inS. Supposēx lies on preciselyk (0 ≤ k ≤ m)
of the hyperplanes inS. Call this set of hyperplanesS′. If x̄ is not a vertex, then there is somey 6= 0
such that both(x̄− y) and(x̄ + y) are inP . It follows that the linēx + αy, α ∈ R, must be entirely on
all hyperplanes ofS′. SinceP does not contain the linēx + αy, this line must cut a plane inS − S′ at
a pointx′. (Note, this argument also showsS − S′ 6= ∅.) Now, replacēx by x′, then the setS′ for x′ is
increased by at least1. Keep doing this at mostm times and we get to a vertex.

(To be “rigorous”, we must carefully pick a value ofα so that there is at least one more equality in
the systemA(x̄ + αy) ≤ b than in the systemAx̄ ≤ b.)
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Conversely, supposeP has a vertexv and also contains some linex+αy, y 6= 0, which meansA(x+
αy) ≤ b,∀α. This can only happen whenAy = 0 (why?). But thenA(v + y) = A(v − y) = Av ≤ b,
contradicting the fact thatv is a vertex. In fact, ifx + αy is a line contained inP , then for any point
z ∈ P , the linez + αy (parallel with the other line) has to also be entirely inP .

Corollary 2.4. A non-empty polyhedronP = {x |Ax ≤ b} is pointed if and only ifrank(A) = n.

Proof. We only need to show that rank(A) = n if and only if P contains no line.
Firstly, assume rank(A) = n. If P has a linex + αy, for y 6= 0, then it is necessary thatAy = 0,

which means rank(A) < n (why?), which is a contradiction.
Conversely, if rank(A) < n, then the columns ofA are linearly dependent, i.e. there is a non-zero

vectory such thatAy = 0. If x is any point inP , thenA(x + αy) = Ax ≤ b,∀α ∈ R, implying P
contains the linex + αy.

Exercise 9. Prove Corollary 2.4 directly using the vertex definition in Exercise 8.

Corollary 2.5. A non-empty polyhedronP = {x |Ax = b,x ≥ 0} is always pointed.

Proof. RewriteP as

P =

x :

 A
−A
−I

x ≤

 b
−b
0

 .

Then,P as a vertex by the previous corollary since

rank

 A
−A
−I

 = n.

Exercise 10.Show that a non-empty polyhedronP = {x | A1x = b1,A2x ≤ b2,x ≥ 0} is pointed.
Moreover, supposek is the total number of rows ofA1 andA2. Show that a vertexx∗ of P has at most
m positive components.

The following theorem characterizes the set of vertices of the polyhedronP = {x |Ax = b,x ≥ 0}.

Theorem 2.6. LetP = {x |Ax = b,x ≥ 0}. Thenv ∈ P is a vertex if and only if the column vectors
of A corresponding to non-zero coordinates ofv are linearly independent.

Proof. Let J be the index set of non-zero coordinates ofv. Letaj be thejth column vector ofA.
Supposev is a vertex. We want to show that{aj | j ∈ J} is a set of independent vectors. This is

equivalent to saying that the system
∑

j∈J ajxj = b has a unique solution. Ify is another solution (other
thanv restricted toJ) of this system, then adding more0-coordinates toy corresponding to the indices
not in J , we get ann-dimensional vectorz with Az = b andz 6= v. With sufficiently smallα, both
v + α(v − z) andv − α(v − z) are feasible (why?), contradicting the fact thatv is a vertex.

Conversely, suppose
∑

j∈J ajxj = b has a unique solution. If there is ay 6= 0 such thatv + y and
v − y are both inP , thenyj = 0 wheneverj /∈ J (why?). Hence,b = A(v + y) =

∑
j∈J aj(vj + yj),

contradicting the uniqueness of the solution to
∑

j∈J ajxj = b.

Exercise 11.Prove Corollary 2.4 directly using Theorem 2.6.

Lemma 2.7. Let P = {x |Ax = b,x ≥ 0}. If min
{
cTx | x ∈ P

}
is bounded (i.e. it has an optimal

solution), then for allx ∈ P , there is a vertexv ∈ P such thatcTv ≤ cTx.
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Proof. We proceed in much that same way as in the proof of Theorem 2.3, where we start from a point
x insideP , and find a vertex by keep considering lines going throughx.

A slight difference is that here we already havem hyperplanesAx = b. These planes play the role
of S′ in Theorem 2.3’s proof. Then half spacesx ≥ 0 play the role ofS − S′. Another difference is
that, starting from a pointx in P , we now have to find a vertex with better cost. Hence, we have to be
more careful in picking the direction to go.

What do I mean by “direction to go”? Supposex ∈ P is not a vertex. We know there isy 6= 0 such
thatx + y,x− y ∈ P . Fromx, we could either go along the+y direction or the−y direction, hoping
to improve the cost function, while wanting to meet another plane defined byx ≥ 0. The+y direction is
better iffcT(x + y) ≤ cTx, or cTy ≤ 0. The−y direction is better iffcT(−y) ≤ 0. Let z ∈ {y,−y}
be the better direction, i.e.cTz ≤ 0.

Note thatA(x + y) = A(x− y) = b impliesAz = 0.
We shall go along the rayx+αz, α > 0. We knew going along this ray would improve the objective

function. The problem is that we might not meet any bounding face ofP . When would this happen?
Firstly, note thatA(x + αz) = Ax = b, implying that the ray(x + αz) is entirely on each of them
planes defined byAx = b. Now, let’s look at the hyperplanesx1 = 0, x2 = 0, . . . ,xn = 0. Supposex
is already onk of them, where0 ≤ k ≤ n. Without loss of generality, assumex1 = · · · = xk = 0, and
the rest of the coordinates are positive. Sincex + y,x− y ∈ P , we knowxj + yj ≥ 0 andxj − yj ≥ 0,
∀j = 1, . . . , k. Thus,xj + αzj = 0,∀j = 1, . . . , k, α > 0. The linex + αz is also on all of thosek
planes.

How about the indicesi = k + 1, . . . , n?
If zj ≥ 0 for all j = k + 1, . . . , n, thenxj + αzj ≥ 0 for all i = k + 1, . . . , n, also. This means

(x + αz) ∈ P for all α > 0. This is the case where we do not meet any boundary face. IfcTz < 0,
thencT (x + αz) goes to−∞: the LP is not bounded. IfcTz = 0, then replacez by −z to avoid
z having all non-negative coordinates. (Note thaty 6= 0 implies y or −y has negative coordinates.)
What’s happening here is that, whencTz = 0, going to thez direction is perpendicular to the direction
of optimization, meaning we don’t get any improvement on the objective function. However, we must
still meet one of the bounding faces if we go the right way. And, the right way is to thez with some
negative coordinates.

If zj < 0 for somej = k + 1, . . . , n, thenxj + αzj cannot stay strictly positive forever. Thus,
we will meet one (or a few) more of the planesx = 0 whenα is sufficiently large. Letx′ be the first
point we meet, and replacex by x′. (You should try to definex′ precisely.) The new pointx has more
0-coordinates. The process cannot go on forever, since the number of0-coordinates is at mostn. Thus,
eventually we shall meet a vertex.

Exercise 12.Let P = {x |Ax ≥ b} be a pointed polyhedron. Suppose the LPmin{cTx | x ∈ P} has
an optimal solution. Show that the LP has an optimal solution at a vertex. Note that this exercise is a
slight generalization of Lemma 2.7.

Theorem 2.8. The linear programmin{cTx |Ax = b,x ≥ 0} either

1. is infeasible,

2. is unbounded, or

3. has an optimal solution at a vertex.

Proof. If the LP is feasible, i.e.P = {x |Ax = b,x ≥ 0} is not empty, then its objective function is
either bounded or unbounded. If the objective function is bounded andP is not empty, starting from a
point x ∈ P , we can find a vertex with better cost. Exercise 19 shows that there can only be a finite
number of vertices, hence a vertex with the best cost would be optimal.
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Exercise 13.A setS of points inRn is said to beconvexif for any two pointsx,y ∈ S, all points on the
segment fromx to y, i.e. points of the formx + α(y − x), 0 ≤ α ≤ 1, are also inS.

Show that each of the following polyhedra are convex:

1. P = {x |Ax = b,x ≥ 0}

2. P = {x |Ax = b}

3. P = {x |Ax ≤ b,x ≥ 0}

4. P = {x |Ax ≤ b}
Thus, in fact the feasible set of solutions of any LP is convex.

Exercise 14 (Convex Hull).Let S be a (finite or infinite) set of points (or vectors) inRn. Let H denote
the set of all pointsh ∈ Rn such that, for eachh ∈ H, there is some positive integerk, some points
v1, . . . ,vk ∈ S, and somepositivenumbersα1, . . . , αk such that

h =
k∑

i=1

αivi and
k∑

i=1

αi = 1.

(The vectorh is expressed as aconvex combinationof the vectorsv1, . . . ,vk.) Show that

(i) S ⊆ H.

(ii) H is convex.

(iii) Every convex set containingS also containsH.

The setH is unique for eachS, andH is called theconvex hullof S.

Exercise 15 (Carath́eodory, 1907).Prove that, ifS ⊆ Rn then a pointv belongs to the convex hull of
S if and only if v is a convex combinations of at mostn + 1 points inS.

Exercise 16.Let S be any subset ofRn. Prove that the convex hull ofS is the set of all convex combi-
nations of affinely independent vectors fromS. Use this result to prove Carathéodory’s theorem.

