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Approximation Algorithms Based on the Primal-Dual Method

Theprimal-dual method(or primal-dual schema) is another means of solving linear programs. The
basic idea of this method is to start from a feasible solutiony to the dual program, then attempt to find a
feasible solutionx to the primal program that satisfies the complementary slackness conditions. If such
anx cannot be found, it turns out that we can find a bettery in terms of its objective value. Then, another
iteration is started.

The above idea can also be modified to design approximation algorithms. An approximate solution
to the primal IP and a feasible solution to the dual LP can be constructed simultaneously and improved
step by step. In the end, the approximate solution can be compared with the dual feasible solution to
estimate the approximation ratio. One of the key strengths of this method is that it often allows for a
combinatorial algorithm (based on the primal/dual view) which is very efficient.

1 Motivations: duality-base algorithms for VERTEX COVERand SET COVER

Recall the (unweighted)VERTEX COVER problem. Given a graphG = (V,E), taking all vertices of
a maximal matching ofG would give a vertex cover forG. This is a very efficient2-approximation
algorithm for the vertex cover problem.

The above algorithm runs much faster than the rounding algorithm we have seen. One might wonder
how this algorithm looks from the angle of linear programming. The answer is a surprisingly nice one.
Let us consider the linear relaxation of the integer program for vertex cover:

min
∑
v∈V

xv

subject to xu + xv ≥ 1, ∀uv ∈ E,

xv ≥ 0, ∀v ∈ V.

(1)

The dual program is
max

∑
uv∈E

yuv

subject to
∑

u: uv∈E

yuv ≤ 1, ∀v ∈ V,

yuv ≥ 0, ∀uv ∈ E.

(2)

An integral feasible solution to (2) corresponds to a matching ofG. Based on the idea of a maximal
matching in the view of this linear program, we define a feasible solutiony to bemaximalif there is no
feasible solutiony′ for whichy′uv ≥ yuv,∀uv ∈ E, and

∑
uv∈E y′uv >

∑
uv∈E yuv. In other words,y is

maximal iff we cannot increase any component ofy without making it infeasible.
Now that we had the linear programming semantics of a maximal matching, the next question is:

what does it mean to take both vertices of the maximal matchings? Easy, this corresponds to setting
xv = 1 whenever

∑
u: uv∈E yuv = 1.

Theorem 1.1. Let ȳ be a maximal feasible solution to(2), then the strategy of settingxA
v = 1 whenever∑

u: uv∈E ȳuv = 1 gives a2-approximation to theVERTEX COVERproblem.
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Proof. We first show thatxA indeed defines a feasible vertex cover. If there is an edgeuv ∈ E such that
bothxA

u andxA
v are0, then we must have∑

s: us∈E

ȳus < 1, and
∑

t: tv∈E

ȳtv < 1.

But thenȳuv can be increased by an amount of

δ = min

{(
1−

∑
s: us∈E

ȳus

)
,

(
1−

∑
t: tv∈E

ȳtv

)}
,

contradicting the maximality of̄y.
Secondly, we need to verify the approximation ratio of2. This could be done easily using weak

duality. We knowȳ gives a lower bound on the optimal value for (1), which is a lower bound of the
optimal vertex cover: ∑

v

xA
v ≤

∑
v

∑
u: uv∈E

ȳuv = 2
∑

uv∈E

ȳuv ≤ 2 · OPT.

This algorithm can be extended straightforwardly to the weighted case, while the matching idea does
not extend that well. Instead of solving the weighted case, let us see how this idea can be extended to the
WEIGHTED SET COVERproblem.

Recall that in theWEIGHTED SET COVERproblem, we are given a universe setU , and a collection
C of subsets ofU Implicitly, let m = |U | andn = |C|. Each setS in C is weighted with a non-negative
integer weightwS . The corresponding integer program is

min
∑
S∈C

wSxS

subject to
∑
S3i

xS ≥ 1, ∀i ∈ U,

xS ∈ {0, 1}, ∀S ∈ C.

(3)

The LP relaxation for (3) is
min

∑
S∈C

wSxS

subject to
∑
S3i

xS ≥ 1, ∀i ∈ U,

xS ≥ 0, ∀S ∈ C.

(4)

The corresponding dual program can be written as follows.

max
∑

i∈U yi

subject to
∑
i∈S

yi ≤ wS , ∀S ∈ C,

yi ≥ 0, ∀i ∈ U.

