CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2006 Last update: September 29, 2006

Introduction to Linear Programming

1 Preliminaries

1.1 Different forms of linear programs

There are a variety of ways to write linear programs, and a variety of names to refer to them. We shall
stick to two forms: the standard and the canonical forms. Different authors have different opinions
on what standard is and what canonical is. Each form has two versions: the maximization and the
minimization versions. Fortunately, all versions and forms are equivalent.

The min version of the standard form generally reads

min c1x1 +coxo+ - + ey
subject to aj1z1 + apxe + ... + appTn, = b
a1 + axpry + ... + axpT, = by
am1T1 + amaTs + ... + amnTn = bn

2 >0Yi=1,...,n,

where thea;;, c;, andb; are given real constants, and thg are the variables. The linear function
c1xr1 + coxs + - - - 4 cpxy, IS called theobjective function To solve a linear program is to find some
combination ofz; satisfying the constraint set, at the same time minimize the objective function. The
constraintse; > 0 are also referred to as tm®n-negativity constraintdf the objective is to maximize
instead of minimize, we have the max version of the standard form.

In canonical form, the min version reads

min c1x1 + coxo + -+ Ty
subjectto aj1z1 + apxs + ... + axr, > by
agiry + axpry + ... + agr, > by
>
Am1T1 + amaT2 + ...+ GpnTn = by

2, >0,Vi=1,....n,

and the max version is nothing but

max C1T1 + C2T2 + -+ - + Cpp
subjectto aj1z1 + apxrs + ... + apr, < by
agnr1 + agry + ... + agpr, < by
: : ) <
Am1T1 + amaT2 + ...+ GpnTn < by

2, >0,Yi=1,....n .

One of the reasons we changeto < when moving from the min to the max version is that it might be
intuitively easier to remember: if we are trying to minimize some functiom,ahere should be some



“lower bound” on how smalk can get, and vice versa. Obviously, exchanging the terms on both sides
and the inequalities are reversed. Another reason for chapgiog< has to do with the notion of duality,
as we will see later.

Henceforth, when we say “vector” we mean column vector, unless explicitly specify otherwise. To
this end, define the following vectors and a matrix

c1 x1 a1 a2 ... Qaip b1

2 x2 az1 a2 ... a2, bo
c= x = A= b=

Cn Tn Aml am2 ... (mn bm

(We shall use bold-face letters to denote vectors and matrices.) Then, we can write the min and the max
versions of the standard form as

min{ch | Ax =b,x > 0}, and max{ch | Ax =b,x > 0}.
You get the idea? The versions for the canonical form are
min{cTX | Ax > b,x > 0}, and max{ch | Ax <b,x > 0}.

A vectorx satisfying the constraints is called@asible solution Feasible solutions are not neces-
sarily optimal. Anoptimal solutionis a feasible vectok which, at the same time, also minimizes (or
maximizes) the objective function. A linear program (LPjaasibleif it has a feasible solution. Later,
we shall develop conditions for an LP to be feasible.

1.2 Converting general LPs to standard and canonical forms

In general, a linear program could be of any form and shape. There may be a few equalities, inequalities;
there may not be enough non-negativity constraints, there may also be non-positivity constraints; the
objective might be to maximize instead of minimize; etc.

We resort to the following rules to convert one LP to another.

e maxc!x = min(—c)Tx
° Zj i Tj = b; is equivalent tOZj Qi Tj < b; andzj Qi T > b;.

o Zj Qi T; <b;is equivalent to- Zj ;T4 > —b;

Zj a;jz; < b; is equivalent tozj aijrj + s; = b, s; > 0. The variables; is called aslack
variable

e Whenz; <0, replace all occurrences of by —x;., and replace:; < 0 by x; > 0.
e Whenz; is not restricted in sign, replace it By, — v;), andu;, v; > 0.

Exercise 1. Write

min r1 — xTo + 4dxs
subjectto 3z; — o = 3
—  T9 + 2z4 > 4
1 + 3 < -3
r1,r9 > 0

in all four forms.



Exercise 2. Write
max {CTX | Ax < b}

in all four forms.

Exercise 3. Write
min {CTX | Ax > b}

in all four forms.

Exercise 4. Write
max {c’x | Ax = b}

in all four forms.
Exercise 5. Convert each form to each of the other three forms.

Exercise 6. Consider the following linear program

max aTx 4+ bTy +cTz

subjectto Ajix + Apy + Az = d
Asix + Axpy + Az < e
Azix + Ay + Apz > f

x>0,y <0.

Note thatA;; are matrices and, b, c,d, e, f, x, y, z are vectors. Rewrite the linear program in standard
form (max version) and in canonical form (max version).

Because the forms are all equivalent, without loss of generality we can work with the min version of
the standard form. The reason for choosing this form is technical, as shall be seen in later sections.

2 A geometric view of linear programming

2.1 Polyhedra

Consider an LP in canonical form with two variables, it is easy to see that the feasible points lie in a
certain region defined by the inequalities. The objective function defirdiseetion of optimization
Consequently, if there is an optimal solution, there is a vertex on the feasible region which is optimal.
We shall develop this intuition into more rigorous analysis in this section.

Definition 2.1. A polyhedronis the set of points satisfyindx < b (or equivalentlyA’x > b’) for
somem x n matrix A, andb € R™. In other words, Apolyhedronin R™ is the intersection of a finite
set of half spaces @&".

Consider the standard form of an LP:
min {c’x | Ax =b,x > 0} .

Let P := {x | Ax = b,x > 0}, i.e. P consists of all feasible solutions to the linear program,; ttiers
a polyhedron iR™. For, we can rewrité® as

A b
P=A<x:|-A|lx< |-b
—I 0



ds < d1
cTx is improved
moving along
this direction

vertex

Figure 1: Polyhedron, vertices, and direction of optimization

(Actually, this polyhedron lies in afn — 1)-dimensional space since each equalitylin = b reduces
the dimension by one.)

Refer to Figure 1 following the discussion below. Geometrically, each equation in the system
Ax = b defines a hyperplane of dimensian— 1. In general, a vectox satisfyingAx = b lies in
the intersection of alln hyperplanes defined b x = b. The intersection of twgn — 1)-dimensional
hyperplanes is generally a space of dimensgion 2. On the same line of reasoning, the solution space
to Ax = b is generally ann — m)-dimensional space. The non-negativity conditior> 0 restricts
our region to the non-negative orthant of the originadimensional space. The part of the — m)-
dimensional space which lies in the non-negative orthant is a polyhedral-shaped region, which we call a
polyhedron. For example, when= 3 andm = 1, we look at the part of a plane defined A = b
which lies in the non-negative orthant of the usual three dimensional space. This part is a triangle if the
(only) equality inAx = b is, say,x1 + z2 + z3 = d > 0.

It is sometime easier to look at the LP in its canonical farin {c’x | Ax > b,x > 0}. Each
inequality inAx > b defines a half space. (See Figure 2.) Each inequalityin0 also defines a half
space. Hence, the feasible region is the intersection #fn half spaces.

Now, let us take into account the objective functignx. For each real constatit ¢’ x = d defines
a plane. Asi goes from—oo to oo, c’'x = d defines a set of parallel planes. The first plane which hits
the feasible region defines the optimal solution(s). Think of sweeping a line from left to right until it
touches a polygon on a plane. Generally, the point of touching is a vertex of the polygon. In some cases,
we might touch an edge of the polygon first, in which case we have infinitely many optimal solutions. In
the case the polygon degenerates into an infinite band, we might not have any optimal solution at all.

Definition 2.2. A vertexof a polyhedronP is a pointx € P such that there is no non-zero vecgofor
whichx + y andx — y are both inP. A polyhedron which has a vertex is callegh@inted polyhedron

Exercise 7. We can define a point in a polyhedronP to be a vertex in another way. € P is a vertex



Figure 2: Each inequality” x < d defines a halfspace.

if and only if there are no distinct pointg w € P such thatv = (u + w)/2. Show that this definition
is equivalent to the definition given in Definition 2.2.

The following exercise confirms a different intuition about vertices: a vertex is at the intersection of
n linearly independent hyperplanes of the polyhedAatn < b. Henceforth, for any positive integes
we usem| to denote the sdl, ..., m}.

Exercise 8.Let P = {x | Ax < b}, whereA is anm x n matrix. For eachi € [m], leta®) denote the
ith row vector ofA. Show thatv € P is a vertex iff rank{a® | al)v = b;} = n.

We now can convert our observation about an optimal solution at a vertex into rigorous analysis. We
would like to know a few things:

1. Whenis an LP feasible? Or, equivalently, when is a polyhedron not empty?
2. When is a polyhedron pointed?

3. When is a point in a polyhedron a vertex? Characterize vertices.
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. If a polyhedron is pointed, and if it is bounded at the direction of optimization, is it true that there
is an optimal vertex?

5. If there is an optimal vertex, how do we find one?

We shall put off the first and the fifth questions for later. Let us attempt to answer the middle three
questions.

Theorem 2.3. A non-empty polyhedron is pointed if and only if it does not contain a line.

Proof. We give a slightly intuitive proof. The proof can be turned completely rigorous easily.

Consider a non-empty polyhedrdh = {x | Ax < b} which does not contain any line. Létbe
the set ofm hyperplanes defined h&x = b. Consider a particular poit € P. Note thatx must lie
on or strictly on one side of each of the hyperplanes§.irSupposex lies on preciselyt (0 < k£ < m)
of the hyperplanes i§. Call this set of hyperplaneS'. If X is not a vertex, then there is some 0
such that bottix — y) and(x + y) are inP. It follows that the linex + ay, o € R, must be entirely on
all hyperplanes of’. SinceP does not contain the ling + «ay, this line must cut a plane if — S’ at
a pointx’. (Note, this argument also shows— S’ # ().) Now, replacex by x’, then the set’ for 2’ is
increased by at least Keep doing this at mosh times and we get to a vertex.