Exercise 17.Show that, if a systemAx ≤ b on n variables has no solution, then there is a subsystem
A′x ≤ b′ of at mostn + 1 inequalities having no solution.

Exercise 18. In R2, the polyhedron

P =
{[

x1

x2

]
: 0 ≤ x1 ≤ 1

}
has no vertex. (Why?)

Consider a linear programmin{x1 |
[
x1 x2

]T ∈ P}.
1. Rewrite the LP in standard form:min{c̄Tz | z ∈ P ′} for P ′ = {z |Az = b, z ≥ 0}. (You are to

determine what̄c,A andb are.)

2. DoesP ′ has a vertex? If it does, specify one and show that it is indeed a vertex ofP ′.

Exercise 19. Consider the polyhedronP = {x |Ax = b,x ≥ 0}. Suppose the dimension ofA is
m× n. We assume that rank(A) = m ≤ n. (Otherwise some equations are redundant.) Show that

1. If v is a vertex, thenv has at leastn−m zero coordinates.

2. Show thatP has at most
(

n
n−m

)
vertices.

Exercise 20.Show that every vertex of a pointed polyhedron is the unique optimal solution overP of
some linear cost function.
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3 The Simplex Method

3.1 A high level description

Let us consider the LPmin{cTx |Ax = b,x ≥ 0}. We shall answer the feasibility question later. Let
us assume for now that the convex polyhedronP = {x |Ax = b,x ≥ 0} is not empty. From previous
sections, we know thatP is pointed. Moreover, ifmin{cTx | x ∈ P} is bounded, i.e. the LP has an
optimal solution, then there is an optimal solution at a vertex.

We shall not discuss the simplex method in all its rigor. The main ideas are needed to gain a solid
understanding of the linear algebra of convex polyhedra, which is essential to apply linear programming
methods to design approximation algorithms.

The idea of the simplex method is quite simple. We start off from a vertex, which is also called a
basic feasible solution, then we attempt to move along an edge ofP to another vertex toward the direction
of optimization. We shall make sure that each move does not increase the objective function.

(Terminologically, anx such thatAx = b is asolution. If x ≥ 0 also holds, then the solution isfea-
siblefor the LP. A feasible solution isbasiciff the columns ofA corresponding to non-zero components
of x are linearly independent.)

In general, a vertex is the intersection of exactlyn different (affine) hyperplanes. (In the so-called
degenerate cases, a vertex might be at the intersection of more thann hyperplanes.) An edge is the
intersection ofn − 1 hyperplanes. Removing one hyperplane from then planes which defines a vertex
v, and we have an edge at whichv is on. Thus, in most casesv is incident ton edges. We need to pick
an edge to move along fromv until we meet another hyperplane, which would be another vertexv′. The
main idea is to findv′ such thatcTv′ ≤ cTv. The algorithm terminates when no move would improve
the objective function.

3.2 An example

Example 3.1. To put the idea of the simplex method into place, let us consider an example.

max 3x1 + 2x2 + 4x3

subject to x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
4x1 + x2 + 3x3 ≤ 7

x1, x2, x3 ≥ 0.

We first convert it to standard form, by adding a few slack variables.

max 3x1 +2x2 +4x3

subject to x1 +x2 +2x3 +x4 = 4
2x1 +3x3 +x5 = 5
4x1 +x2 +3x3 +x6 = 7

x1, x2, x3, x4, x5, x6 ≥ 0.

(1)

The first question is,how do we find a vertex?We will give a complete answer to this later. Let us
attempt an ad hoc method to find a vertex for this problem.

Recall that, for a polyhedronP = {x |Ax = b,x ≥ 0}, a pointv ∈ P is a vertex iff the columns
of A corresponding to the non-zero components ofx are linearly independent. IfA is anm× n matrix,
we assume rank(A) = m (and thusm ≤ n), otherwise some equation(s) inAx = b is redundant or
inconsistent with the rest. If it is inconsistent thenP is empty. To check rank(A) = m, Gaussian
elimination can be employed.
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Assume the index set for non-zero components ofv is B, andN = [n] − B. The columns of
A corresponding toB are independent, hence|B| ≤ m. If |B| < m, we can certainly move a few
members ofN into B such that|B| = m and the columns ofA corresponding toB are still independent
(extending the set of independent vectors into a basis). Conversely, if we can findm independent columns
of A whose index set isB, then, setting allx’s coordinates not inB to be0 and solve forABxB = b,
we would get a vertex ifxB ≥ 0.

Let us now come back to the sample problem. The last3 columns ofA are independent. In fact, they
form an identity matrix. So, if we setB = {4, 5, 6}, N = {1, 2, 3}, x1 = x2 = x3 = 0, andx4 = 4,
x5 = 5, x6 = 7, then we have a vertex! The variablesxi, i ∈ N are calledfree variables. Thexi with
i ∈ B arebasic variables.

(Note that, if an LP is given in canonical form, such asmax{x |Ax ≤ b,x ≥ 0}, then after adding
m slack variables we automatically obtainm independent columns ofA, which would be a good place
to start looking for a vertex. When an LP is given in standard form, we have to work slightly harder. One
way to know if the columns are independent is to apply Gaussian elimination on the systemAx = b.
The columns with non-zero pivots are independent.)

To this end, we have to find a way to realize our intuition of moving along an edge of the polyhedron
to get to a vertex with better cost. The current vertex has cost3x1 + 2x2 + 4x3 = 0. This can only be
increased if we increase one or more of the free variablesx1, x2, x3. (Now you know why they are called
free variables).

The objective function is increased with highest rate if we increasex3, whose coefficient4 is positive
and largest among the free variables. The thing is, the three equations inAx = b have to be satisfied,
and we also have to maintain the non-negativity of vectorx. For example, whenx3 = δ > 0, the variable
x4 has to be changed tox4 = 4− 2δ. If we wantx4 ≥ 0, then we must haveδ ≤ 2. Thus, with respect
to the first equation,x3 cannot be increased to more than2. Similarly, the second and third equations
restrictδ ≤ 5/3 andδ ≤ 7/3. In summary,x3 can only be at most5/3, which forces

x4 = 4− 2
5
3

=
2
3

x5 = 0

x6 = 7− 3
5
3

= 2

We then get to a new pointx ∈ P , where

xT =
[
0 0 5/3 2/3 0 2

]
.

The new objective value is45
3 = 20

3 . Is this pointx a new vertex? Indeed, the vectors

a3 =

2
3
3

 , a4 =

1
0
0

 , a6 =

0
0
1


are linearly independent. The second component ofa3 is not zero, while the the other two vectors are
unit vectors corresponding to the first and the third coordinates. You can see why it is very easy to check
for independence when the column vectors corresponding to the basic variables are unit vectors.

To this end, we are looking atB = {3, 4, 6}, N = {1, 2, 5}. The basic variables have been changed,
and the free variables are changed also. The free variablex3 is said toenter the basis, and the basic
variablex5 is leaving the basis.

Note also that the reasoning is fairly straightforward, as we have just done, when the objective func-
tion depends only on the free variables, and the column vectors corresponding to the basic variables are
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unit vectors. Now, we want to turn (1) into an equivalent system in whicha3, a4, a6 are unit vectors. In
fact, we only need to turna3 into

[
0 1 0

]T
. This is simple: divide the second equation by3, then

subtract2 times the second from the first, and3 times the second from the third, we obtain

max 3x1 +2x2 +4x3

subject to −1
3x1 +x2 +x4 = 2

3
2
3x1 +x3 +1

3x5 = 5
3

2x1 +x2 +x6 = 2

x1, x2, x3, x4, x5, x6 ≥ 0.

Since we want the objective function to contain only free variables, we do not wantx3 in the objective
function. Replace

x3 =
5
3
− 2

3
x1 −

1
3
x5

in the objective function, we get

3x1 + 2x2 + 4x3 = 3x1 + 2x2 + 4
(

5
3
− 2

3
x1 −

1
3
x5

)
=

1
3
x1 + 2x2 −

4
3
x5 +

20
3

Note that the value20/3 is precisely the cost of the new vertex. You can also see that the replacement of
x3 was so convenient after we turn the vectora3 into a unit vector. Our new system becomes

max 1
3x1 +2x2 −4

3x5 + 20
3

subject to −1
3x1 +x2 +x4 = 2

3
2
3x1 +x3 +1

3x5 = 5
3

2x1 +x2 +x6 = 2

x1, x2, x3, x4, x5, x6 ≥ 0.

Now, to further improve our solution,x2 should be increased as its coefficient in the objective function
is the largest among positive ones. The most it can be increased up to is2/3, in which casex2 enters the
basis andx4 leaves the basis. The new system is

max x1 −2x4 + 8

subject to −1
3x1 +x2 +x4 = 2

3
2
3x1 +x3 +1

3x5 = 5
3

7
3x1 −x4 −1

3x5 +x6 = 4
3

x1, x2, x3, x4, x5, x6 ≥ 0.

Now, we want to increasex1. In the first equation, increasingx1 does not affect the non-negativity ofx2

at all. In fact, if we have only equations in which the coefficients ofx1 are negative (or there’s nox1),
then the LP is certainlyunbounded.

In this case, however, we can only increasex1 to 4/7, due to the restriction of the first and the third
equation. Nowx6 leaves the basis, andx1 enters. The new system is

max −11
7 x4 +1

7x5 −3
7x6 + 60

7

subject to +x2 +6
7x4 −5

7x5 +1
7x6 = 6

7

+x3 +2
7x4 +3

7x5 −2
7x6 = 9

7

x1 −3
7x4 −1

7x5 +3
7x6 = 4

7

x1, x2, x3, x4, x5, x6 ≥ 0.