(5)

Combinatorially, to each setS of C we associate a non-negative numberxS and to each elementi of
U we associate a non-negative numberyi. The primal constraints say that the sum of numbers corre-
sponding to sets containing an elementi is at least one. The dual constraints say that the sum of numbers
corresponding to elements in a setS is at most the weightwS of the set.

A feasible solution̄y for (5) is said to bemaximaliff we cannot increase any component ofȳ without
making it infeasible. The following theorem can be shown in a similar manner as that of Theorem 1.1.
We will prove a stronger version of this theorem in the next section.
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Theorem 1.2. Let ȳ be a maximal feasible solution to(5), then the strategy of settingxA
j = 1 whenever∑

i∈Sj
yi = wj gives anf -approximation to theWEIGHTED SET COVERproblem, where

f = max
i∈U
|{S | S ∈ C, i ∈ S}|.

Note that, one way to get a maximal dual feasible solution is to solve the dual LP. An optimal solution
is certainly maximal.

2 The basic primal-dual method

We can get away with solving the dual LP altogether, which is great because solving the dual LP takes
quite a bit of running time. All we wanted was a maximal dual feasible solution. This section presents
an approach to get such a solution. (There are other approaches, which we shall not discuss here.) In
fact, we will not even need to explicitly compute the maximal dual feasible solution at all. The linear
program is really used as an analytical device, guiding our search for a good approximation algorithm.

Consider the dual LP (5) for theWEIGHTED SET COVERproblem. Certainlyy = 0 is a feasible
solution. One way to obtain̄y is to find an appropriate componentyi of y and increase it as much as
possible to turn one more of the inequalities into equality. When this is no longer possible, we get our
maximal feasible solution. The following algorithm implements this idea.

PRIMAL-DUAL BASIC

1: y← 0
2: C ← ∅ // this is like settingxA

S = 0,∀S.
3: while C is not a coverdo
4: Choose an uncovered elementk
5: Increaseyk until ∃S :

∑
i∈S yi = wS // in other words, theS-constraint is “binding”

6: Add S into C // same as settingxA
S = 1 because its constraint is binding.

7: end while
8: ReturnC // we will refer to this final solution asC.

The idea of the algorithm is very clear. ObviouslyC is a feasible solultion. For the approximation
ratio, notice that from the linear programming viewxA

S = 1 only when
∑

i∈S yi = wS (in this case we
sayS is saturated). Also note that there might be saturated setsS which are not inC (i.e., xA

S 6= 1),
because we only chose one saturatedS to add intoC at each iteration. The analysis goes as follows.

cost(xA) =
∑
S∈C

wSxA
S =

∑
S∈C

(∑
i∈S

yi

)
=
∑
i∈U

|{S : S ∈ C, i ∈ S}|yi.

For any collectionC of subsets ofU , and anyi ∈ U , let

g(C, i) = |{S : S ∈ C, i ∈ S}|. (6)

If there exists a numberρ such thatyi > 0 impliesg(C, i) ≤ ρ, then we have

cost(xA) =
∑
i∈U

g(C, i)yi ≤ ρ
∑
i∈U

yi ≤ ρ · OPT.

We just proved the following theorem.
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Theorem 2.1. Let C be the collection returned byPRIMAL-DUAL BASIC. Let ρ be any number such
that, for eachi ∈ U , yi > 0 impliesg(C, i) ≤ ρ. Then,PRIMAL-DUAL BASIC is a ρ-approximation
algorithm forSET COVER.

For theWEIGHTED SET COVERproblem,ρ can be chosen to be the maximum number of appearances
of an element in the given collection, thus proving Theorem 1.2.

Exercise 1. Consider the following algorithm to compute an approximate solution to theWEIGHTED

SET COVERproblem:

WSC-PRIMAL -DUAL -B

1: C ← ∅
2: I ← U
3: while I 6= ∅ do
4: Let S be a set inC whose ratiowS/|S| is minimum. //NOTE: the fraction is∞ if S is empty.

5: r ← wS

|S|
, C ← C ∪ {S}, I ← I − S

6: for eachT ∈ C do
7: wT ← wT − |T ∩ S|r
8: T ← T − S
9: end for

10: end while
11: ReturnC

(i) In words, explain what the algorithm does.

(ii) Show that the algorithm is anf -approximation algorithm to theWEIGHTED SET COVERproblem,
where

f = max
i∈U
|{S | S ∈ C, i ∈ S}|.