(To be “rigorous”, we must carefully pick a value afso that there is at least one more equality in
the systemA (X + ay) < b than in the systemAx < b.)



Conversely, suppose has a vertex and also contains some lige-ay, y # 0, which means\ (x+
ay) < b,Va. This can only happen whely = 0 (why?). ButthemA(v +y) = A(v —y) = Av < b,
contradicting the fact that is a vertex. In fact, itk + ayy is a line contained i, then for any point
z € P, the linez + «ay (parallel with the other line) has to also be entirelyin O

Corollary 2.4. A non-empty polyhedroR = {x | Ax < b} is pointed if and only ifank(A) = n.

Proof. We only need to show that rafX) = n if and only if P contains no line.

Firstly, assume rarfld) = n. If P has a linex + ay, for y # 0, then it is necessary thaty = 0,
which means ranlA) < n (why?), which is a contradiction.

Conversely, if rankA) < n, then the columns oA are linearly dependent, i.e. there is a non-zero
vectory such thatAy = 0. If x is any point inP, thenA(x + ay) = Ax < b,Va € R, implying P
contains the linex + ay. O

Exercise 9. Prove Corollary 2.4 directly using the vertex definition in Exercise 8.
Corollary 2.5. A non-empty polyhedroR = {x | Ax = b, x > 0} is always pointed.

Proof. Rewrite P as

A b
P=A<x:|-A|lx< |-b
-1 0

Then, P as a vertex by the previous corollary since

A
rank| |—A =n.
—1

O]

Exercise 10.Show that a non-empty polyhedrdh= {x | A;x = by, Asx < by,x > 0} is pointed.
Moreover, supposk is the total number of rows oA; andA-. Show that a vertex* of P has at most
m positive components.

The following theorem characterizes the set of vertices of the polyhe@liren{x | Ax = b, x > 0}.

Theorem 2.6.Let P = {x | Ax = b,x > 0}. Thenv € P is a vertex if and only if the column vectors
of A corresponding to non-zero coordinateswoére linearly independent.

Proof. LetJ be the index set of non-zero coordinatesot et a; be thejth column vector ofA.
Supposev is a vertex. We want to show th@a; | j € J} is a set of independent vectors. This is
equivalent to saying that the syst@ye] ajr; = b has aunique solution. jf is another solution (other
thanw restricted ta/) of this system, then adding mobecoordinates tg corresponding to the indices
not in J, we get ann-dimensional vectog with Az = b andz # v. With sufficiently smallc, both
v + a(v — z) andv — a(v — z) are feasible (why?), contradicting the fact thdt a vertex.
Conversely, supposg; ;. ; ajz; = b has a unique solution. If there isya# 0 such thatv +y and
v — y are both inP, theny; = 0 wheneverj ¢ J (why?). Henceb = A(v+y) = ZjEJ aj(v; + y5),
contradicting the uniqueness of the solutiorpty. ; ajz; = b. O

Exercise 11.Prove Corollary 2.4 directly using Theorem 2.6.

Lemma 2.7. Let P = {x | Ax = b,x > 0}. If min {cTx | x € P} is bounded (i.e. it has an optimal
solution), then for allk € P, there is a vertexr € P such thaic” v < ¢’x.



Proof. We proceed in much that same way as in the proof of Theorem 2.3, where we start from a point
x inside P, and find a vertex by keep considering lines going throxigh

A slight difference is that here we already haxehyperplanesAx = b. These planes play the role
of S” in Theorem 2.3’s proof. The half spacex > 0 play the role ofS — S’. Another difference is
that, starting from a point in P, we now have to find a vertex with better cost. Hence, we have to be
more careful in picking the direction to go.

What do | mean by “direction to go”? Suppasec P is not a vertex. We know there 6 0 such
thatx + y,x —y € P. Fromx, we could either go along they direction or the—y direction, hoping
to improve the cost function, while wanting to meet another plane definedby. The+y direction is
better iffcT(x +y) < cTx, orcTy < 0. The—y direction is better ificT (—y) < 0. Letz € {y, —y}
be the better direction, i.eTz < 0.

Note thatA(x +y) = A(x —y) = b impliesAz = 0.

We shall go along the ray + az, o > 0. We knew going along this ray would improve the objective
function. The problem is that we might not meet any bounding facB.oWhen would this happen?
Firstly, note thatA (x + az) = Ax = b, implying that the ray(x + «az) is entirely on each of the:
planes defined bAx = b. Now, let’s look at the hyperplanas = 0, x5 =0, ..., x, = 0. Supposex
is already ork of them, where) < k£ < n. Without loss of generality, assumg = --- = x;, = 0, and
the rest of the coordinates are positive. Sircey,x —y € P, we knowz; +y; > 0 andx; —y; > 0,
Vi=1,...,k. Thus,z; + az; = 0,Vj =1,...,k,a > 0. The linex + az is also on all of thos&

planes.
How about the indices=%k + 1,...,n?
If z; >0forallj =%k+1,...,n,thenz; + az; > 0foralli = k+1,...,n, also. This means

(x + az) € P forall « > 0. This is the case where we do not meet any boundary face® 4f< 0,

thenc” (x + az) goes to—oo: the LP is not bounded. €Tz = 0, then replacez by —z to avoid

z having all non-negative coordinates. (Note thag 0 impliesy or —y has negative coordinates.)
What's happening here is that, whefz = 0, going to thez direction is perpendicular to the direction

of optimization, meaning we don’t get any improvement on the objective function. However, we must
still meet one of the bounding faces if we go the right way. And, the right way is ta thith some
negative coordinates.

If z; < 0forsome;j = k +1,...,n, thenz; + az; cannot stay strictly positive forever. Thus,
we will meet one (or a few) more of the planes= 0 when« is sufficiently large. Let’ be the first
point we meet, and replaceby x’. (You should try to defin&’ precisely.) The new point has more
0-coordinates. The process cannot go on forever, since the numbearoafirdinates is at most. Thus,
eventually we shall meet a vertex. O

Exercise 12.Let P = {x | Ax > b} be a pointed polyhedron. Suppose thethR{cTx | x € P} has
an optimal solution. Show that the LP has an optimal solution at a vertex. Note that this exercise is a
slight generalization of Lemma 2.7.

Theorem 2.8. The linear programmin{c*x | Ax = b,x > 0} either
1. isinfeasible,
2. is unbounded, or
3. has an optimal solution at a vertex.

Proof. If the LP is feasible, i.eP = {x | Ax = b,x > 0} is not empty, then its objective function is
either bounded or unbounded. If the objective function is boundedPaischot empty, starting from a
pointx € P, we can find a vertex with better cost. Exercise 19 shows that there can only be a finite
number of vertices, hence a vertex with the best cost would be optimal. O



Exercise 13.A setS of points inR" is said to beconvexf for any two pointsx,y € .S, all points on the
segment fronx to y, i.e. points of the fornx + a(y — x),0 < «a < 1, are also inS.
Show that each of the following polyhedra are convex:

1. P={x|Ax=Db,x > 0}
2. P={x| Ax=Db}
3. P={x|Ax <b,x > 0}
4. P={x|Ax <b}
Thus, in fact the feasible set of solutions of any LP is convex.

Exercise 14 (Convex Hull).Let S be a (finite or infinite) set of points (or vectors)RY. Let H denote
the set of all pointh € R”™ such that, for each € H, there is some positive integér some points
vi,..., VK € 5, and somgositivenumbersyy, . . ., a such that

k k
h = Zaivi and Zai =1.
=1 =1
(The vectorh is expressed as@nvex combinationf the vectorsvy, ..., vi.) Show that
i) SCH.

(i) H is convex.

(iii) Every convex set containing also containg?.
The setH is unique for eacly, andH is called theconvex hullof S.

Exercise 15 (Caratleodory, 1907).Prove that, ifS C R™ then a pointv belongs to the convex hull of
S'if and only if v is a convex combinations of at most- 1 points inS.

Exercise 16.Let S be any subset dR™. Prove that the convex hull & is the set of all convex combi-
nations of affinely independent vectors frégmUse this result to prove Cardhdory’s theorem.

Exercise 17.Show that, if a systerAx < b onn variables has no solution, then there is a subsystem
A’x < b’ of at mostn + 1 inequalities having no solution.

Exercise 18.In R?, the polyhedron

P:{[ml] :0§x1§1}
Z2
has no vertex. (Why?)

Consider a linear programin{z; | [z :L'Q]T € P}.

1. Rewrite the LP in standard formin{ctz | z € P’} for P’ = {z | Az = b,z > 0}. (You are to
determine wha€, A andb are.)

2. DoesP’ has a vertex? If it does, specify one and show that it is indeed a veriek of

Exercise 19. Consider the polyhedro® = {x| Ax =b,x > 0}. Suppose the dimension & is
m x n. We assume that rafld) = m < n. (Otherwise some equations are redundant.) Show that

1. If vis a vertex, thew has at least — m zero coordinates.

2. Show thatP has at mosf,_ " ) vertices.

Exercise 20. Show that every vertex of a pointed polyhedron is the unique optimal solutionfoeér
some linear cost function.



3 The Simplex Method

3.1 A high level description

Let us consider the LBiin{cTx | Ax = b,x > 0}. We shall answer the feasibility question later. Let
us assume for now that the convex polyhedfor- {x | Ax = b, x > 0} is not empty. From previous
sections, we know thaP is pointed. Moreover, ifnin{ch | x € P} is bounded, i.e. the LP has an
optimal solution, then there is an optimal solution at a vertex.