11



To this end,x5 reenters the basis andx3 leaves:

max −1
3x3 −34

21x4 −1
3x6 + 9

subject to +x2 +49
15x3 +188

105x4 −1
3x6 = 3

+7
3x3 +2

3x4 +x5 −2
3x6 = 3

x1 +1
3x3 −1

3x4 +1
3x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0.

Clearly no more improvement is possible. The optimal value is9, at the vertex

v =
[
1 3 0 0 3 0

]T
.

3.3 Rigorous description of a simplex iteration

ConsiderP = {x |Ax = b,x ≥ 0}, and the linear program

min{cTx | x ∈ P}.

Let’s assume we have a vertexv ∈ P . As we have discussed earlier, we can partition[n] = B ∪N
such that|B| = m and the columns ofA corresponding toB are independent, whilevi = 0,∀i ∈ N .
Conversely, anyv ∈ P satisfying this condition is a vertex.

Let AB,AN be the submatrices ofA obtained by taking the columns corresponding toB andN ,
respectively. Similarly, up to rearranging the variables we can write every vectorx ∈ Rn as x =[
xB xN

]T
, andcT =

[
cB cN

]
. The LP is equivalent to

min cT
BxB + cT

NxN

subject to ABxB + ANxN = b
x ≥ 0.

How do we turn the columns ofAB into unit vectors? Easy, just multiply both sides ofAx = b by A−1
B ,

which exists since the columns ofAB are independent. We have

min cT
BxB + cT

NxN

subject to xB + A−1
B ANxN = A−1

B b
x ≥ 0.

We also want the objective function to depend only on free variables. Thus, we should replacexB by
A−1

B b−A−1
B ANxN in the objective function:

cTx = cT
BxB + cT

NxN

= cT
B

(
A−1

B b−A−1
B ANxN

)
+ cT

NxN

= cT
BA−1

B b +
(
cT

N − cT
BA−1

B AN

)
xN .

Let yT
B = cT

BA−1
B , the LP can be written as

min
(
cT

N − yT
BAN

)
xN + yT

Bb
subject to xB + A−1

B ANxN = A−1
B b

x ≥ 0.
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The constantyT
Bb is the cost of vertexv. (In the first step of the example in the previous section,

yT
Bb = 20/3.) In the objective function the coefficient ofxj is

(
cj − yT

Baj

)
, for j ∈ N . For j ∈ B we

havecj − yT
Baj = cj − cT

BA−1
B aj = 0, which is the coefficient ofxj also.

Case 1. If
(
cj − yT

Baj

)
≥ 0 for all j ∈ N , then we cannot further reduce the objective value, because

xN ≥ 0. The optimal value is thusyT
Bb, which is attained by vertexv.

Case 2. If for somej ∈ N ,
(
cj − yT

Baj

)
< 0, then we want to increasevj to get a better objective

value. When having a few choices, whichj should be picked? There are several strategies that work.
For reasons that will become clear later, we use the so-calledBland’s pivoting ruleand pick the least
candidatej.

Having chosenj, the next step is to decide how much we can increasevj to. (Think of the variable
x3 at the beginning of Example 3.1.) We have to know the coefficient ofxj in each of the equations of
the systemxB + A−1

B ANxN = A−1
B b. The system hasm equations, each of which corresponds to a

basic variablexi, i ∈ B. For eachi ∈ B, the corresponding equation is

xi +
∑
j∈N

(
A−1

B aj

)
i
xj = (A−1

B b)i.

Consequently, when
(
A−1

B aj

)
i
≤ 0, increasingvj does not affect the non-negativity ofvi. On the other

hand, if
(
A−1

B aj

)
i
> 0, thenvj can only be increased to as much as

(A−1
B b)i

(A−1
B aj)i

.

Case 2a If
(
A−1

B aj

)
i
≤ 0 for all i ∈ B, then the LP is unbounded, because we can increasevj to be as

large as we want, while keepingv feasible. If this is the case, the simplex algorithm stops and
reportsunbounded.

Case 2b If there is somei ∈ B such that
(
A−1

B aj

)
i
> 0, then the new value ofvj can only be as large as

vj = min

{
(A−1

B b)i(
A−1

B aj

)
i

:
(
A−1

B aj

)
i
> 0

}
=

(A−1
B b)k(

A−1
B aj

)
k

.

Here, again using Bland’s rule, we choosek to be the least index which minimizes the fraction.

Knowing such ak, xk now leaves the basis andxj enters the basis:B = B ∪ {j} − {k}, N =
N ∪ {k} − {j}. We have a new vertex and can go to the next iteration.

3.4 Termination and running time

You may be having a few doubts:

1. How do we know that the algorithm terminates? (Either indicating unboundedness or stop with an
optimal vertex.) Can it loop forever?

2. If the algorithm terminates, how long does it take?

It turns out that without a specific rule of picking the entering and leaving variables, the algorithm
might loop forever. Since we are moving from vertex to vertex ofP , and there are only finitely many
vertices (≤

(
n
m

)
), if the algorithm does not terminate than it must cycle back to a vertex we have visited

before. See [4, 11] for examples of LPs where the method cycles. There are quite a few methods to
prevent cycling: theperturbation method[10], lexicographic rule[13], andsmallest subscript ruleor
Bland’s pivoting rule[5], etc.
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Thesmallest subscript rule, or Bland’s pivoting rule, simply says that we should pick the smallest
candidatej to leave the basis, and then smallest candidatei to enter the basis. That was the rule we chose
to present the simplex iteration in the previous section.

If each iteration increases the objective function positively, then there cannot be cycling. Thus,
we can only cycle around a set of vertices with the same cost. This only happens whenvj cannot be
increased at all, which means that the leaving candidatesi all satisfy the conditions that

(
A−1

B aj

)
i
> 0

andA−1
B b)i = 0. This is the case when the basic variablevi is also0: we have what called adegenerate

case. What happens is that the current vertex is at the intersection of more thann hyperplanes.

Theorem 3.2. Under the Bland’s pivoting rule, cycling does not happen.

Proof. Note that, for any basisB during the execution of the simplex algorithm, we have

cB − yT
BAB = cB − cT

BA−1
B AB = 0.

We thus have our first observation:

(i) For anyj ∈ B, cj − yT
Baj = 0, whereB is any basis.

Suppose cycling happens. During cycling, an indexj is “fickle” if aj enters some basis at some
point, and thus leaves some other basis at some other point.

Let p be the largest fickle index, whereap leaves some basisB and enters another basisB′ during
cycling. Supposeaq entersB in place ofap. Thus,q < p becauseq is also fickle. We make three basic
observations:

(ii) Becauseq entersB, q is the least index among1, . . . , n for which cq − yT
Baq < 0.

(iii) Becausep leavesB, p is the least index inB satisfying
(
A−1

B aq

)
p

> 0 and
(
A−1

B b
)
p

= 0.

(iv) Becausep entersB′, p is the least index among1, . . . , n satisfyingcp − yT
B′ap < 0.

(v) Sinceq < p, we havecq − yT
B′aq ≥ 0.

From (ii) and (v) we get

0 < (cq − yT
B′aq)− (cq − yT

Baq)
= yT

Baq − yT
B′aq

= cT
BA−1

B aq − yT
B′ABA−1

B aq

=
(
cT

B − yT
B′AB

) (
A−1

B aq

)
=

∑
r∈B

(
cT

r − yT
B′ar

) (
A−1

B aq

)
r

Thus, there is some indexr ∈ B where(
cT

r − yT
B′ar

) (
A−1

B aq

)
r

> 0. (2)

Consider three cases, all of which leads to contradiction.

• If r > p, thenr is not fickle, and thusr ∈ B′ also. This impliescr − yT
B′ar = 0 due to (i).

• If r = p, thencr − yT
B′ar < 0 because of (iv) and

(
A−1

B aq

)
r

> 0 because of (iii).
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• If r < p, thencr − yT
B′ar ≥ 0 because of (iv), and thuscr − yT

B′ar > 0 due to inequality (2).
Hence,r /∈ B′ because of (i). This meansr is also fickle. Thus,

(
A−1

B b
)
r

= 0 because
(
A−1

B b
)
r

is exactly the value of the coordinatevr of a vertex during cycling, which does not change its value.
But then, this means that

(
A−1

B aq

)
r
≤ 0 because of (iii).

It was an important longstanding open problem concerning the running time of the simplex method.
In 1972, Klee and Minty [21] constructed an example in which the simplex method goes through all
vertices of a polyhedron, showing that it is an exponential algorithm, under the assumption that we use
the largest coefficient rule.

Exercise 21 (Klee-Minty). Consider the following linear program.

min
∑m

j=1−10m−jxj

subject to
(
2
∑i−1

j=1 10i−jxj

)
+ xi + zi = 100i−1, i = 1, . . . ,m,

x ≥ 0, z ≥ 0

Show that, the simplex method using the largest coefficient rule performs(2m − 1) iterations before
terminating.

We can also pick thexj which increases the objective function the most, i.e. applying thelargest
increaserule. The largest increase rule does not fare any better as Jeroslow (1973, [16]) found a similar
exponential example. Since the largest coefficient rule takes less work, it is often preferred.

In practice, however, the simplex method works rather well for many practical problems. To explain
this phenomenon, researchers have tried to show that, under some certain probabilistic distributions
of linear programs, the simplex method takes a polynomial number of iterations on average. See, for
example, Borgwardt [6–9], Smale [27,28], Spielman and Teng [29–33].