Exercise 2. Given a universeU and a collectionC of subsets ofU . Consider the following integer
program.

min
∑
S∈C

wSxS

subject to
∑
S∈C
|S ∩ T |xS ≥ |T |, ∀T ⊆ U,

xS ∈ {0, 1}, ∀S ∈ C.

(7)

(i) Prove that this program is equivalent to theWEIGHTED SET COVERproblem. Equivalence means
every optimal solution toWEIGHTED SET COVERcorresponds to an optimal solution of (7) and
vice versa.

(ii) Write down its LP relaxation and the LP’s dual program.

(iii) Design an approximation algorithm using the primal-dual method similar to the one presented in
the lecture. Your algorithm should have approximation factorf , as usual.

You should briefly describe the idea and write down the pseudo code. Also, what’s the running
time of your method?

Exercise 3. Consider theHITTING SET problem, in which we are given a universe setU with weighted
elements, and a collection of subsetsT1, . . . , Tk of U . The problem is to find a minimum-weight subset
A of U which hits everyTi, namelyA ∩ Ti 6= ∅, for all i ∈ [k].
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• Write an integer program formulation of this problem. Also write the dual linear program of the
relaxed version of the IP.

• Devise a primal-dual approximation algorithm for this problem.

• What’s your approximation ratio and running time?

3 Optimization problems formulated asSET COVER

There are quite a few optimization problems that can be formulated as a specical case of theWEIGHTED

SET COVERproblem. In the following problems, we assume all weights are non-negative integers.
Consider the SHORTESTs-t PATH PROBLEM, in which we need to find a shortest path between two

verticess andt of a graphG = (V,E). Let the universeU be the set of alls-t cuts. For each edge
(u, v) ∈ E, let Suv be the set of all cuts inU that contain(u, v). Let C be the collection of allSu,v. If E
is weighted, then the weight ofSu,v is the weight of(u, v). Then, by the max-flow min-cut theorem it is
easy to see that SHORTESTs-t PATH is equivalent to theWEIGHTED SET COVERonU andC. The basic
idea is to pick a minimum-weight set of edges that “covers” alls-t cuts!

Similarly, in theMINIMUM SPANNING TREE problem we need a minimum-weight set of edges that
cover all cuts in a graphG.

The GENERALIZED STEINER TREEproblem is defined as follows. Given an edge-weighted undi-
rected graphG = (V,E) andm pairs of vertices(sj , tj), j ∈ [m]. Find a minimum-weight subset of
edgesC ⊆ E such thatsj andtj are connected in(V,C), for eachj ∈ [m]. In this problem, we wantC
to cover allsj-tj cuts.

In the FEEDBACK VERTEX SET problem, we are given an undirected graphG = (V,E) with
weighted vertices. The goal is to find a minimum-weight subsetC of vertices so that every cycle in
G contains some vertex inC. Thus, we wantC to cover all cycles ofG.

TheMINIMUM -COST ARBORESCENCEproblem, also called theMINIMUM -COST BRANCHING PROB-
LEM is defined as follows. Given a directed, edge-weighted graphG = (V,E) with a special vertexr
called the root. Find a minimum-cost spanning tree where edges are directed away fromr. In this case,
we want the edges of the tree to cover allr-directed cuts.

Many of the problems above can be formulated with the following integer program. We assume that
an edge-weighted graphG = (V,E) is given, and edgee is weighted withwe ∈ Z+.

min
∑
e∈E

wexe

subject to
∑

e∈δ(X)

xe ≥ f(X), ∅ 6= X ⊂ V,

xe ∈ {0, 1}, ∀e ∈ E.

(8)

Hereδ(X) = [X, X], andf : 2V → Z+ is a function that counts how many edges must crossδ(X) in a
feasible solution. In theSHORTESTs-t PATH problem, for instance, eachs-t cut must be crossed at least
once. Other problems follow the same trend, except for theFEEDBACK VERTEX SETproblem.

Exercise 4 (T -join). TheT -JOIN problem is defined as follows. Given a subsetT of an even number of
vertices of an edge-weighted graphG, find a minimum cost forest ofG such that all vertices inT have
odd degrees and the rest of the vertices have even degrees in the forest.