We shall not discuss the simplex method in all its rigor. The main ideas are needed to gain a solid
understanding of the linear algebra of convex polyhedra, which is essential to apply linear programming
methods to design approximation algorithms.

The idea of the simplex method is quite simple. We start off from a vertex, which is also called a
basic feasible solutigrthen we attempt to move along an edgé’db another vertex toward the direction
of optimization. We shall make sure that each move does not increase the objective function.

(Terminologically, anx such thatAx = b is asolution If x > 0 also holds, then the solutionfiesa-
siblefor the LP. A feasible solution isasiciff the columns ofA corresponding to non-zero components
of = are linearly independent.)

In general, a vertex is the intersection of exaectldifferent (affine) hyperplanes. (In the so-called
degenerate cases vertex might be at the intersection of more thahyperplanes.) An edge is the
intersection ofx — 1 hyperplanes. Removing one hyperplane fromsith@anes which defines a vertex
v, and we have an edge at whielis on. Thus, in most casesis incident ton edges. We need to pick
an edge to move along fromuntil we meet another hyperplane, which would be another vertekhe
main idea is to find/’ such thaicTv’ < cTv. The algorithm terminates when no move would improve
the objective function.

3.2 Anexample

Example 3.1. To put the idea of the simplex method into place, let us consider an example.

max 3r1 + 2x9 + 4dxs

subjectto 21 + =z + 2x3 < 4
21’1 + 3.%'3 < 5

4£L‘1 + D) + 3%3 < 7

T1,22,T3 Z 0

We first convert it to standard form, by adding a few slack variables.

max 3x1 +2x9 +dzx3
subjectto x; 4x2 +2x3 +x4
21‘1 —|—3.7,'3 +xs5
4x1 w9 +3x3 +x6
L1, X2, T3, T4, L5, L6

|
ISEEN JNG BTN

(1)

vl

The first question ishow do we find a vertex®e will give a complete answer to this later. Let us
attempt an ad hoc method to find a vertex for this problem.

Recall that, for a polyhedroff = {x | Ax = b,x > 0}, a pointv € P is a vertex iff the columns
of A corresponding to the non-zero components afe linearly independent. K is anm x n matrix,
we assume rarfld) = m (and thusm < n), otherwise some equation(s) &x = b is redundant or
inconsistent with the rest. If it is inconsistent thBnis empty. To check rarfld) = m, Gaussian
elimination can be employed.



Assume the index set for non-zero componentsra§ B, and N = [n] — B. The columns of
A corresponding ta3 are independent, hen¢®| < m. If |B| < m, we can certainly move a few
members ofV into B such that B| = m and the columns oA corresponding td are still independent
(extending the set of independent vectors into a basis). Conversely, if we canifiiniépendent columns
of A whose index set i8, then, setting alk’s coordinates not irB to be0 and solve forA gxp = b,
we would get a vertex ikg > 0.

Let us now come back to the sample problem. Thedasiumns ofA are independent. In fact, they
form an identity matrix. So, if we se8 = {4,5,6}, N = {1,2,3}, x1 = 29 = 23 = 0, andz4 = 4,
x5 = 5, xg = 7, then we have a vertex! The variables ¢ € N are calledree variables Thez; with
i € B arebasic variables

(Note that, if an LP is given in canonical form, suchmasx{x | Ax < b,x > 0}, then after adding
m slack variables we automatically obtainindependent columns of, which would be a good place
to start looking for a vertex. When an LP is given in standard form, we have to work slightly harder. One
way to know if the columns are independent is to apply Gaussian elimination on the skstemb.
The columns with non-zero pivots are independent.)

To this end, we have to find a way to realize our intuition of moving along an edge of the polyhedron
to get to a vertex with better cost. The current vertex has®ost+ 22, + 4x3 = 0. This can only be
increased if we increase one or more of the free variables,, x3. (Now you know why they are called
free variables).

The objective function is increased with highest rate if we incregsehose coefficient is positive
and largest among the free variables. The thing is, the three equatidns #ab have to be satisfied,
and we also have to maintain the non-negativity of vegtdfor example, whems = § > 0, the variable
x4 has to be changed tg, = 4 — 26. If we wantx, > 0, then we must havé < 2. Thus, with respect
to the first equationgs cannot be increased to more thanSimilarly, the second and third equations
restricto < 5/3 andé < 7/3. In summaryxs can only be at most/3, which forces

5 2
= 4-22="1
e 373
Irs = 0
5

We then get to a new poist € P, where
x'=[0 0 5/3 2/3 0 2].

The new objective value I$§ = % Is this pointx a new vertex? Indeed, the vectors
2 1 0
as = 3 , A4 = 0 ,a = 0
3 0 1

are linearly independent. The second componert;aé not zero, while the the other two vectors are
unit vectors corresponding to the first and the third coordinates. You can see why it is very easy to check
for independence when the column vectors corresponding to the basic variables are unit vectors.

To this end, we are looking & = {3,4,6}, N = {1,2,5}. The basic variables have been changed,
and the free variables are changed also. The free varigbie said toenter the basisand the basic
variablexs is leaving the basis

Note also that the reasoning is fairly straightforward, as we have just done, when the objective func-
tion depends only on the free variables, and the column vectors corresponding to the basic variables are
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unit vectors. Now, we want to turn (1) into an equivalent system in whigl,, ag are unit vectors. In

fact, we only need to turans into [0 1 O}T. This is simple: divide the second equation 3then
subtract times the second from the first, aBdimes the second from the third, we obtain

max 3rx1 +2x9 +4z3
subjectto —2z1  +ao x4 - 2
2o +x3 iy 5
21 o +x¢ = 2

T1,T2,T3,T4,T5, L6 Z 0.

Since we want the objective function to contain only free variables, we do notayantthe objective

function. Replace

x —§—2x —lx
3= 37 3717 3%

in the objective function, we get

5 2 1
3z1 4 222 + 4wz = 3m1+2m2+4(3—3m1—3x5>

_ ! +2 + 20
T ot TER Ty T
Note that the value0/3 is precisely the cost of the new vertex. You can also see that the replacement of

x3 was so convenient after we turn the veaiglinto a unit vector. Our new system becomes

max %xl +2x9 —%:1:5 + %
subject to —%xl +x9 +x4 = %
T T

2xq +xo +xg = 2

L1,T2,T3,T4, L5, L6 > 0.

Now, to further improve our solution;, should be increased as its coefficient in the objective function
is the largest among positive ones. The most it can be increased uy/R) ia which casers enters the
basis and:, leaves the basis. The new system is

max T —2x4 + 8

; 1 2
subjectto —zx; +x2 414 = 3
2 1 _ 5

371 X3 T35 = 3

7 1 _ 4

371 —T4 —3T5 +Xe = 3
x1,X2,T3,T4,T5,T6 Z 0.

Now, we want to increase, . In the first equation, increasing does not affect the non-negativity 0§
at all. In fact, if we have only equations in which the coefficients:pfare negative (or there’s ngo,),
then the LP is certainlynbounded

In this case, however, we can only increaseo 4/7, due to the restriction of the first and the third
equation. Nowzg leaves the basis, and enters. The new system is

11 1 3
max —%T4 +wT5 —5Te +

subject to +Xo +824 —2z5 +lag

2 3 2
+X3 +5T4 +5T5 —F%6

3 1 3
X1 —5%y  —7Ts +rre =

S e o o \l‘%

v

T1,T2,T3,T4,T5, L6
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To this endz5 reenters the basis and leaves:

max —3T3  —57%4 —326 + 9
subject to +x2 +Pa3 1oy Lz = 3
+Ifxs 434 +xs —316 = 3

X1 +%£B3 —%m +%ZE6 = 1

Ty, T2, %3, %4, 25,26 = 0

Clearly no more improvement is possible. The optimal valug &t the vertex

v=[1 300 3 0.

3.3 Rigorous description of a simplex iteration

ConsiderP = {x | Ax = b,x > 0}, and the linear program
min{c’x | x € P}.

Let's assume we have a vertexc P. As we have discussed earlier, we can partifigh= B U N
such that B| = m and the columns ofi corresponding td3 are independent, while; = 0,Vi € N.
Conversely, anyw € P satisfying this condition is a vertex.

Let Ap, Ay be the submatrices &k obtained by taking the columns corresponding3t@nd NV,
respectively. Similarly, up to rearranging the variables we can write every vectorR™ asx =

(x5 xN]T, andc” = [cg cn]|. The LPis equivalent to

min CEXB + C%XN
subjectto Agxgp+ Anyxy = b
x > 0

How do we turn the columns &k  into unit vectors? Easy, just multiply both sidesfhf = b by A !,
which exists since the columns Afg are independent. We have

min chxp +chxn
subjectto x5 + Ag'Ayzy = AZ'D
X > 0.
We also want the objective function to depend only on free variables. Thus, we should replage
A;'b — AL A yxy in the objective function:
cI'x = CEXB + ij\}XN

= cp (Ag'b— AL 'Ayxy) + chxy

= chAR'b+ (ck — AR AN) xN.

LetyZ = cL AL, the LP can be written as

min (c% — ygAN) XN + ygb
subjectto x5 + A Anzy = A;'b
x > 0.

12



The constantLb is the cost of vertew. (In the first step of the example in the previous section,
y5b = 20/3.) In the objective function the coefficient of is (c; — y5a,), for j € N. Forj € B we
havec; — yha; = ¢; — c5 A a; = 0, which is the coefficient of; also.

Case 1 If (¢; — yka;) > 0forall j € N, then we cannot further reduce the objective value, because
xxn > 0. The optimal value is thugLb, which is attained by vertex.

Case 2 If for somej € N, (¢; —yLa;) < 0, then we want to increasg to get a better objective
value. When having a few choices, whiglshould be picked? There are several strategies that work.
For reasons that will become clear later, we use the so-cBld’s pivoting ruleand pick the least
candidatej.