3.5 The revised simplex method

The simplex method with a certain computation optimization is called therevised simplex method, as
briefly described below.

In a typical iteration of the method described in the previous section, we have to compute the follow-
ing vectors:

• dN = cN − cT
BA−1

B AN : this is the coefficient vector ofxN

• f = A−1
B aj (afterj is chosen): this is the coefficient (column) vector ofxj in the system

• g = A−1
B b: this is the vector on the right hand side.

If we knowA−1
B , we can actually get away with re-computing the inverseA−1

B and the productA−1
B AN

at each step by noticing that the difference between the oldAB and the newAB is only a replacement of
one column (ak) by another (aj).

Let B′ = B ∪ {j} − {k} be the new index set of the basis. Without loss of generality, assume the
leaving vectorak is the last column inAB. Noting thatABf = aj , it is not difficult to see that

A−1
B′ =


1 0 . . . f1

0 1 . . . f2

0 0
...

...
0 0 . . . fm


−1

A−1
B = F−1A−1

B .
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It is computationally very easy to computeF−1. In practical implementation, we do not have to even
computeA−1

B (which is very much subject to numerical errors). We can writeAB as anLU factor-
ization, then the desired vectors such asf , cT

BA−1
B AN , andg can be computed mostly by “backward

substitution.” For instance, we can solve the systemABf = aj for f , solveABg = b for g, and so on.
We will not delve deeper into this. The key idea is that, by storing the oldA−1

B , it is easy (and quick)
to compute the newA−1

B .

3.6 Summary of the simplex method

In the following summary, we use Bland’s pivoting rule.

1. Start from a vertexv of P .

2. Determine the basic index setB and free index setN . LetyT
B = cT

BA−1
B .

3. If
(
cT
N − yT

Baj

)
≥ 0, then the optimal value isyT

Bb. We have found an optimal vertexv. STOP!

4. Else, let
j = min

{
j′ ∈ N :

(
cj′ − yT

Baj′
)

< 0
}

.

5. If A−1
B aj ≤ 0, then report UNBOUNDED LP and STOP!

6. Otherwise, pick smallestk ∈ B such that
(
A−1

B aj

)
k

> 0 and that

(A−1
B b)k(

A−1
B aj

)
k

= min

{
(A−1

B b)i(
A−1

B aj

)
i

: i ∈ B,
(
A−1

B aj

)
i
> 0

}
.

7. xk now leaves the basis andxj enters the basis:B = B ∪ {j} − {k}, N = N ∪ {k} − {j}.
GO BACK to step 3.

We thus have the following fundamental theorem of the simplex method.

Theorem 3.3. Given a linear program under standard form and a basic feasible solution, the simplex
method reports “unbounded” if the LP has no optimal solution. Otherwise, the method returns an
optimal solution at a vertex.

Exercise 22.We discussed the simplex method for the min version of the standard form. Write down
the simplex method for the max version, but do not use the fact thatmax cTx = min(−c)Tx. Basically,
I want you to reverse some of themin andmax, and inequalities in Section 3.6.

3.7 The two-phase simplex method

So far, we have assumed that we can somehow get a hold of a vertex of the polyhedron. What if the
polyhedron is empty? Even when it is not, how do we find a vertex to start the simplex loop? This
section answer those questions.

Let P = {x |Ax = b,x ≥ 0}. By multiplying some equation(s) by−1, we can assume thatb ≥ 0.
As usual,A = (aij) is anm × n matrix. LetA′ =

[
A I

]
, thenA′ is anm × (n + m) matrix. Let

P ′ = {z |A′z = b, z ≥ 0}. (Note that the vectors inP ′ lie in Rn+m.) It is straightforward to see that the
linear programmin{cTx | x ∈ P} is feasible if and only if the linear programmin {

∑m
i=1 zn+i | z ∈ P ′}

is feasible with optimal value0. Moreover, letz be any vertex ofP ′, and letx ∈ Rn be formed by the
first n coordinates ofz, thenx is a vertex ofP .

It is easy to see thatz = [0, . . . , 0, b1, . . . , bm] is a vertex ofP ′. We can start the simplex algorithm
from this vertex and find an optimal vertexz∗ of the second linear program, which induces an optimal
vertex of the first linear program.
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Exercise 23.Solve the following linear program using the Simplex method.

max 3x1 + x2 + 5x3 + 4x4

subject to 3x1 − 3x2 + 2x3 + 8x4 ≤ 50
4x1 + 6x2 − 4x3 − 4x4 ≤ 40
4x1 − 2x2 + x3 + 3x4 ≤ 20

x1, x2, x3, x4 ≥ 0.

Exercise 24.Solve the following linear program using the simplex method:

max 3x1 + 6x2 + 9x3 + 8x4

subject to x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1, x2, x3, x4 ≥ 0.

Exercise 25.Show that the following linear program is infeasible

max x1 − 3x2 + 2x3

subject to x1 + 2x2 + 3x3 ≤ 5
2x1 + 3x2 + 2x3 ≤ 4

2 ≤ x1 ≤ 4, x2 ≤ −1, 3 ≤ x3 ≤ 8

Exercise 26.Show that the following linear program is feasible but unbounded

min x1 − 3x2 + 2x3

subject to x1 + 2x2 + x3 ≤ 2
2x1 + x2 + 4x3 ≤ 4

0 ≤ x1 ≤ 2, x2 ≤ 0,−2 ≤ x3 ≤ 2

Exercise 27. In this exercise, we devise a way to solve the linear programmax{cTx | Ax ≤ b}
“directly,” i.e. without first converting it to standard form. Recall thatP = {x | Ax ≤ b} is pointed iff
rank(A) = n. More specifically, from Exercise 8,v ∈ P is a vertex iff rank

{
a(i) | a(i)v = bi

}
= n.

Basically, there must be a subsystemABx ≤ b with n inequalities for whichAB has full rank and
ABv = bB.

1. Write A =
[
AB

AN

]
, then our linear program is equivalent tomax{cTx | ABx ≤ bB, ANx ≤

bN}. Intuitively, if c is in the cone generated by the row vectors ofAB, then v is optimal.
(Going alongc will take us outside of the polyhedron.) Formally, letuB be the vector such that
AT

BuB = c. Prove that, if uB ≥ 0, thenv is optimal.

2. Next, ifv is not optimal, we try to find a rayv + αz (α ≥ 0) to move along so as to improve the
objective value. The ray should be on an edge of the polyhedron. If the ray is entirely inP , then
the program is unbounded. Otherwise, we will meet a better vertex and thus can go to the next
iteration.

An edge incident tov is on n − 1 of the n hyperplanesABx = bB. Hence,z is the vector
perpendicular ton − 1 of the row vectors ofAB. The vectora(i) thatz is not perpendicular to
should be such thatui < 0. Moreover,z should point away froma(i).

Formally, using Bland’s pivoting rule, leti∗ be the least index so thatui∗ < 0. Let z be the vector
such thata(i)z = 0 for all i ∈ B −{i∗}, and thata(i∗)z = −1. Then,v + αz (α ≥ 0) traverses an
edge ofP . Show that there is uniquely one such vectorz.

17



3. Supposea(i)z ≤ 0,∀i ∈ [m]. Show that the linear program is unbounded.

4. Otherwise, letα be the largestα such thatv + αz is still in P , namely

α = min
i∈[n]

{
bi − a(i)v

a(i)z
| zTa(i) > 0

}
.

Let k∗ be the least index attaining this minimum.

Replacev by v + αz. Show that the newv is still a vertex ofP .

ReplaceB by B ∪ {k∗} − {i∗}. Go back to step 1.

Finally, show that the above algorithm terminates. (Hint: suppose the algorithm does not terminate.
During cycling, supposeh is the highest index for whichh as been removed from some basisB, and
thus it is added during cycling to some basisB∗. Show thatuBABzB∗ > 0, which implies that there is
somei ∈ B for which (uB)i(a(i)zB∗) > 0. Derive a contradiction.)

Jumping ahead a little bit, we have the following exercises.

Exercise 28.State and prove a strong duality theorem from the above algorithm wheremax{x | Ax ≤
b} is the primal program.

Exercise 29.Prove a variance of Farkas’ lemma from the above algorithm.

Exercise 30. Describe and prove necessary results for a 2-phase simplex method based on the above
algorithm.

4 Feasibility and the fundamental theorem of linear inequalities

Definition 4.1 (Cones).A setC of points in a Euclidean space is called a (convex)coneif it is closed
under non-negative linear combinations, namelyαx + βy ∈ C wheneverx,y ∈ C, andα, β ≥ 0.

Definition 4.2 (Finitely generated cones).Given vectorsa1, . . . ,an in some Euclidean space, the set

cone{a1, . . . ,an} := {α1a1 + · · ·+ αnan | αj ≥ 0,∀j ∈ [n]}

is obviously a cone, and is called the cone generated by the vectorsaj . A cone generated this way is said
to befinitely generated.

We give two proofs of the following “separation theorem.”

Theorem 4.3 (Fundamental theorem of linear inequalities).Leta1,a2, . . . ,an,b be vectors inRm.
Then, exactly one of the following statements holds:

(1) b is in the cone generated by some linearly independent vectors froma1, . . . ,an.

(2) there exists a hyperplane{x | cTx = 0} containingr − 1 independent vectors froma1, . . . ,an,
such thatcTb < 0, andcTaj ≥ 0,∀j ∈ [n], wherer = rank{a1, . . . ,an,b}.

Direct proof. We first show that the two statements are mutually exclusive. Supposeb =
∑

αjaj, with
αj ≥ 0, thencTb =

∑
αjcTaj ≥ 0 whenevercTaj ≥ 0,∀j. Thus(1) and(2) are mutually exclusive.