Show that formulation (8) can be used to capture this problem by defining whatf(X) is, and argue
why the formulation is correct.
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Exercise 5 (Steiner tree).In the STEINER TREE problem, we are given a subsetT of vertices of an
edge-weighted graphG. We need to find a minimum-cost connected subgraph ofG that contains all
vertices inT (and perhaps some other vertices).

Show that formulation (8) can be used to capture this problem by defining whatf(X) is, and argue
why the formulation is correct.

A very general problem of this type is called theSURVIVABLE NETWORK DESIGN PROBLEM, also
called theGENERALIZED STEINER PROBLEM. We are given an edge-weighted graphG = (V,E). For
each pairu, v of vertices, there is a non-negative integermuv. We must find a least-cost subsetC of
edges such that in(V,C) there aremuv edge disjoint paths joiningu andv, for each pairu, v. In this
case, we wantf(X) = max

u∈X,v/∈X
muv for each subsetX of vertices.

We shall see how the primal-dual method helps design approximation algorithms for problems for-
mulated as (8) for several classes of functionsf .

4 Tuning PRIMAL-DUAL BASIC

4.1 Be particular in choosing the uncovered elementk

Consider theFEEDBACK VERTEX SETproblem on a graphG = (V,E). We want to cover the universe
of cycles ofG with vertices inV . For a collection of verticesC and some cyclei, g(C, i) is the number
of vertices ofC in the cycle. The rough bound isn, because a cycle may contain as many asn vertices.
This is a very bad approximation ratio.

Fortunately, to obtain a ratio ofρ we only needg(C, i) ≤ ρ whenyi > 0, i.e. when cyclei is chosen
at some point during the execution ofPRIMAL-DUAL BASIC. Thus, if we try our best to pick small
cycles, we would have a better approximation. Further more, not all vertices in a chosen cycle will be in
C at the end. Hence,g(C, i) can still be smaller than the length of cyclei.

To this end, one needs to be creative to take advantage of the above observations. We will limit the
set of vertices which have the potential to be in the final cover. We shall refer to them asinteresting
vertices. If we never pick a uninteresting vertex to be in the cover, theng(C, i) is upper-bounded by the
number of interesting vertices on cyclei, which can potentially be smaller than the size of this cycle.

All vertices of degree1 are not interesting. If there was a pathP of G, all of whose internal vertices
have degree2, then only a least-weight internal vertexv needs to be interesting among all internal ver-
tices, because a cycle containingv will contain all of P . Consequently, if at each step of the algorithm
we can somehow choose an uncovered cycle containing a small number of interesting vertices, then we
would be able to improve the approximation ratio. A result of Erdős and Ṕosa in 1962 tells us how to do
this.

Theorem 4.1 (Erdős-Ṕosa [13]). Let G′ = (V ′, E′) be a graph with no degree-1 vertex in which each
degree-2 vertex is adjacent to two vertices of degrees at least3. Then,G′ has a cycle of length at most
4 lg |V ′|. Moreover, this cycle can be found in polynomial time.

Exercise 6.Consider a graphG with no degree-1 vertex in which each degree-2 vertex is adjacent to two
vertices of degrees at least3. Let H be the graph obtained fromG by shortcutting all vertices of degree
2, namely for each vertexv ∈ V (G) whose only two neighbors isu andw, we removev and connectu
andw with an edge. (Note thatH now has only vertices with degree more than2.)

1. Suppose we build a breadth-first tree starting from some vertexr of H. Prove that by the time we
reach depthlg |V (H)|, we will have discovered a cycle of length at most2 lg |V (H)|.

2. Prove Erd̋os-Pośa theorem.
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This theorem suggests the following algorithm forFEEDBACK VERTEX SET(FVS).

Algorithm 4.2. FVS-1

1: y← 0
2: C ← ∅
3: Let G′ be a graph obtained fromG by removing all uninteresting vertices.
4: while G′ is not emptydo
5: Choose cyclek in G′ of length at most4 lg |V (G′)|
6: // note that this cycle corresponds uniquely to a cycle in the original graphG
7: Increaseyk until there is some saturated vertexv
8: Add v into C
9: Removev from G′ and then all uninteresting vertices fromG′

10: end while
11: ReturnC (call it C)

The following theorem is now immediate from the above analysis.

Theorem 4.3. AlgorithmFVS-1 is a4 lg n-approximation algorithm forFEEDBACK VERTEX SET.

A 2-approximation for this problem can be obtained with a different integer programming formula-
tion, as we shall see in a later section.