Having chosery, the next step is to decide how much we can incregde. (Think of the variable
x3 at the beginning of Example 3.1.) We have to know the coefficient;af each of the equations of
the systenmxp + A;ANXN = Aglb. The system has: equations, each of which corresponds to a
basic variabler;, i € B. For eachi € B, the corresponding equation is

ity (Ag'ay);z; = (A5'D).
jeEN
Consequently, Whe(lAglaj)Z. < 0, increasing; does not affect the non-negativity of On the other
-1 .
hand, if (A;laj)i > 0, thenv; can only be increased to as much%s%i)’.

( B aj)i

Case 2a If(A;'a;), < Oforalli € B, then the LP is unbounded, because we can increasebe as
large as we want, while keeping feasible. If this is the case, the simplex algorithm stops and
reportsunbounded

Case 2b If there is somec B such that(Aglaj)i > 0, then the new value af; can only be as large as

i d AR 0}: (Ap'b)
’ {(ABlaj)z‘ (A5 a), > (Ag'ay),

Here, again using Bland’s rule, we chodst be the least index which minimizes the fraction.

Knowing such &, z; now leaves the basis and enters the basisB = BU {j} — {k}, N =
N U{k} —{j}. We have a new vertex and can go to the next iteration.

3.4 Termination and running time

You may be having a few doubts:

1. How do we know that the algorithm terminates? (Either indicating unboundedness or stop with an
optimal vertex.) Can it loop forever?

2. If the algorithm terminates, how long does it take?

It turns out that without a specific rule of picking the entering and leaving variables, the algorithm
might loop forever. Since we are moving from vertex to vertexPpfand there are only finitely many
vertices K ([jl)) if the algorithm does not terminate than it must cycle back to a vertex we have visited
before. See [4,11] for examples of LPs where the method cycles. There are quite a few methods to
prevent cycling: theperturbation method10], lexicographic rule[13], andsmallest subscript ruler

Bland’s pivoting rul€gf5], etc.
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The smallest subscript ruleor Bland’s pivoting rule simply says that we should pick the smallest
candidate to leave the basis, and then smallest candifiedenter the basis. That was the rule we chose
to present the simplex iteration in the previous section.

If each iteration increases the objective function positively, then there cannot be cycling. Thus,
we can only cycle around a set of vertices with the same cost. This only happens)t@mot be
increased at all, which means that the leaving candidadéisatisfy the conditions tha(tAglaj)i >0

andAglb)i = 0. This is the case when the basic variatlés also0: we have what called degenerate
case. What happens is that the current vertex is at the intersection of moreligparplanes.

Theorem 3.2. Under the Bland’s pivoting rule, cycling does not happen.
Proof. Note that, for any basi® during the execution of the simplex algorithm, we have
CB — ygAB =cB — chglAB =0.
We thus have our first observation:
(i) Foranyj € B, ¢; —yLa; = 0, whereB is any basis.

Suppose cycling happens. During cycling, an inges “fickle” if a; enters some basis at some
point, and thus leaves some other basis at some other point.

Let p be the largest fickle index, whetg, leaves some basiB and enters another badi# during
cycling. Suppose,, entersB in place ofa,. Thus,q < p becausg is also fickle. We make three basic
observations:

(if) Becausey entersB, ¢ is the least index amony . . ., n for which ¢, — y£a, < 0.
(iii) Becausep leavesB, p is the least index itB satisfying(A aq)p > 0and(Aj b)p =0.
(iv) Because entersB’, p is the least index among . . ., n satisfyingc, — y%,a, < 0.
(v) Sinceq < p, we haver, —y%,a, > 0.
From (ii) and (v) we get
0 < (cq—ypag) —(cg—ypag)

= YBaq— yg’aq

= c%AElaq - yg,ABAglaq

= (b —ypAs) (Aj'a)

= > (¢ —yba) (Ap'ay),
reB

Thus, there is some indexc B where
(cg — ygfar) (Ag,laq)T > 0. (2
Consider three cases, all of which leads to contradiction.
e If r > p, thenr is not fickle, and thus € B’ also. This implies:, — yg,ar = 0 due to (i).

o If r = p, thenc, — y%,a, < 0 because of (iv) andA ;'a,) > 0 because of (iii).
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o If r < p, thene, — y%,a, > 0 because of (iv), and thus — y%,a, > 0 due to inequality (2).
Hence, ¢ B’ because of (i). This meanss also fickle. Thus(A;'b) = 0 becaus§A;'b)
is exactly the value of the coordinaigof a vertex during cycling, which does not change its value.
But then, this means th:éA;laq)r < 0 because of (jii).

O]

It was an important longstanding open problem concerning the running time of the simplex method.
In 1972, Klee and Minty [21] constructed an example in which the simplex method goes through all
vertices of a polyhedron, showing that it is an exponential algorithm, under the assumption that we use
the largest coefficient rule.

Exercise 21 (Klee-Minty). Consider the following linear program.

min SO —10m
subject to (2 st 10i—jmj) Va4 = 1000Y, i=1,....m,
x>0,z>0

Show that, the simplex method using the largest coefficient rule perf(2fhs- 1) iterations before
terminating.

We can also pick the; which increases the objective function the most, i.e. applyindaiwest
increaserule. The largest increase rule does not fare any better as Jeroslow (1973, [16]) found a similar
exponential example. Since the largest coefficient rule takes less work, it is often preferred.

In practice, however, the simplex method works rather well for many practical problems. To explain
this phenomenon, researchers have tried to show that, under some certain probabilistic distributions
of linear programs, the simplex method takes a polynomial number of iterations on average. See, for
example, Borgwardt [6-9], Smale [27, 28], Spielman and Teng [29-33].

3.5 The revised simplex method

The simplex method with a certain computation optimization is calleddhised simplex methoas
briefly described below.

In a typical iteration of the method described in the previous section, we have to compute the follow-
ing vectors:

o dy=cy— chl;lAN: this is the coefficient vector of v
o f= Al;laj (afterj is chosen): this is the coefficient (column) vectoegfin the system
o g = Aglb: this is the vector on the right hand side.

If we know Agl, we can actually get away with re-computing the inventsga1 and the producAglAN
at each step by noticing that the difference between thelglénd the newA i is only a replacement of
one column §;,) by another 4;).
Let B = BU{j} — {k} be the new index set of the basis. Without loss of generality, assume the
leaving vectomy, is the last column il . Noting thatA gf = a;, itis not difficult to see that

-1

L0 N
0 1 f
Ay = N At = FtAg
0 0 :
0 0 fm
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It is computationally very easy to compuk&!. In practical implementation, we do not have to even
computeAjg1 (which is very much subject to numerical errors). We can wAlge as anLU factor-
ization, then the desired vectors suchfasgAglAN, andg can be computed mostly by “backward
substitution.” For instance, we can solve the systepf = a; for f, solveAgg = b for g, and so on.

We will not delve deeper into this. The key idea is that, by storing theﬁl@l& it is easy (and quick)
to compute the newt ;.
3.6 Summary of the simplex method
In the following summary, we use Bland’s pivoting rule.

1. Start from a vertex of P.

2. Determine the basic index sBtand free index se¥. Lety’ = cLA !

3. If (ck — y%a;) > 0, then the optimal value ig};b. We have found an optimal vertex STOP!

4

. Else, let
j=min{j € N: (c; —yhay) <0}.

62

. If Az'a; <0, then report (iBOUNDED LP and SoP!
6. Otherwise, pick smalleétc B such thaf A;'a;), > 0 and that
-1 —1py
(AB b — min (AB b); .
(Ap'ay),

7. x;, now leaves the basis and enters the basis3 = BU {j} — {k}, N = N U {k} — {j}.
GO BACK to step 3.

i€ B, (Ag'a)), > 0} :

We thus have the following fundamental theorem of the simplex method.

Theorem 3.3. Given a linear program under standard form and a basic feasible solution, the simplex
method reports “unbounded” if the LP has no optimal solution. Otherwise, the method returns an
optimal solution at a vertex.

Exercise 22.We discussed the simplex method for the min version of the standard form. Write down
the simplex method for the max version, but do not use the facthihaic” x = min(—c)Tx. Basically,
| want you to reverse some of thein andmax, and inequalities in Section 3.6.

3.7 The two-phase simplex method

So far, we have assumed that we can somehow get a hold of a vertex of the polyhedron. What if the
polyhedron is empty? Even when it is not, how do we find a vertex to start the simplex loop? This
section answer those questions.

Let P = {x | Ax = b,x > 0}. By multiplying some equation(s) by1, we can assume that> 0.
As usual, A = (a;;) is anm x n matrix. LetA’ = [A 1], thenA’is anm x (n + m) matrix. Let
P'={z| A’z = b,z > 0}. (Note that the vectors i’ lie in R"*.) Itis straightforward to see that the
linear programmin{c’x | x € P} is feasible if and only if the linear programin {> " | z,4; | z € P’}
is feasible with optimal valué. Moreover, letz be any vertex of”’, and letx € R" be formed by the
first n coordinates o%, thenx is a vertex ofP.

Itis easy to see that = [0,...,0,b1,...,b,] is a vertex ofP’. We can start the simplex algorithm
from this vertex and find an optimal vertex of the second linear program, which induces an optimal
vertex of the first linear program.
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Exercise 23. Solve the following linear program using the Simplex method.

max 3r1 + x2 + bdxrs + 4dxy

subjectto 3z; — 3z2 + 2x3 + 8xry < 50
41‘1 + 6%2 - 4%3 - 4%4 < 40

4dry — 229 + x3 + 3x4 < 20
r1,x2,23,x4 > 0.