To show that one of them must hold, we shall describe a procedure which will either produce a
non-negative combination as in(1), or a vectorc satisfying(2).
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Note that ifb is not in the span of theaj, then there is a hyperplane{x | cTx = 0} which contains
all theaj but does not containb. That plane serves our purpose. (Such vectorc lies in the null space
of span{{a1, . . . ,an}} but not in the null space of span{{a1, . . . ,an,b}}.) Hence, we can assume that
r = rank{a1, . . . ,an}. In fact, we can also assumer = m, because ifr < m, then we can add into
{a1, . . . ,an} a few vectors to make the rank equalm.

Now, consider the following procedure:

(0) Choosem linearly independent vectorsB = {aj1 , . . . ,ajm}

1. Writeb =
∑

i αjiaji . If αji ≥ 0,∀i ∈ [m], then(1) holds. STOP.

2. Otherwise, chose the smallestp ∈ {j1, . . . , jm} so thatαp < 0. Let {x | cTx = 0} be the
hyperplane spanned bym− 1 vectorsB \ {ap}, where we normalizec such thatcTap = 1. It is
easy to see that such ac uniquely exists and thatcTb < 0.

3. If cTa1, . . . , cTan ≥ 0, then(2) holds. STOP.

4. Otherwise, choose the smallestq such thatcTaq < 0. ReplaceB by B ∪ {aq} − {ap}, and go
back to step 1.

We shall show that the procedure must stop. Note thataq is independent of the vectorsB − {ap}, since
otherwisecTaq = 0, a contradiction. Thus, when replacingB by B ∪ {aq} − {ap} and go back to step
1 we still have a set of independent vectors.

To this end, letB0 denote the originalB, andBi the setB after theith iteration. Consider anyBk.
If the procedure does not terminate, then there must be a smallestl > k such thatBl = Bk, because the
number of differentB’s is at most

(
n
m

)
.

Consider the highest indexh such thatah has been removed fromB at the end of one of the iterations
k, k + 1, . . . , l − 1. Whether or notah was inBk, there must be some iterationss andt, k ≤ s, t < l, in
whichah was removed fromBs andah was added intoBt. It is easy to see that

Bs ∩ {aj | j > h} = Bt ∩ {aj | j > h} = Bk ∩ {aj | j > h}.

Without loss of generality, assumeBs = {aj1 , . . . , ajm}. Write b =
∑m

i=1 αjiaji . Let c̄ be the vectorc
at iterationt. Then,

c̄Tb < 0,

as we have shown. However,

c̄Tb =
m∑

i=1

αji c̄
Taji > 0,

because

• whenji < h, we haveαji ≥ 0 becauseh was the least index for whichαh < 0 so thatah is to be
removed fromBs, andc̄Taji ≥ 0 becausēc is the vectorc at the point we addedah into B, and
at that pointh was the least index such thatc̄Taji < 0.

• whenji = h, αji < 0 andc̄Taji < 0.

• whenji > h, c̄Taji = 0 because of step 2.

We got a contradiction!

The fundamental theorem basically says that eitherb is in the cone generated by theaj , or it can be
separatedfrom theaj by a hyperplane containingr − 1 independentaj . The following result states the
same fact but it is less specific.
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Lemma 4.4 (Farkas’ lemma).The systemAx = b,x ≥ 0 is feasible iff the systemATy ≥ 0,bTy < 0
is infeasible.

Constructive proof from the simplex algorithm.If ATy ≥ 0,bTy < 0 is feasible, it is easy to see that
Ax = b,x ≥ 0 is infeasible. We will show the converse: assumingAx = b,x ≥ 0 is infeasible, we
want to find a vectory such thatATy ≥ 0,bTy < 0.

Let A′ =
[
A I

]
, thenA′ is anm × (n + m) matrix. LetP ′ = {z |A′z = b, z ≥ 0}. Recall the

two-phase simplex method, where we noted thatAx = b,x ≥ 0 is infeasible if and only if the linear
program

min

{
dTz =

m∑
i=1

zn+i | z ∈ P ′

}
is feasible with optimal value> 0. Let z∗ be an optimal vertex ofP ′ returned by the simplex method.
Let A′

B be the corresponding basis, which consists of some columns fromA and some columns fromI.
When the simplex method returnsz∗, two conditions hold

dTz∗ = yT
Bb > 0

dN − yT
BA′

N ≥ 0,

whereyT
B = dT

BA′−1
B . It is easy to see that the vector−yT

B serves our purpose.

Proof from the fundamental theorem of linear inequalities.Geometrically, this is saying that ifb is in
the cone generated by the column vectors ofA iff there is no hyperplane separatingb from the column
vectors ofA. It should be no surprise that we can derive Farkas’ lemma and its variations from the
fundamental theorem. Below is a sample proof.

Necessity is obvious. For sufficiency, assume the first system is infeasible, i.e.b is not in the cone
generated by the column vectorsa1, . . . ,an of A. By the fundamental theorem, there is a vectorc such
thatcTaj ≥ 0,∀j, andcTb < 0. Obviously,y = c is a solution to the second system.

Exercise 31 (Farkas’ lemma (variation)). The systemAx ≤ b is infeasible iff the system

ATy = 0,bTy < 0,y ≥ 0

is feasible.

Exercise 32 (Gordan, 1873).Show that the systemAx < 0 is unsolvable iff the system

ATy = 0,y ≥ 0,y 6= 0

is solvable.

Exercise 33 (Stiemke, 1915).Show that the systemAx = 0,x > 0 is unsolvable iff the system

ATy ≥ 0,ATy 6= 0

is solvable.

Exercise 34 (Ville, 1938).Show that the systemAx < 0,x ≥ 0 is unsolvable iff the system

ATy ≥ 0,y ≥ 0,y 6= 0

is solvable.
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Farkas’ lemma deals with non-strict inequalities. There is a even more general result dealing with
non-strict and strict inequalities, due to Fourier (1826, [15]), Kuhn (1956, [23]), and Motzkin (1936,
[25]).

Theorem 4.5 (Motzkin’s transposition theorem). The system

Ax < b, Bx ≤ c

is feasible if and only if

y, z ≥ 0, ATy + BTz = 0, ⇒ bTy + cTz ≥ 0, (3)

and
y, z ≥ 0, ATy + BTz = 0, y 6= 0, ⇒ bTy + cTz > 0. (4)

Proof. Note that (3) is equivalent to the fact that

y, z ≥ 0,
[
AT BT

] [y
z

]
= 0,

[
bT cT

] [y
z

]
< 0

is infeasible, and (4) is equivalent to the fact that

y, z ≥ 0,
[
AT BT

] [y
z

]
= 0, y 6= 0,

[
bT cT

] [y
z

]
≤ 0 (5)

is infeasible.
For necessity, suppose there is somex such thatAx < b, andBx ≤ c. WhenATy + BTz = 0,

we have0 = xTATy + xTBTz ≤ bTy + cTz, (3) is proved. Wheny 6= 0, we have strict inequality
and (4) is shown.

For sufficiency, (3) and Exercise 31 imply that there is anx with Ax ≤ b and Bx ≤ c. Let
a1, . . . ,am be the row vectors ofA. Condition (5) implies that, for eachi ∈ [m], the system

y, z ≥ 0,
[
AT BT

] [y
z

]
= −aT

i ,
[
bT cT

] [y
z

]
≤ −bi (6)

is infeasible. Or, the system

y, z, w̄ ≥ 0,

[
AT BT 0
bT cT 1

]y
z
w̄

 =
[
−aT

i

−bi

]
(7)

is infeasible. By Farkas’ lemma, this is equivalent to the fact that the systemA b
B c
0 1

[v
v̄

]
≤ 0,

[
−ai −bi

] [v
v̄

]
> 0 (8)

is feasible. SinceAx ≤ b,Bx ≤ c,aix ≤ bi, we have

A(x + v) ≤ (−v̄ + 1)b
B(x + v) ≤ (−v̄ + 1)c
ai(x + v) < (−v̄ + 1)bi

−v̄ + 1 ≥ 1.

Let x(i) = (x + v)/(1− v̄), then we haveAx(i) ≤ b,Bx(i) ≤ c,aix(i) < bi. The barycenter of the
x(i) is anx we are looking for.
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Corollary 4.6 (Gordan, 1873). Ax < 0 is infeasible iffATy = 0,y ≥ 0,y 6= 0 is feasible.

Corollary 4.7 (Stiemke, 1915).Ax = 0,x > 0 is infeasible iffATy ≥ 0,ATy 6= 0 is feasible.

Corollary 4.8 (Ville, 1938). Ax < 0,x ≥ 0 is infeasible iffATy ≥ 0,y ≥ 0,y 6= 0 is feasible.

Corollary 4.9 (Carver, 1921). Ax < b is feasible iffy 6= 0,y ≥ 0,ATy = 0,bTy ≤ is infeasible.

Exercise 35.In this exercise, we devise a method to either find a solution to the systemAx = b, x ≥ 0
(A is anm × n matrix of rankm), or gives proof that the system in infeasible. The method consists of
the following steps:

1. Start with any set ofm linearly independent columnsAB of A. Rewrite the system as

xB + A−1
B ANxN = A−1

B b, x ≥ 0.

2. If A−1
B b ≥ 0, then the system is feasible withxB = A−1

B b, andxN = 0.
ReportFEASIBLE andSTOP.