4.2 Refining the final solution with reverse deletion

4.2.1 Motivations for reverse deletion

Consider thes-t SHORTEST PATHproblem and how algorithmPRIMAL-DUAL BASIC applies to it. In
this case, we want to pick a minimum-weight subset of edges which covers alls-t cutsδ(X).

Consider a typical iteration of the algorithm with the current setC of edges chosen so far. Ifs andt
is not connected in(V,C), then there will be a number of “uncovered” cuts to choose from. A sensible
approach is to choose a minimal cut that containss, i.e. we choseδ(X) whereX is the set of vertices of
the connected component of(V,C) that containss. It is not difficult to see that this strategy corresponds
to Dijkstra’s algorithm for theSINGLE SOURCE SHORTEST PATHproblem.

Exercise 7. Prove that the strategy above corresponds to Dijkstra’s algorithm.

Unfortunately, this algorithm produces redundant edges, which are in a shortest path tree rooted at
s. Hence, it makes sense to remove redundant edges from the final solutionC. For some problems, it is
better to remove redundant elements in the reverse order of their addition. This step is called thereverse
deletion stepand is illustrated in the following refinement of the basic algorithm.

Algorithm 4.4. PRIMAL-DUAL WITH REVERSE DELETION

1: y← 0, C ← ∅, j ← 0
2: while C is not a coverdo
3: j ← j + 1
4: k ← UNCOVERED-ELEMENT(C) // we can adapt this procedure for different problems
5: Increaseyk until someS is saturated, denoteS by Sj

6: Add Sj into C
7: end while
8: C ← REVERSE DELETE(C)

REVERSE DELETE(C)
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1: for j = |C| downto 1 do
2: if C − {Sj} is feasiblethen
3: removeSj from C
4: end if
5: end for
6: ReturnC

Fix ak for whichyk > 0. As before we would like to estimate an upper bound forg(C, k). The situ-
ation becomes a little bit more complicated because of the reverse deletion. For notational conveniences,
let k(C) = UNCOVERED-ELEMENT(C), where we assume a deterministic strategy of choosing ak given
aC.

At the point where we are about to increaseyk, the current solution isC = {S1, . . . , Sj−1} for some
j andk = k(C) is not in any of these sets. Thus,

g(C, k) = g
(
C ∪ C, k(C)

)
.

The collectionA = C ∪C is aminimal augmentationof C in the sense thatA is feasible, and removing
any member fromA−C will result in an infeasible solution. This follows from the reverse deletion step.
The following theorem follows readily.

Theorem 4.5. If for any iteration of algorithmPRIMAL-DUAL WITH REVERSE DELETION with its in-
feasible solutionC,

max
A : min. aug. ofC

g(A, k(C)) ≤ ρ

then the algorithm has approximation ratioρ.

Exercise 8. Suppose we applyPRIMAL-DUAL WITH REVERSE DELETION to thes-t SHORTEST PATH

problem, using the rule of picking a minimal cut containings each time. Show that theρ = 1 satisfies
Theorem 4.5. In other words, the algorithm returns an optimal solution.

Exercise 9. In the MINIMUM -COST ARBORESCENCEproblem, we are given a directed edge-weighted
graphG = (V,E) and a root vertexr. The goal is to find a minimum-cost tree rooted atr all of whose
edges are directed away fromr.

This problem can be viewed as a special case of WEIGHTED SET COVER in the following sense: for
each subsetX of V − {r}, we want the minimum-cost set of edges to coverδ−(X), whereδ−(X) =
{(u, v) | u /∈ X, v ∈ X}. (Here,(u, v) coversδ−(X) iff (u, v) ∈ δ−(X).)

Suppose we applyPRIMAL-DUAL WITH REVERSE DELETION to this problem.

(a) Consider an infeasible set of edgesC in some iteration of the algorithm and the graphG′ = (V,C).
Show that there is a strongly connected component ofG′ with vertex setX such thatr /∈ X, and
C ∩ δ−(X) = ∅.

(b) Describe how to find this component in polynomial time.

(c) Let UNCOVERED-ELEMENT(C) returnδ−(X) with X found as in (a). Apply Theorem 4.5 to show
that this algorithm has approximation ratio1, i.e. it returns an optimal solution.