Exercise 24. Solve the following linear program using the simplex method:

max 321 + 6z9 + 923 + 8x4

subjectto 1 + 2x9 + 3x3 + x4y < 5
1 + x2 + 223 4+ 3z4 < 3
X1,T2,T3,T4 Z 0.

Exercise 25. Show that the following linear program is infeasible

max r1 — 3re + 2x3
subjectto x1 + 229 + 3x3 < 5
2¢1 + 3z 4+ 2z3 < 4
3 <8

Exercise 26. Show that the following linear program is feasible but unbounded

min T1 — 3r2 + 2x3
subjectto 1 + 2z + x3 < 2
2¢7 + w2 + 4dx3 < 4
0<mw <2,20<0,-2<23<2

Exercise 27.In this exercise, we devise a way to solve the linear program{c’x | Ax < b}

“directly,” i.e. without first converting it to standard form. Recall tHat= {x | Ax < b} is pointed iff
rank A) = n. More specifically, from Exercise & € P is a vertex iff ranka® | av = b;} = n.

Basically, there must be a subsystéxigzx < b with n inequalities for whichA g has full rank and
Apv =Dbg.

1. Write A = iB , then our linear program is equivalentiix{c’x | Apx < b, Ayx <
N

by}. Intuitively, if c is in the cone generated by the row vectorsfdof, thenwv is optimal.
(Going alongc will take us outside of the polyhedron.) Formally, et be the vector such that
AZugp = c. Prove that, if ug > 0, thenv is optimal.

2. Next, if v is not optimal, we try to find a ray + az (o > 0) to move along so as to improve the
objective value. The ray should be on an edge of the polyhedron. If the ray is enti@)\tlen
the program is unbounded. Otherwise, we will meet a better vertex and thus can go to the next
iteration.

An edge incident tov is onn — 1 of the n hyperplanesA gx = bg. Hence,z is the vector
perpendicular ta: — 1 of the row vectors ofA 3. The vectora(? thatz is not perpendicular to
should be such that; < 0. Moreover,z should point away frona(?.

Formally, using Bland'’s pivoting rule, let be the least index so thaj- < 0. Letz be the vector
such thatWz = 0 foralli € B — {i*}, and thaa"")z = —1. Then,v + az (a > 0) traverses an
edge ofP. Show thatthere is uniquely one such vectar
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3. Supposa’z < 0,Vi € [m]. Show thatthe linear program is unbounded.

4. Otherwise, lety be the largest such thatv + az is still in P, namely

@ = min bi_i.v|zTa(i) >0,.
i€ln) alilz

Let £* be the least index attaining this minimum.
Replacev by v + @z. Show thatthe new is still a vertex ofP.
ReplaceB by B U {k*} — {i*}. Go back to step 1.

Finally, show that the above algorithm terminatesHift: suppose the algorithm does not terminate.
During cycling, supposé is the highest index for which as been removed from some basisand
thus it is added during cycling to some basis. Show thatup A pzp- > 0, which implies that there is
somei € B for which (ug);(al?zg-) > 0. Derive a contradiction.)

Jumping ahead a little bit, we have the following exercises.

Exercise 28. State and prove a strong duality theorem from the above algorithm wiveréx | Ax <
b} is the primal program.

Exercise 29.Prove a variance of Farkas’ lemma from the above algorithm.

Exercise 30.Describe and prove necessary results for a 2-phase simplex method based on the above
algorithm.

4 Feasibility and the fundamental theorem of linear inequalities

Definition 4.1 (Cones).A setC of points in a Euclidean space is called a (conwax)eif it is closed
under non-negative linear combinations, namety+ Gy € C whenevex,y € C', anda, 5 > 0.

Definition 4.2 (Finitely generated cones)Given vectorsy, . . ., a,, in some Euclidean space, the set
congai,...,a,} = {aja; + - + apa, | a; > 0,Vj € [n]}

is obviously a cone, and is called the cone generated by the vegtokscone generated this way is said
to befinitely generated

We give two proofs of the following “separation theorem.”

Theorem 4.3 (Fundamental theorem of linear inequalities).Letay, as, ..., a,, b be vectors irnR™.
Then, exactly one of the following statements holds:

(1) bisinthe cone generated by some linearly independent vectorsaffom. , a,,.

(2) there exists a hyperplanex | cTx = 0} containingr — 1 independent vectors fromy, . .., ap,
such thaicTb < 0, andcTa; > 0,V € [n], wherer = rank{ay, ..., an, b}.

Direct proof. We first show that the two statements are mutually exclusive. Sugpesg_ o a;, with
aj > 0, thenc™b = Y~ ajcTa; > 0 whenevereTa; > 0,V;. Thus(1) and(2) are mutually exclusive.

To show that one of them must hold, we shall describe a procedure which will either produce a
non-negative combination as (i), or a vectorc satisfying(2).
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Note that ifb is not in the span of tha;, then there is a hyperpladex | c*x = 0} which contains
all the a; but does not contaib. That plane serves our purpose. (Such vectbes in the null space

of spaf{ai,...,an}} but notin the null space of spéfa;,...,a,, b}}.) Hence, we can assume that
r = rank{as,...,an}. In fact, we can also assume= m, because if- < m, then we can add into
{a1,...,an} afew vectors to make the rank equal

Now, consider the following procedure:
(0) Choosen linearly independent vecto8 = {aj, ,...,aj,.}
1. Writeb = ). oj,a;,. If oj; > 0,Vi € [m], then(1) holds. STOP.

2. Otherwise, chose the smalleste {ji,...,jm} SO thata, < 0. Let {x|cTx =0} be the
hyperplane spanned by — 1 vectorsB \ {a;,}, where we normalize such thatTa, = 1. Itis
easy to see that suchcauniquely exists and that’ b < 0.

3. IfcTay,...,cTa, > 0, then(2) holds. STOP.

4. Otherwise, choose the smallessuch thattTa, < 0. ReplaceB by B U {aq} — {ap}, and go
back to step 1.

We shall show that the procedure must stop. Notedhas independent of the vectofs — {a, }, since
otherwisec’a, = 0, a contradiction. Thus, when replacifyby B U {a,} — {a,} and go back to step
1 we still have a set of independent vectors.

To this end, letB, denote the originaB, and B; the setB after theith iteration. Consider anjsy.
If the procedure does not terminate, then there must be a snialestsuch thatB; = By, because the
number of different3’s is at most(]" ).

Consider the highest indéxsuch thaty, has been removed frofd at the end of one of the iterations
k,k+1,...,1— 1. Whether or not;, was inB;,, there must be some iterationsindt, k < s,¢ < [, in

which a;, was removed fronB, anda;, was added intd@;. It is easy to see that
Bsn{a; |j>h}=B:N{a;|j>h}=BcN{a;|j>h}

Without loss of generality, assuni®, = {a;,,...,a;,,}. Writeb = >""" | «;,a;,. LetT be the vector
at iterationt. Then,
c'b <0,

as we have shown. However,
m
c'b = ZajiETaji > 0,

=1

because

e wheny; < h, we haven;, > 0 becausé: was the least index for whicty, < 0 so thatay, is to be
removed fromB;, andéTaji > 0 because is the vectorc at the point we added, into B, and
at that pointh was the least index such thefta;, < 0.

e whenyj; = h, aj, < 0 ande’a;, < 0.
e whenj; > h, c¢la;, = 0 because of step 2.
We got a contradiction! O

The fundamental theorem basically says that eithisrin the cone generated by the, or it can be
separatedrom thea; by a hyperplane containing— 1 independené;. The following result states the
same fact but it is less specific.
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Lemma 4.4 (Farkas’ lemma). The systemAx = b, x > 0is feasible iff the systethTy > 0,bTy < 0
is infeasible.

Constructive proof from the simplex algorithiti. ATy > 0,bTy < 0 is feasible, it is easy to see that
Ax = b,x > 0 is infeasible. We will show the converse: assumitg = b, x > 0 is infeasible, we
want to find a vectoy such thatATy > 0,bTy < 0.

Let A’ = [A 1], thenA’is anm x (n + m) matrix. LetP’ = {z| A’z = b,z > 0}. Recall the
two-phase simplex method, where we noted that= b, x > 0 is infeasible if and only if the linear

program
m
min {dTZ = Zznﬂ- |z € P’}

i=1
is feasible with optimal value- 0. Let z* be an optimal vertex of’ returned by the simplex method.

Let A’; be the corresponding basis, which consists of some columnsAramd some columns froth
When the simplex method returm$, two conditions hold

dTz=yLkb > 0
whereyZ = dLA’;!. Itis easy to see that the vectey ’; serves our purpose. O

Proof from the fundamental theorem of linear inequaliti@eometrically, this is saying that b is in
the cone generated by the column vectoradff there is no hyperplane separatibgirom the column
vectors of A. It should be no surprise that we can derive Farkas’ lemma and its variations from the
fundamental theorem. Below is a sample proof.

Necessity is obvious. For sufficiency, assume the first system is infeasiblb,isaot in the cone
generated by the column vecters, . . ., a,, of A. By the fundamental theorem, there is a veetsuch
thatc’a; > 0,V;, ande’b < 0. Obviously,y = c is a solution to the second system. O

Exercise 31 (Farkas’ lemma (variation)). The systemAx < b is infeasible iff the system
ATy =0,bTy <0,y >0

is feasible.

Exercise 32 (Gordan, 1873).Show that the systemrAx < 0 is unsolvable iff the system
ATy =0,y>0,y#0

IS solvable.

Exercise 33 (Stiemke, 1915)Show that the systetAx = 0, x > 0 is unsolvable iff the system

ATy >0,ATy £0

IS solvable.

Exercise 34 (Ville, 1938).Show that the systeAx < 0,x > 0 is unsolvable iff the system
ATy>0,y>0,y#0

is solvable.