3. Else, letp = min{i | i ∈ B, (A−1
B b)i < 0}.

For eachi ∈ B, let r(i) be theith row vector of them× (n−m) matrixA−1
B AN .

Consider the equation corresponding toxp:

xp + r(p)xN = (A−1
B b)p.

4. If r(p) ≥ 0, then the system is infeasible. ReportINFEASIBLE andSTOP.

5. Else, letq = min{j | j ∈ N, r
(p)
j < 0}, let B = B ∪ {q} − {p}, and go back to step1.

Questions:

(a) Show that the procedure terminates after a finite number of steps.

(b) Show that the procedure reports feasible/infeasible iff the system is feasible/infeasible

(c) Prove Farkas’ lemma from this procedure. Specifically, show that the systemAx = b, x ≥ 0 is
feasible iff the systemATy ≥ 0,bTy < 0 is infeasible.

Exercise 36.Consider the systemAx = b,x ≥ 0, whereA is anm×n matrix, and rank(A) = m. We
shall try devise a procedure to test if the system is feasible, slightly different than what we have seen so
far. For anyj = 1, . . . , n, let aj denote thejth column vector ofA.

(0) B = {j1, . . . , jm} such that{aj | j ∈ B} form a basis forRm.

1. Writeb =
∑

j∈B αjaj . This is unique.

2. If αj ≥ 0,∀j ∈ B, then STOP. We have found a solution:xj = αj ,∀j ∈ B, xj = 0,∀j /∈ B.

3. Otherwise, pick the smallestp ∈ B such thatαp < 0. We want to find aq ∈ [n] − B such that
after replacingap by aq, we getαq ≥ 0. (The newB has to also form a basis.) Consider any
h ∈ [n] − B. What is the coefficient ofah when expressingb as a linear combination of vectors
in AB ∪ {ah} − {ap}? How do we know if this is even a basis? Expressah =

∑
j∈B βjaj , then

AB ∪ {ah} − {ap} is a basis iffβp 6= 0. Moreover,

ap =
∑

j∈B,j 6=p

(−βj/βp)aj + (1/βp)ah.
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Thus, the coefficient ofah when expressingb as a linear combination ofAB ∪ {ah} − {ap} is
αp/βp. We want this to be positive. If there are many suchh, we pick the smallest indexed one.
If there are none, we should have a certificate for the system being infeasible. The infeasibility is
quite easy to see, since ifb =

∑
j∈[n] xjaj , xj ≥ 0,∀j, and all theβ(h)

p are none negative, then
αp ≥ 0.

In conclusion, if there is no suchh, then the system is infeasible.

4. Otherwise, pick a smallestq for whichβq < 0 and exchangep andq. Then, go back to step one.

Questions:

(i) Prove that this procedure will terminate.

(ii) If the system terminates in step 3, find a vectory such thatATy ≤ 0,bTy > 0 (Farkas’ lemma).

5 Duality

5.1 The basics

Let us consider the following LP:

min x1 − 2x2 + 4x3

subject to x1 − 3x2 = 3
−2x1 + x2 + 2x3 = 4
x1 + x3 = −3

x1, x2, x3 ≥ 0 .

Adding the first two equalities and two times the third we get

(x1 − 3x2) + (−2x1 + x2 + 2x3) + 2(x1 + x3) = 3 + 4− 2 · 3,

or
x1 − 2x2 + 4x3 = 1.

This is exactly the objective function. Hence, any feasible solution would also be an optimal solution,
and the optimal objective value is1.

Although in general we will not be that lucky, we could and should try to find a lower bound for the
objective function. Basically, when trying to minimize something, we would like to know how much
we could minimize it to. If no lower bound exists for a minimization problem, then the LP isinfeasible.
Consider the following LP:

min 3x1 − 2x2 + 4x3 + x4

subject to x1 − 3x2 + 2x4 = 3
−2x1 + x2 + 2x3 = 4
−2x1 + x2 + 2x3 − x4 = −2

x1, x2, x3, x4 ≥ 0.

(9)

Suppose we multiply theith equality by a numberyi, then add them all up we get

y1(x1 − 3x2 + 2x4) + y2(−2x1 + x2 + 2x3) + y3(−2x1 + x2 + 2x3 − x4) = 3y1 + 4y2 − 2y3.

Equivalently,

(y1 − 2y2 − 2y3)x1 + (−3y1 + y2 + y3)x2 + (2y2 + 2y3)x3 + (2y1 − y3)x4 = 3y1 + 4y2 − 2y3.
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Maximization problem Minimization problem

Constraints Variables
ith constraint≤ ith variable≥ 0
ith constraint≥ ith variable≤ 0
ith constraint= ith variable unrestricted

Variables Constraints
jth variable≥ 0 jth constraint≥
jth variable≤ 0 jth constraint≤

jth variable unrestricted jth constraint=

Table 1: Rules for converting between primals and duals.

So, if

y1 − 2y2 − 2y3 ≤ 3
−3y1 + y2 + y3 ≤ −2

2y2 + 2y3 ≤ 4 (10)

2y1 − y3 ≤ 1,

then

3x1 − 2x2 + 4x3 + x4

≥ (y1 − 2y2 − 2y3)x1 + (−3y1 + y2 + y3)x2 + (2y2 + 2y3)x3 + (2y1 − y3)x4

= 3y1 + 4y2 − 2y3.

Consequently, for every triple(y1, y2, y3) satisfying (10), we have a lower bound3y1 +4y2−2y3 for the
objective function. Since we would like the lower bound to be as large as possible, finding a good triple
is equivalent to solving the following LP:

max 3y1 + 4y2 − 2y3

subject to y1 − 2y2 − 2y3 ≤ 3
−3y1 + y2 + y3 ≤ −2

2y2 + 2y3 ≤ 4
2y1 − y3 ≤ 1.

(11)

The LP (9) is called theprimal LP, while the LP (11) is thedual LPof (9).
Applying the principle just described, every LP has adual. We list here several primal-dual forms.

The basic rules are given in table 1.
In standard form, the primal and dual LPs are

min cTx (primal program)

subject to Ax = b

x ≥ 0

max bTy (dual program)

subject to ATy ≤ c no non-negativity restriction!.
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In canonical form, the primal and dual LPs are

min cTx (primal program)

subject to Ax ≥ b

x ≥ 0

max bTy (dual program)

subject to ATy ≤ c

y ≥ 0.

Exercise 37.Show that the standard and canonical primal-dual forms above are equivalent.

Exercise 38.Why in canonical form the dual program has the non-negativity constraints?

Exercise 39.Write the dual program of an LP in the max version of the standard form.

Exercise 40.Write the dual program of an LP in the max version of the canonical form.

Exercise 41.Show that the dual program of the dual program is the primal program.

Exercise 42.Write the dual program of the following linear programs:

max{cTx |Ax = b}

min{cTx |Ax ≤ b}

min{cTx |Ax ≥ b}

min{cTx |A1x = b1,A2x ≤ b2,A3x ≥ b3}

Exercise 43.Write the dual program of the following linear program:

max aTx + bTy + cTz
subject to A11x + A12y + A13z = d

A21x + A22y + A23z ≤ e
A31x + A32y + A33z ≥ f
x ≥ 0,y ≤ 0.

5.2 Primal dual relationship

Consider the standard form of the primal and dual programs:

Primal LP: min{cTx |Ax = b,x ≥ 0},
Dual LP: max{bTy |ATy ≤ c}.

We have seen, as an example in the previous section, howbTy is the lower bound for the optimal
objective value of the primal LP. Let us formalize this observation:

Theorem 5.1 (Weak Duality). Supposex is primal feasible, andy is dual feasible for the LPs defined
above, then

cTx ≥ bTy.

In particular, if x∗ is an optimal solution to the primal LP, andy∗ is an optimal solution to the dual LP
as defined above, then

cTx∗ ≥ bTy∗.
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Proof. Noticing thatx ≥ 0, we have

cTx ≥
(
ATy

)T
x = (yTA)x = yT (Ax) = yTb.

Exercise 44. State and prove the weak duality property for the primal and dual programs written in
canonical form:

Primal LP: min{cTx |Ax ≥ b,x ≥ 0},
Dual LP: max{bTy |ATy ≤ c,y ≥ 0}.

Would your proof still work if one or both of the non-negativity constraints forx andy were removed?

The following result is almost immediate from the previous proof and Theorem 5.5, yet it is extremely
important:

Corollary 5.2 (Complementary Slackness - standard form).Letx∗ andy∗ be feasible for the primal
and the dual programs (written in standard form as above), respectively. Then,x∗ andy∗ are optimal
for their respective LPs if and only if (

c−ATy∗)T x∗ = 0. (12)

Equation (12) can be written explicitly as follows:(
cj −

m∑
i=1

y∗i aij

)
x∗

j = 0, ∀j = 1, . . . , n.

Also, since
(
c−ATy∗)T ≥ 0 andx∗ ≥ 0, we can write the condition as

for all j = 1, . . . , n, if cj −
m∑

i=1

y∗i aij > 0 then xj = 0, and vice versa.

After doing Exercise 44, we get the following easily:

Corollary 5.3 (Complementary Slackness - canonical form).Given the following programs

Primal LP: min{cTx |Ax ≥ b,x ≥ 0},
Dual LP: max{bTy |ATy ≤ c,y ≥ 0}.

Let x∗ and y∗ be feasible for the primal and the dual programs, respectively. Then,x∗ and y∗ are
optimal for their respective LPs if and only if(

c−ATy∗)T x∗ = 0, and (b−Ax)T y∗ = 0. (13)

Again, condition (13) can be written explicitly as(
cj −

m∑
i=1

y∗i aij

)
x∗

j = 0, ∀j = 1, . . . , n,

and bi −
n∑

j=1

x∗
i aij

 y∗i = 0, ∀i = 1, . . . ,m.
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Exercise 45. Derive the complementary slackness condition for each of the following LPs and their
corresponding duals.

(i) min{cTx |Ax = b}.

(ii) max{cTx |Ax ≤ b}.

The weak duality property already tells us some thing about the unboundedness of the LPs involved:

Corollary 5.4. If the primal and the dual are both feasible, then they are both bounded, and thus both
have optimal solutions.

In fact, we can say much more than that. The relationship between the primal and the dual is best
illustrated by the following table:

Dual
Feasible Infeasible

Optimal Unbounded
Feasible Optimal X O O

Primal Unbounded O O X
Infeasible O X X

The X’s are possible, the O’s are impossible to happen. The previous corollary already proved four
entries in the table, namely if both the dual and the primal are feasible, then they both have optimal
solutions. We shall show the rest of the O entries by a stronger assertion that if either the dual or the
primal has an optimal solution, then the other has an optimal solution with the same objective value.
(Notice that the dual of the dual is the primal.)

Theorem 5.5 (Strong Duality). If the primal LP has an optimal solutionx∗, then the dual LP has an
optimal solutiony∗ such that

cTx∗ = bTy∗.

Proof. By weak duality, we only need to find a feasibley∗ such thatcTx∗ = bTy∗. Without loss of
generality, assumex∗ is a vertex of the polyhedronP = {x |Ax = b,x ≥ 0} returned by the simplex
algorithm, whereA has dimensionm × n, with m ≤ n, and rank(A) = m. Let AB,AN denote the
parts ofA corresponding to the basis and non-basis columns, i.e.AB is anm×m invertible matrix and
xj = 0,∀j ∈ N . When the simplex algorithm stop, the cost ofx∗ is

cTx∗ = yT
Bb,

whereyT
B = cT

BA−1
B . It seems thatyB is a good candidate fory∗. We only need to verify its feasibility:

ATyB =
[
AT

B

AT
N

]
yB =

[
cB

AT
NyB

]
≤
[
cB

cN

]
.

The last inequality holds because, when the simplex method outputs the optimum vertex, we havecT
N −

yT
BAN ≥ 0.

Exercise 46. Consider the linear programmin{cTx | Ax ≥ b, I′x ≥ 0}, where

[
A
I′

]
is a square

matrix, andI′ is a subset of rows of an identity matrix. Supposex∗ is the unique optimal solution to this
linear program that satisfies all constraints with equality. Construct a dual solutiony∗ that certifies the
optimality ofx∗.
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Exercise 47. Prove that the systemAx ≤ b can be partitioned into two subsystemsA1x ≤ b1 and
A2x ≤ b2 such that

max{cTx |A1x < b1, A2x = b2} = min{yT
2 b2 | y2 > 0, AT

2 y2 = c}.

Use this result to prove the Fourier-Motzkin transposition theorem (Theorem 4.5).

Exercise 48.Given a systemAx ≤ b of linear inequalities, describe a linear program whose optimal
solution immediately tells us which inequalities amongAx ≤ b are always satisfied with equality.

Exercise 49.Prove the strong duality theorem using Farkas’ lemma instead of using the simplex algo-
rithm as we have shown.

5.3 Intepreting the notion of dualily

There are many ways to intepret the meaning of primal-dual programs. In economics, for instance, dual
variables correspond toshadow prices. In optimization, they correspond toLagrange multipliers. We
briefly give a geometric intepretation here.

Consider our favorite primal programmin{cTx |Ax = b,x ≥ 0}, and its dualmax{bTy |ATy ≤
c}. A feasible solutionx to the primal program simply indicates thatb is in the cone generated by the
column vectorsaj of A. At an optimal vertexx∗, there arem linearly independent columnsaj1 , . . . ,ajm

of A such thatb =
∑m

i=1 x∗
ji
aji . Let d = cTx =

∑m
i=1 x∗

ji
cji .

TBD:

6 More on polyhedral combinatorics (very much incomplete)

6.1 Decomposing a polyhedron

Definition 6.1 (Polyhedral cones).A coneC is polyhedralif C = {x |Ax ≤ 0} for some real matrix
A, i.e. C is the intersection of finitely many linear half spaces.

Theorem 6.2 (Farkas-Minkowski-Weyl). A convex cone is polyhedral if and only if it is finitely gener-
ated.

Proof. Let C = cone{a1, . . . ,an}, i.e. C is finitely generated. We shall show thatC is polyhedral.
Supposeaj ∈ Rm,∀j. Without loss of generality, assume that theaj spanRm. (If not, we can always
extend a half-space in the span of theaj to a half-space ofRm.) If C = Rm, then there is nothing
to show. Otherwise, letb be a vector not inC, then by the fundamental theorem there is a hyperplane
{x | cTx = 0} containingm − 1 independent vectors from{a1, . . . ,an} such thatcTaj ≥ 0 for all j.
In other words, theaj belongs to a half space defined byc. The number of such half-spaces is at most(

n
m−1

)
. It is easy to see thatC is the intersection of all such half-spaces.

Conversely, consider a polyhedral coneC = {x | Ax ≤ 0}. Let a1, . . . ,am denote the row vectors
of A, thenC is the intersection of the half-spaces{x | aT

i x ≤ 0}. As we have just shown above, there
is a matrixB with row vectorsb1, . . . ,bk such that

cone(a1, . . . ,am) = {y | By ≤ 0}.

In particular,bT
j ai ≤ 0,∀i, j, sinceai ∈ cone(a1, . . . ,am). Thus,Abj ≤ 0,∀j.

We shall show that
cone(b1, . . . ,bk) = {x |Ax ≤ 0}.

Considerx =
∑

j αjbj , whereαj ≥ 0,∀j. Then,Ax =
∑

j αjAbj ≤ 0. Conversely, consider a vector
x such thatAx ≤ 0. Assumex /∈ cone(b1, . . . ,bk), then the fundamental theorem implies that there is
a vectorc such thatcTx > 0 andBc ≤ 0. Thusc ∈ cone(a1, . . . ,am), implying thatc can be written
as a non-negative combinationc =

∑
i βiai. But thencTx =

∑
i βiaix ≥ 0, a contradiction.
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Exercise 50 (Finite basis theorem for polytopes).Show that a set of points is a polytope if and only if
it is the convex hull of finitely many vectors.

Exercise 51 (Decomposition theorem for polyhedra).Show that, a setP of vectors in a Euclidean
space is a polyhedron if and only ifP = Q + C for some polytopeQ and some polyhedral coneC.

6.2 Faces and facets

Let P = {x |Ax ≤ b}. Let c be a non-zero vector, andd = max{cTx | x ∈ P}. Then the hyperplane
cTx = d is called asupporting hyperplaneof P . Let H be a supporting hyperplane ofP , thenH ∩ P is
called afaceof P . For convenience,P is also called a face of itself. Basically, a face can be thought of
as the set of optimal solution to some linear program onP . (P is the set of solutions whenc = 0.)

Exercise 52.Show thatF is a face ofP if and only if F 6= ∅ andF = {x | x ∈ P, A′x = b′} for some
subsystemA′x ≤ b′ of Ax ≤ b.

Exercise 53.Show that

(i) P has finitely many faces

(ii) Each face is a non-empty polyhedron

(iii) If F is a face ofP , thenF ′ ⊆ F is a face ofF iff F ′ is a face ofP .

Exercise 54.A facetis a maximal face other thanP . Show that the dimension of every facet is one less
than the dimension ofP .

TBD:

7 The Ellipsoid Algorithm

We briefly sketch the idea of the Ellipsoid algorithm by Khachian in this section. What we will need
in designing a variety of approximation algorithms is a way to find optimal solution to linear programs
with an exponential number of constraints. The notion of aseparation oraclewill sometimes help us
accomplish this task.

Given a positive definite matrixD of ordern and a pointz ∈ Rn, the set

E(z,D) = {x | (x− z)TD−1(x− z) ≤ 1}

is called anellipsoidwith centerz.

Exercise 55. Show thatE(z,D) = D1/2E(0, I) + z. In other words, every ellipsoid is an affine
transformation of the unit sphereE(0, I).

The basic ellipsoid algorithm finds a pointz in the polyhedronP = {Ax ≤ b}, or reports thatP is
empty. The algorithm runs in polynomial time. To use the ellipsoid algorithm to solve linear programs,
we can add appropriate upper and lower bounds on the objective function as constraints, then do a binary
search. (More details on this later.)

In the following algorithm, we assume that the polyhedron is full-dimensional and bounded, and that
computation with inifite precisions can be carried out. Letν be the maximum number of bits required
to describe a vertex ofAx ≤ b. (We can setν = n2φ, whereφ is the maximum number of bits
required to describe a constraint in the systemAx ≤ b.) Setr = 2ν . ELLIPSOID ALGORITHM(A,

b)
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1: Start with the ellipsoidE0 = E(0, r2I) which containsP .
2: k = 0
3: while The centerzk of Ek is not inP do
4: if Vol(Ek) ≤ Vol(P ) then
5: (since2−2nν ≤ Vol(P ), we can check if Vol(Ek) ≤ 2−2nν instead)
6: Return INFEASIBLE

7: end if
8: Find a constrainta(i)x ≤ bi violated byzk

(Note that the plaina(i)x ≤ bi is a hyperplane separatingzk from the polyhedron:

a(i)x ≤ bi < a(i)zk

for all x ∈ P .)
9: Let Ek+1 be the minimum ellipsoid containing the halfEk ∩ {x | a(i)x ≤ a(i)zk}.