20



Farkas’ lemma deals with non-strict inequalities. There is a even more general result dealing with
non-strict and strict inequalities, due to Fourier (1826, [15]), Kuhn (1956, [23]), and Motzkin (1936,
[25]).

Theorem 4.5 (Motzkin’s transposition theorem). The system
Ax <b, Bx<c
is feasible if and only if
y,z>0, ATy+BTz=0, = bTy+cTz>0, 3)

and
y,z>0, ATy+BTz=0, y#0, = bTy+cTz>o0. (4)

Proof. Note that (3) is equivalent to the fact that

y.z>0, [AT BT [-‘;] —0, BT 7] [Z] <0

is infeasible, and (4) is equivalent to the fact that
y,z >0, [AT BT] [32’] =0, y#0, [bT CT] [y] <0 (5)

is infeasible.

For necessity, suppose there is sammsuch thatAx < b, andBx < c. WhenATy + BTz =0,
we haved = xTATy + xTBTz < bTy + cTz, (3) is proved. Whery # 0, we have strict inequality
and (4) is shown.

For sufficiency, (3) and Exercise 31 imply that there issamith Ax < b andBx <c. Let

ai,...,am be the row vectors oA. Condition (5) implies that, for eache [m], the system
vz, AT BT Y] = af, (b7 o] Y] <o ©)
Z Z
is infeasible. Or, the system
_ AT BT o] |Y —a;r
y,z,w > Oa |:bT CT 1:| |:‘j,:| - |:_b1:| (7)

is infeasible. By Farkas’ lemma, this is equivalent to the fact that the system

5 </ [} <o fa b} o ®

is feasible. SinceAx < b, Bx < ¢, a;x < b;, we have

Ax+v) < (=v+1)b

B(x+v) < (=v+1)c

ai(x+v) < (=V+1)b;
-v+1 > 1

Let x) = (x 4+ v)/(1 — ¥), then we haveAx() < b, Bx() < ¢,a;x( < b;. The barycenter of the
x( is anx we are looking for. O



Corollary 4.6 (Gordan, 1873). Ax < 0 is infeasible iffATy = 0,y > 0,y # 0 is feasible.
Corollary 4.7 (Stiemke, 1915).Ax = 0,x > 0 is infeasible iffATy > 0, ATy +# 0 is feasible.
Corollary 4.8 (Ville, 1938). Ax < 0,x > 0 is infeasible iffATy > 0,y > 0,y # 0 is feasible.
Corollary 4.9 (Carver, 1921). Ax < b is feasible iffy # 0,y > 0, ATy = 0,bTy < is infeasible.

Exercise 35.In this exercise, we devise a method to either find a solution to the system b, x > 0
(A is anm x n matrix of rankm), or gives proof that the system in infeasible. The method consists of
the following steps:

1. Start with any set ofr linearly independent columm& z of A. Rewrite the system as
xXp + AélANXN = Aglb, x > 0.
2. If Az'b > 0, then the system is feasible wit; = A'b, andxy = 0.
ReportFEASIBLE andSTOP.

3. Else, lepp = min{i | i € B, (A5'b); < 0}.
For eachi € B, letr(¥ be theith row vector of then x (n —m) matrix A ;' A y.
Consider the equation correspondingkip

Tp + rPxy = (A5'D),.

4. If £(® > 0, then the system is infeasible. ReporEEASIBLE andSTOP.

5. Else, lety = min{j | j € N, rj(-p) < 0}, let B= BU{q} — {p}, and go back to step
Questions:

(a) Show that the procedure terminates after a finite number of steps.

(b) Show that the procedure reports feasible/infeasible iff the system is feasible/infeasible

(c) Prove Farkas’ lemma from this procedure. Specifically, show that the sysiem b, x > 0 is
feasible iff the systemA”y > 0, b’y < 0 is infeasible.

Exercise 36.Consider the systetAx = b, x > 0, whereA is anm x n matrix, and rankA) = m. We
shall try devise a procedure to test if the system is feasible, slightly different than what we have seen so
far. Foranyj = 1,...,n, leta; denote thgth column vector ofA.

(0) B={j1,...,jm}suchthafa; | j € B} form a basis foiR™.
1. Writeb =}, 5 aja;. This is unique.
2. Ifa; > 0,Vj € B, then STOP. We have found a solutioty: = «;,Vj € B,x; =0,Vj ¢ B.

3. Otherwise, pick the smallegte B such thaiy, < 0. We want to find &y € [n] — B such that
after replacinga, by a,, we geto, > 0. (The newB has to also form a basis.) Consider any
h € [n] — B. What is the coefficient o&;, when expressing as a linear combination of vectors
in Ap U{ay} — {a,}? How do we know if this is even a basis? Exprags= > _,. 5 3;a;, then
ApU{ay} —{a,} is a basis iff3, # 0. Moreover,

ap,= > (—Bi/Bya; + (1/8,)an.

JEB,j#p
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Thus, the coefficient of;, when expressing as a linear combination AAg U {a,} — {a,} is

a,/ 6. We want this to be positive. If there are many sughve pick the smallest indexed one.

If there are none, we should have a certificate for the system being infeasible. The infeasibility is
quite easy to see, sincebf = > |85, x5 > 0,7, and all theﬁfoh) are none negative, then

oy, 2> 0.

In conclusion, if there is no sudh then the system is infeasible.

J€n

4. Otherwise, pick a smallegtfor which 3, < 0 and exchangg andg. Then, go back to step one.
Questions:
(i) Prove that this procedure will terminate.

(i) If the system terminates in step 3, find a veggsuch thatATy < 0,bTy > 0 (Farkas’ lemma).

5 Duality

5.1 The basics

Let us consider the following LP:

min T1 — 229 + 4x3
subjectto x; — 3o = 3
—2r1 + w9 + 223 = 4
T + x3 = -3

x1,x2,23 >0 .

Adding the first two equalities and two times the third we get
(:L‘l —3:L‘2)+(—2:L‘1+:132—|—2:133)+2(l’1 —I—:Ug) =3+4—-2-3,

or
T, — 229 + 423 = 1.

This is exactly the objective function. Hence, any feasible solution would also be an optimal solution,
and the optimal objective value Is

Although in general we will not be that lucky, we could and should try to find a lower bound for the
objective function. Basically, when trying to minimize something, we would like to know how much
we could minimize it to. If no lower bound exists for a minimization problem, then the lifféasible
Consider the following LP:

min 3x1 — 2x9 + 43 + 24
subjectto x; — 3o 4+ 2x4 = 3
—2x1 4+ x2 + 2z3 = 4 9)
—2r1 4+ 9 + 223 — x4 = -2

T, T, x3,x4 > 0.
Suppose we multiply théth equality by a numbey;, then add them all up we get
y1(z1 — 3w2 + 224) + y2(—221 + 22 + 223) + y3(—221 + 22 + 273 — 74) = 3y1 + dy2 — 2yu3.
Equivalently,

(y1 —2y2 — 2y3)x1 + (—3y1 + y2 + y3)x2 + (2y2 + 2y3)x3 + (2y1 — y3)x4 = 3y1 + 4y2 — 2y3.
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| Maximization problem | Minimization problem |

Constraints Variables

1th constrain ith variable> 0

ith constraint> ith variable< 0

ith constraint= ith variable unrestricted
Variables Constraints

jth variable> 0 jth constraint>

jth variable< 0 jth constrain<

jth variable unrestricted jth constraint=

Table 1: Rules for converting between primals and duals.

So, if
y1 —2y2 —2y3 < 3
—3y1+y2+ys < =2
20 +2y3 < 4 (10)
21 —y3 < 1,
then

3x1 — 2x2 + 4x3 + X4
> (y1 —2y2 — 2y3)x1 + (=3y1 + Y2 + y3)X2 + (2y2 + 2y3)x3 + (2y1 — Y3)X4
= 3y + 4y2 — 2y3.
Consequently, for every triplg/1, y2, y3) satisfying (10), we have a lower bouBg; + 4y, — 2ys for the

objective function. Since we would like the lower bound to be as large as possible, finding a good triple
is equivalent to solving the following LP:

max 3y1 + 4y2 — 2y3

subjectto y; — 2y — 2y3 < 3
=3y1 + Y2 + y3 < =2 (11)
2y + 2y3 <
2y - y3 < L

The LP (9) is called therimal LP, while the LP (11) is thelual LP of (9).

Applying the principle just described, every LP hadual. We list here several primal-dual forms.
The basic rules are given in table 1.

In standard form, the primal and dual LPs are

min c¢’x  (primal program)

subjectto Ax=Db
x>0

max by  (dual program)
subjectto ATy < ¢ no non-negativity restriction!
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In canonical form, the primal and dual LPs are

min  c¢’x  (primal program)

subjectto Ax>b
x>0

max b’y  (dual program)
subjectto ATy <c
y > 0.

Exercise 37.Show that the standard and canonical primal-dual forms above are equivalent.
Exercise 38.Why in canonical form the dual program has the non-negativity constraints?
Exercise 39.Write the dual program of an LP in the max version of the standard form.
Exercise 40.Write the dual program of an LP in the max version of the canonical form.
Exercise 41. Show that the dual program of the dual program is the primal program.
Exercise 42.Write the dual program of the following linear programs:

max{cTx | Ax = b}

min{cTx | Ax < b}

min{cTx | Ax > b}

min{ch | A1x = b1, A2x < ba, Agx > bs}

Exercise 43.Write the dual program of the following linear program:

max alx+bTy+cTlz
SUbjeCt to A;uix + Apy 4+ Az = d
Aoix + Axny + Axpz < e
Azix + Apy + Az > f

x>0,y <0.

5.2 Primal dual relationship
Consider the standard form of the primal and dual programs:
Primal LP: min{cTx | Ax = b,x > 0},
DualLP:  max{bTy | ATy < c}.