(Note thatP ⊆ Ek+1, still.)
10: k ← k + 1
11: end while
12: Return zk

The analysis of the ellipsoid algorithm is based on the following theorem, whose proof can be found
in [26].

Theorem 7.1.LetE = E(z,D) be an ellipsoid inRn, and leta be a vector inRn. LetE′ be an ellipsoid
with minimum volume containingE ∩ {x | aTx ≤ aTz}. Then,E′ = E(z′,D′), where

z′ = z− 1
n + 1

Da√
aTDa

(14)

D′ =
n2

n2 − 1

(
D− 2

n + 1
DaaTD
aTDa

)
. (15)

In particular, E′ is unique. Furthermore,

Vol(E′) < e−
1

2n+2 Vol(E).

From the theorem, it can be shown that the number of iterations of the ellipsoid algorithm is at
mostN = 16n2ν. Note thatN does not depend on the number of constraints of the systemAx ≤ b.
Consequently, the running time of the algorithm would still be polynomial if we have a polynomial time
procedure to confirm ifzk ∈ P , and otherwise return a separation hyperplane separatingP from zk.
Such a procedure is called aseparation oracle.

Exercise 56.Suppose we use the ellipsoid method to solve a linear program whose corresponding poly-
hedron isP = {x | Ax ≤ b}, which is pointed. The optimal solutionx∗ returned by the ellipsoid
algorithm may not be a vertex ofP . How do we find an optimal vertex ofP efficiently fromx∗?

Example 7.2.TheMINIMUM -COST ARBORESCENCE PROBLEM, also called theMINIMUM -COST BRANCH-
ING PROBLEM is defined as follows. Given a directed, edge-weighted graphG = (V,E) with a special
vertexr called the root. Find a minimum-cost spanning tree where edges are directed away fromr.
Basically, every cut[S, S̄] with r ∈ S must contain at least one edge of the tree. Thus, an equivalent
integer linear program is

min
∑
e∈E

wexe

subject to
∑

e∈[S,S̄]

xe ≥ 1, ∀S ⊆ V, r ∈ S

xe ∈ {0, 1} ∀e ∈ E.

(16)
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Relaxing the integral constraints to0 ≤ xe ≤ 1, and we have a linear program. Edmonds showed that
the set of feasible solutions to the LP is exactly the convex hull of characteristic vectors of arborescences
of G. Thus, if we can find an optimal vertex of the corresponding polyhedron in polynomial time, then
this problem can be solved in polynomial time.

Since the number of constraints of the LP is exponential, we devise an efficient separation oracle and
apply the ellipsoid algorithm. Given any vectorz ∈ R|E|, checking0 ≤ ze ≤ 1 is trivial. Now, think of
xe as the capacity of edgee. Checking

∑
e∈[S,S̄]

xe ≥ 1 is the same as checking if the minimum cut fromr

to any vertexu of G is of capacity at least1. This can certainly be done by invoking the max-flow min-
cut algorithmn − 1 times. In case the min-cut capacity is less than1, the max-flow min-cut algorithm
also returns such a cut[S, S̄] which gives us the separation hyperplane!

Example 7.3. In the MULTIWAY NODE CUT problem, we are given a vertex-weight graphG = (V,E)
with weight functionw : V → Z+, and an independent set ofterminalsT ⊂ G. The objective is to find
a subset ofV − T whose removal disconnect the terminals from each other. LetP be the set of all paths
connecting the terminals, then an equivalent integer linear program is

min
∑

v∈V −T

wvxv

subject to
∑

v∈P\T

xv ≥ 1, ∀P ∈ P

xv ∈ {0, 1} ∀v ∈ V.

(17)

In the corresponding linear program, we turn the integral constraints into0 ≤ xv ≤ 1. To check ifx
is feasible, construct a directed graphD by turning each edgeuv of G into two edges(u, v) and(v, u)
of D. Assign a weight ofxv to edge(u, v) and a weight ofxv to edge(v, u). (For convenience, we set
xv = 0 if v ∈ T .) Then, find all shortest paths among all pairs of terminals inD. If one such shortest
path has length< 1, then we have found a separating hyperplane. Otherwise the solution is feasible.

Exercise 57. The MINIMUM MULTICUT problem can be defined as follows. We are given a graph
G = (V,E) where each edgee has a non-negative integral capacityce. We are also givenk pairs of
vertices(s1, t1), . . . , (sk, tk), where each pair consists of two different vertices, but the vertices from
different pairs are not necessarily different. The problem is to find a minimum capacity subset of edges
whose removal separates each of the given pairs. LetPi be the set of all paths connectingsi to ti, andP
be the union of allPi. The problem is equivalent to the following ILP:

min
∑
e∈E

cexe

subject to
∑
e∈P

xe ≥ 1, ∀P ∈ P

xe ∈ {0, 1} ∀e ∈ E.

(18)

Show that the relaxed LP of this ILP can be solved efficiently using the ellipsoid method.

Exercise 58. The GROUP STEINER TREE problem can be defined as follows. We are given a graph
G = (V,E) and non-negative integral costce for each edgee. There arek disjoint groups of vertices
X1, . . . , Xk. The objective is to find a minimum-cost subgraphT of G which contains at least one vertex
from each group. Clearly,T only needs to be a tree, which is called aSteiner tree. (In theSteiner Tree
problem, each group contains one vertex.)
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Note 1: although it does not concern us in this problem, it is worth mentioning that we can assume
that the cost functionc satisfies the triangle inequality. For if an edgee = (u, v) in the optimal solution
has greater cost than some path betweenu andv, we can replacee by this path.

Note 2: the assumption that the groups are disjoint can also be relaxed. If there was a vertexv
contained inm groups, we can addm new vertices connected tov with new edge costs equal to zero.
Then, add each new vertex to a distinct group in that set ofm groups, and removev from all the groups.

We will consider a version of this problem where the Steiner tree has to contain a given “root”r ∈ V .
If we can solve this version of the problem, the original version can be solved by running the algorithm
for the rooted version over allr ∈ X1, then take the best resulting Steiner tree.

The rooted version can be formulated as follows.

min
∑
e∈E

cexe

subject to
∑

e∈[S,S̄]

xe ≥ 1, ∀S ⊆ V, such thatr ∈ S, andS̄ ∩ (
⋃k

i=1 Xi) 6= ∅

xe ∈ {0, 1} ∀e ∈ E.

(19)

Show that the relaxed LP of this ILP can be solved efficiently using the ellipsoid method.

Lastly, we describe two (of several) ways to solve a linear program using the ellipsoid algorithm:

• Consider the primal dual pair of linear programs:

min{cTx |Ax = b,x ≥ 0}

and
max{bTy |ATy ≤ c}.

To solve both programs at the same time, simply find a feasible solution to the polyhedron

P =
{[

x
y

]
| bTy = cTx,Ax = b,x ≥ 0,ATy ≤ c

}
.

For numerical accuracy consideration, some perturbation might need to be done.

• We could also apply the so-calledsliding objectivemethod as follows. Suppose we try to minimize
a linear objectivecTx over a polyhedronP . Find x0 ∈ P . At iterationk, apply the ellipsoid
algorithm toP ∩ {x | cTx < cTxk}.

Historical Notes (Very much incomplete)

Standard texts on linear algebra and algebra are [2] and [34]. Texts on linear programming are numerous,
of which I recommend [11] and [26].

The idea (moving along edges of the feasible polyhedron from vertex to vertex) for thesimplex
methoddated back to Fourier (1826), and mechanized algebraically by George Dantzig in 1947 (pub-
lished in 1951 [12]), who also acknowledged fruitful conversation with von Neumann. This worst-case
exponential algorithm has proved to work very well for most practical problems. Even now, when we
know of many other polynomial time algorithms [18,19,36] to solve linear programs, the simplex method
is still among the best when it comes to practice. The worst-case complexity of the simplex method was
determined to be exponential when Klee and Minty [21] found an example where the method actually
visits all vertices of the feasible polyhedron.
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The quest for a provably good algorithm continues, until Khachian [19] devised theellipsoid method
in 1979. The method performs poorly in practice, however. A breakthrough was made by Karmarkar
in 1984 [18], when he found a method which works in provably polynomial time, and also 50 times
faster than the simplex method in his experiments. Karmarkar’s method was of theinterior point type of
method, where one keeps moving a point strictly inside the feasible region toward an optimal vertex. This
method applies to non-linear programming as well. For a recent discussion on interior methods, see [14].
In fact, the simplex method is still the most popular method to be applied in practice. Somehow it runs
in polynomial time on most inputs. To explain this phenomenon, researchers have tried to show that,
under some certain probabilistic distributions of linear programs, the simplex method takes a polynomial
number of iterations on average. See, for example, Borgwardt [6–9], Smale [27,28], Spielman and Teng
[29–33]. Recently, Kelner and Spielman gave the first polynomial time randomized simplex algorithm
to solve linear programs [].

In 1957, Warren Hirsch conjectured that the diameter of ann-dimensional polytope withm facets is
at mostm− n. The conjecture does not hold for unbounded polyhedra (Klee and Walkup []). Kalai and
Kleitman [17] proved a quasi-polynomial upper bound on the shortest path between any pair of vertices:
mlog2 n+2. Larman [24] showed the upper bound2n−2m. See [1,20,22] for related results.

The concise surveys [3, 35] on linear programming contain many good references and interesting
discussions.
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