We have seen, as an example in the previous section,Biowis the lower bound for the optimal
objective value of the primal LP. Let us formalize this observation:

Theorem 5.1 (Weak Duality). Suppose is primal feasible, ang is dual feasible for the LPs defined
above, then
c’x > bly.

In particular, if x* is an optimal solution to the primal LP, ang is an optimal solution to the dual LP
as defined above, then



Proof. Noticing thatx > 0, we have
x> (ATy)TX = (yTA)x =yT(Ax) =yTb.
O

Exercise 44. State and prove the weak duality property for the primal and dual programs written in
canonical form:

Primal LP: min{cTx | Ax > b,x > 0},
Dual LP: max{bTy | ATy <c,y > 0}.
Would your proof still work if one or both of the non-negativity constraintsx@ndy were removed?

The following result is almost immediate from the previous proof and Theorem 5.5, yet it is extremely
important:

Corollary 5.2 (Complementary Slackness - standard form).Letx* andy* be feasible for the primal
and the dual programs (written in standard form as above), respectively. kfieandy* are optimal
for their respective LPs if and only if

(c - ATy*)T x*=0. (12)

Equation (12) can be written explicitly as follows:
m
(cj — Zﬁ%‘j) i =0, Vi=1,...,n
=1

Also, since(c — ATy*)T > (0 andx* > 0, we can write the condition as

m
forallj=1,...,n,if ¢;— > yia; >0 thenz; =0, and vice versa.
i=1
After doing Exercise 44, we get the following easily:
Corollary 5.3 (Complementary Slackness - canonical form)Given the following programs
Primal LP: min{cTx | Ax > b,x > 0},
Dual LP: max{bTy | ATy <c,y > 0}.

Let x* andy* be feasible for the primal and the dual programs, respectively. Thérgnd y* are
optimal for their respective LPs if and only if

(c — ATy*)T x*=0, and (b — AX)T y*=0. (13)

Again, condition (13) can be written explicitly as

m
(Cj _Zy;az‘]) :C;‘ =0, Vj=1,...,n,
i=1
and

n
bifo;kaij y; =0, Yi=1,...,m.
j=1
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Exercise 45. Derive the complementary slackness condition for each of the following LPs and their
corresponding duals.

(i) min{cTx| Ax = b}.
(i) max{cTx|Ax < b}.
The weak duality property already tells us some thing about the unboundedness of the LPs involved:

Corollary 5.4. If the primal and the dual are both feasible, then they are both bounded, and thus both
have optimal solutions.

In fact, we can say much more than that. The relationship between the primal and the dual is best
illustrated by the following table:

Dual
Feasible Infeasible
Optimal | Unbounded
Feasible| Optimal X @] 0]
Primal Unbounded @] (@] X
Infeasible @] X X

The X’s are possible, the O’s are impossible to happen. The previous corollary already proved four
entries in the table, namely if both the dual and the primal are feasible, then they both have optimal
solutions. We shall show the rest of the O entries by a stronger assertion that if either the dual or the
primal has an optimal solution, then the other has an optimal solution with the same objective value.
(Notice that the dual of the dual is the primal.)

Theorem 5.5 (Strong Duality). If the primal LP has an optimal solutior*, then the dual LP has an
optimal solutiony* such that
cI'x* =bly*.

Proof. By weak duality, we only need to find a feasilté such thatc”x* = b’y*. Without loss of

generality, assume* is a vertex of the polyhedroR = {x | Ax = b, x > 0} returned by the simplex
algorithm, whereA has dimensiomn x n, with m < n, and rankA) = m. Let Ap, A denote the
parts ofA corresponding to the basis and non-basis columnsAieis anm x m invertible matrix and

xzj = 0,Vj € N. When the simplex algorithm stop, the costxdfis

X = yh.

whereyt, = chgl. It seems thay s is a good candidate fgr*. We only need to verify its feasibility:

AL CR CB:|
Alvyp, = B = < )
vo= 4]y = afl) < o
The last inequality holds because, when the simplex method outputs the optimum vertex, w& have
LAN >0 O
YpAN =2 U
Exercise 46. Consider the linear programin{c’x | Ax > b,I'x > 0}, where [ﬂ is a square

matrix, andI’ is a subset of rows of an identity matrix. Suppesds the unique optimal solution to this
linear program that satisfies all constraints with equality. Construct a dual sojutitimt certifies the
optimality of x*.
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Exercise 47.Prove that the syste’Ax < b can be partitioned into two subsysteAsx < b; and
Asx < by such that

maX{ch | AlX < bl, A2X = b2} = mln{ygb2 | Y2 > O’ Ang — C}.
Use this result to prove the Fourier-Motzkin transposition theorem (Theorem 4.5).

Exercise 48.Given a systemAx < b of linear inequalities, describe a linear program whose optimal
solution immediately tells us which inequalities amokg < b are always satisfied with equality.

Exercise 49.Prove the strong duality theorem using Farkas’ lemma instead of using the simplex algo-
rithm as we have shown.

5.3 Intepreting the notion of dualily

There are many ways to intepret the meaning of primal-dual programs. In economics, for instance, dual
variables correspond tehadow prices In optimization, they correspond taagrange multipliers We
briefly give a geometric intepretation here.
Consider our favorite primal programin{c’x | Ax = b,x > 0}, and its dualmax{b”y | ATy <
c}. A feasible solutionx to the primal program simply indicates tHaits in the cone generated by the

column vectors; of A. Atan optimal vertexc*, there aren linearly independent columns, , ... ,a;,,
of Asuchthab = " 2% a;,. Letd = c"x = )" #% ¢j,.
TBD:

6 More on polyhedral combinatorics (very much incomplete)

6.1 Decomposing a polyhedron

Definition 6.1 (Polyhedral cones).A coneC is polyhedralif C' = {x | Ax < 0} for some real matrix
A, i.e. Cis the intersection of finitely many linear half spaces.

Theorem 6.2 (Farkas-Minkowski-Weyl). A convex cone is polyhedral if and only if it is finitely gener-
ated.

Proof. Let C = con€a,...,a,}, i.e. C is finitely generated. We shall show th@tis polyhedral.
Supposen; € R™,V;. Without loss of generality, assume that thespanR™. (If not, we can always
extend a half-space in the span of thagto a half-space oR™.) If C' = R™, then there is nothing
to show. Otherwise, ldi be a vector not irC’, then by the fundamental theorem there is a hyperplane
{x | ¢'x = 0} containingm — 1 independent vectors frofay, ..., a,} such thatt’a; > 0 for all ;.
In other words, the; belongs to a half space defined &yThe number of such half-spaces is at most
(,,",)- Itis easy to see that is the intersection of all such half-spaces.

Conversely, consider a polyhedral cafle= {x | Ax < 0}. Leta,,...,a,, denote the row vectors
of A, thenC is the intersection of the half-spacgs | a’x < 0}. As we have just shown above, there

is a matrixB with row vectorsby, ..., b; such that
condai,...,a,;,) ={y | By < 0}.

In particular,b?ai <0,Vi, j, sincea; € con€ay,...,a;). Thus,Ab; <0,Vj.
We shall show that
congby,...,by) = {x| Ax < 0}.
Considex = Zj a;bj, wherea; > 0,Vj. Then,Ax = Zj a;Ab; < 0. Conversely, consider a vector
x such thatAx < 0. Assumex ¢ congby, ..., by), then the fundamental theorem implies that there is
a vectorc such thaic’x > 0 andBc < 0. Thusc € conday, ..., a,,), implying thatc can be written
as a non-negative combinatien= ), G;a;. But thencTx = >, Biaix > 0, a contradiction. O
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Exercise 50 (Finite basis theorem for polytopes)Show that a set of points is a polytope if and only if
it is the convex hull of finitely many vectors.

Exercise 51 (Decomposition theorem for polyhedra) Show that, a seP of vectors in a Euclidean
space is a polyhedron if and onlyif = @) + C for some polytop&) and some polyhedral corte.

6.2 Faces and facets

Let P = {x | Ax < b}. Letc be a non-zero vector, ant= max{c’x | x € P}. Then the hyperplane
c’'x = dis called asupporting hyperplanef P. Let H be a supporting hyperplane &% thenH N P is
called afaceof P. For conveniencel is also called a face of itself. Basically, a face can be thought of
as the set of optimal solution to some linear progranPoriP is the set of solutions whet©i= 0.)

Exercise 52.Show thatF’ is a face ofP if and only if F ## ) andF = {x | x € P, A’x = b’} for some
subsystemA’x < b’ of Ax < b.

Exercise 53.Show that
(i) P has finitely many faces
(i) Each face is a non-empty polyhedron
(i) If Fis aface ofP, thenF’ C F is a face ofF' iff F’ is a face ofP.

Exercise 54. A facetis a maximal face other thaR. Show that the dimension of every facet is one less
than the dimension aP.

TBD:

7 The Ellipsoid Algorithm

We briefly sketch the idea of the Ellipsoid algorithm by Khachian in this section. What we will need
in designing a variety of approximation algorithms is a way to find optimal solution to linear programs
with an exponential number of constraints. The notion gkparation oraclewill sometimes help us
accomplish this task.

Given a positive definite matril of ordern and a poinzz € R", the set

E(z,D) = {x| (x—2)"D~!(x - z) < 1}
is called arellipsoidwith centerz.

Exercise 55. Show thatE(z,D) = D'/2E(0,I) + z. In other words, every ellipsoid is an affine
transformation of the unit sphefg(0, I).

The basic ellipsoid algorithm finds a ponin the polyhedrorP = {Ax < b}, or reports thaP is
empty. The algorithm runs in polynomial time. To use the ellipsoid algorithm to solve linear programs,
we can add appropriate upper and lower bounds on the objective function as constraints, then do a binary
search. (More details on this later.)

In the following algorithm, we assume that the polyhedron is full-dimensional and bounded, and that
computation with inifite precisions can be carried out. Ldie the maximum number of bits required
to describe a vertex oAx < b. (We can setv = n?¢, where¢ is the maximum number of bits
required to describe a constraint in the systAm < b.) Setr = 2”. ELLIPSOID ALGORITHM(A,

b)
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1: Start with the ellipsoidsy = £(0, r2I) which containsP.
2. k=0
3: while The center;, of E}, is notinP do
if Vol(Ejy) < Vol(P) then
(since2~2" < \Vol(P), we can check if V(IEy,) < 272" instead)
Return INFEASIBLE
end if
Find a constraina()x < b, violated byz;
(Note that the plaim(¥x < b; is a hyperplane separating from the polyhedron:

© N g

allx <b; < zi(")z;€

forallx € P.)
9: Let Ej,; be the minimum ellipsoid containing the hdlf, N {x | al)x < a(Vz;}.
(Note thatP C Fj.1, still.)
10 k<—k+1
11: end while
12: Return z;
The analysis of the ellipsoid algorithm is based on the following theorem, whose proof can be found
in [26].

Theorem 7.1.Let E = E(z, D) be an ellipsoid irfR™, and leta be a vector irR™. Let E’ be an ellipsoid
with minimum volume containing N {x | alx < a’z}. Then,E’ = E(z', D’), where

Da

) 1

- g —= 14

z z n+1+vaTDa (14)
2 2 Daa’D

D = - (p-_=2_ 23 7). 15

n2—1< n+1 aTDa> (15)

In particular, £’ is unique. Furthermore,
VOI(E') < e 772 Vol ().

From the theorem, it can be shown that the number of iterations of the ellipsoid algorithm is at
mostN = 16n2v. Note thatN does not depend on the number of constraints of the syaAtern< b.
Consequently, the running time of the algorithm would still be polynomial if we have a polynomial time
procedure to confirm ik, € P, and otherwise return a separation hyperplane separ&tifigm z;.

Such a procedure is calledsaparation oracle

Exercise 56.Suppose we use the ellipsoid method to solve a linear program whose corresponding poly-
hedron isP = {x | Ax < b}, which is pointed. The optimal solutiag* returned by the ellipsoid
algorithm may not be a vertex ¢t. How do we find an optimal vertex d? efficiently fromx*?

Example 7.2. TheMINIMUM -COST ARBORESCENCE PROBLEMalso called th&INIMUM -COST BRANCH
ING PROBLEM s defined as follows. Given a directed, edge-weighted gtaph (V, E') with a special
vertexr called the root. Find a minimum-cost spanning tree where edges are directed away. from
Basically, every cufS, S] with » € S must contain at least one edge of the tree. Thus, an equivalent

integer linear program is
min Z WeLe

eckE
subjectto Yz >1, VSCV,res (16)
e€[S,5]
ze € {0,1} Ve € E.
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Relaxing the integral constraints o< z. < 1, and we have a linear program. Edmonds showed that
the set of feasible solutions to the LP is exactly the convex hull of characteristic vectors of arborescences
of G. Thus, if we can find an optimal vertex of the corresponding polyhedron in polynomial time, then
this problem can be solved in polynomial time.

Since the number of constraints of the LP is exponential, we devise an efficient separation oracle and
apply the ellipsoid algorithm. Given any vector RIZ!, checkingd < z. < 1 is trivial. Now, think of
x. as the capacity of edge Checking Z xe > 1is the same as checking if the minimum cut frem

e€lsS,S

to any vertexu of GG is of capacity at Iea[ts]t.]This can certainly be done by invoking the max-flow min-
cut algorithmn — 1 times. In case the min-cut capacity is less thathe max-flow min-cut algorithm
also returns such a c{$, S] which gives us the separation hyperplane!

Example 7.3. In the MULTIWAY NODE CUT problem, we are given a vertex-weight gragh= (V, E)
with weight functionw : V' — Z*, and an independent settefminalsT’ C G. The objective is to find
a subset o/ — T' whose removal disconnect the terminals from each otherPLs the set of all paths
connecting the terminals, then an equivalent integer linear program is

min Z Woy Loy
veV-T
subjectto Y x,>1, VPEP (17)
veP\T

x, € {0,1} Yo e V.

In the corresponding linear program, we turn the integral constraint®irtor, < 1. To check ifx

is feasible, construct a directed graphby turning each edgev of G into two edgegu, v) and (v, u)

of D. Assign a weight ofr, to edge(u, v) and a weight ofr, to edge(v, u). (For convenience, we set
x, = 0if v € T.) Then, find all shortest paths among all pairs of terminal®inf one such shortest
path has length: 1, then we have found a separating hyperplane. Otherwise the solution is feasible.

Exercise 57. The MINIMUM MULTICUT problem can be defined as follows. We are given a graph

G = (V, E) where each edge has a non-negative integral capacity We are also giverk pairs of
vertices(si,t1),. .., (sk, tx), where each pair consists of two different vertices, but the vertices from
different pairs are not necessarily different. The problem is to find a minimum capacity subset of edges
whose removal separates each of the given pairsPLbe the set of all paths connectiggto ¢;, andP

be the union of allP;. The problem is equivalent to the following ILP:

min Z Cee
ecE
subjectto Y "z, >1, VPP (18)
ecP
z. € {0,1} VeeE.

Show that the relaxed LP of this ILP can be solved efficiently using the ellipsoid method.

Exercise 58. The GRoOuUP STEINER TREE problem can be defined as follows. We are given a graph
G = (V, E) and non-negative integral cost for each edge. There arek disjoint groups of vertices
X1,..., X, The objective is to find a minimum-cost subgrapbf G which contains at least one vertex
from each group. Clearlyi’ only needs to be a tree, which is calle&teiner tree (In the Steiner Tree
problem, each group contains one vertex.)
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Note 1: although it does not concern us in this problem, it is worth mentioning that we can assume
that the cost function satisfies the triangle inequality. For if an edge- (u, v) in the optimal solution
has greater cost than some path betweandwv, we can replace by this path.

Note 2: the assumption that the groups are disjoint can also be relaxed. If there was awertex
contained inm groups, we can addh new vertices connected towith new edge costs equal to zero.
Then, add each new vertex to a distinct group in that set gfoups, and remove from all the groups.

We will consider a version of this problem where the Steiner tree has to contain a given/*'rodf’"

If we can solve this version of the problem, the original version can be solved by running the algorithm
for the rooted version over atl € X1, then take the best resulting Steiner tree.

The rooted version can be formulated as follows.

min E Cele

eck
subject to Z x> 1, VS CV, suchthat € S, andS N (UF, X;) # 0 (19)
e€[S,9)
ze € {0,1} Ve € E.

Show that the relaxed LP of this ILP can be solved efficiently using the ellipsoid method.
Lastly, we describe two (of several) ways to solve a linear program using the ellipsoid algorithm:

e Consider the primal dual pair of linear programs:
min{c’x | Ax =b,x > 0}

and
max{b’y | ATy < c}.

To solve both programs at the same time, simply find a feasible solution to the polyhedron
pP= { [j |bly =cTx,Ax=b,x>0,ATy < c} .

For numerical accuracy consideration, some perturbation might need to be done.

e We could also apply the so-callstiding objectivemethod as follows. Suppose we try to minimize
a linear objectivec” x over a polyhedror?. Findxg, € P. At iteration k, apply the ellipsoid
algorithm toP N {x | ¢’x < cTx;}.

Historical Notes (Very much incomplete)

Standard texts on linear algebra and algebra are [2] and [34]. Texts on linear programming are numerous,
of which I recommend [11] and [26].

The idea (moving along edges of the feasible polyhedron from vertex to vertex) fairtipdex
methoddated back to Fourier (1826), and mechanized algebraically by George Dantzig in 1947 (pub-
lished in 1951 [12]), who also acknowledged fruitful conversation with von Neumann. This worst-case
exponential algorithm has proved to work very well for most practical problems. Even now, when we
know of many other polynomial time algorithms [18,19,36] to solve linear programs, the simplex method
is still among the best when it comes to practice. The worst-case complexity of the simplex method was
determined to be exponential when Klee and Minty [21] found an example where the method actually
visits all vertices of the feasible polyhedron.
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The quest for a provably good algorithm continues, until Khachian [19] devisesllijhgoid method
in 1979. The method performs poorly in practice, however. A breakthrough was made by Karmarkar
in 1984 [18], when he found a method which works in provably polynomial time, and also 50 times
faster than the simplex method in his experiments. Karmarkar’s method wasiofdher pointtype of
method, where one keeps moving a point strictly inside the feasible region toward an optimal vertex. This
method applies to non-linear programming as well. For a recent discussion on interior methods, see [14].
In fact, the simplex method is still the most popular method to be applied in practice. Somehow it runs
in polynomial time on most inputs. To explain this phenomenon, researchers have tried to show that,
under some certain probabilistic distributions of linear programs, the simplex method takes a polynomial
number of iterations on average. See, for example, Borgwardt [6—9], Smale [27, 28], Spielman and Teng
[29-33]. Recently, Kelner and Spielman gave the first polynomial time randomized simplex algorithm
to solve linear programs [].

In 1957, Warren Hirsch conjectured that the diameter of-@imensional polytope withn facets is
at mostm — n. The conjecture does not hold for unbounded polyhedra (Klee and Walkup []). Kalai and
Kleitman [17] proved a quasi-polynomial upper bound on the shortest path between any pair of vertices:
ml°82n+2 | arman [24] showed the upper bougitt 2m. See [1, 20, 22] for related results.

The concise surveys [3, 35] on linear programming contain many good references and interesting
discussions.
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