4.2.2 An application: MULTICUT IN TREES

In the MULTICUT problem, we are given a graphG = (V,E) with edge capacity functionc : E → Z+,
andm pairs of vertices(si, ti), i ∈ [m]. The pairs are different, but the vertices in different pairs do not
have to be distinct. Amulticut is a set of edges whose removal disconnectssi andti, for all i ∈ [m]. The
problem is to find a multicut with minimum capacity.
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Exercise 10. Show that MULTICUT is NP-hard even whenG is a tree by a reduction from VERTEX

COVER.

Throughout this section, we assumeG is a tree, so that there is a unique pathPi from si to ti in
G. This can be viewed as a SET COVER problem in which an edgee covers allsi, ti-paths that contain
e. We will show that the algorithm PRIMAL -DUAL WITH REVERSE DELETIONgives an approximation
ratio2 for this problem.

The LP-relaxation of the IP for this problem is

min
∑
e∈E

cexe

subject to
∑
e∈Pi

xe ≥ 1 i ∈ [m],

xe ≥ 0, ∀e ∈ E.

(9)

The dual program is

max
m∑

i=1

yi

subject to
∑

i: e∈Pi

yi ≤ ce e ∈ e,

yi ≥ 0, ∀i ∈ [m].

(10)

In the context of this problem, we need to be very specific on choosing an uncoveredsk, tk-path at
each iteration. Fix a vertexr of G as the root of the tree. For each pair(si, ti), let LCA(si, ti) denote the
least common ancestorof si andti, which is the vertex at the intersection of the paths fromsi to r and
from ti to r. Note thatLCA(si, ti) could besi or ti. Let d(si, ti) denote thedepthof LCA(si, ti), which
is the distance betweenr andLCA(si, ti). Our primal-dual based algorithm is as follows.

Algorithm 4.6. PRIMAL -DUAL FOR MULTICUT IN TREES

1: C ← ∅, y ← 0, j ← 0
2: while C is not a multicutdo
3: Choose an uncovered pathPk with largestd(sk, tk)
4: Increaseyk until there is a saturated edgeej

5: Add ej into C
6: end while
7: C ← REVERSE-DELETE(C)

Theorem 4.7. The algorithm above gives approximation ratio2.

Proof. Let C be an infeasible set of edges. LetA be a minimal augmentation ofC. Let Pk be the
uncovered path returned by the algorithm in line 3. We only have to show that there are at most2 edges
of Pk onA.

Let v = LCA(sk, tk). Suppose there are at least3 edges ofA on Pk. These edges are not inC.
Without loss of generality, assume there are two edgese1 ande2 of A on the part ofPk from sk to v
(otherwise, there are at least two edges on the part fromtk to v). Supposee1 is closer tov thane2. Since
A is minimal, there is a pathPi such thate2 ∈ Pi bute1 /∈ Pi. Consequently,d(si, ti) > d(sk, tk), which
meansPi should have been chosen instead ofPk. This is a contradiction.

Note that the integer version of (10) is theMAXIMUM INTEGER MULTI -COMMODITY FLOW problem
in trees. The algorithm above implicitly gives a feasible solution for this problem (defined by theyk).
This feasible solution is at least half of the optimal cost of the primal IP, hence it is also a2 approximation
for the multi-commodity flow problem.
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Open Problem 1.No non-trivial approximation algorithm is known for theMAXIMUM INTEGER MULTI -
COMMODITY FLOW problem on graphs more general than trees. (Trivial ones give factorΩ(n).)

Exercise 11. Suppose instead of doingREVERSE-DELETE (which deletes edges in the reverse order
of which they were added intoC), we apply the following procedure: sort edges in the finalC by
decreasing capacity and remove redundant edges in this order. What factor can you prove for the modified
algorithm?

Exercise 12.Give a polynomial time algorithm to compute a maximum integer multi-commodity flow
on trees with unit edge-capacities. You can use as a subroutine a maximum matching algorithm. (Hint :
dynamic programming.)

4.2.3 Another application: better approximation for FEEDBACK VERTEX SET

This application illustrates several very important points about the primal-dual method, and about LP-
based approximation algorithms in general. Firstly, the right LP/DLP formulation is key to having a
good approximation ratio. Secondly, the primal-dual method applies just as well to multicover type of
problems.

We shall derive an interesting IP formulation for theFEEDBACK VERTEX SETproblem. For any
subsetS of vertices of the graphG under consideration, letdS(v) be the degree of vertexv in the
subgraghG[S] = (S, E[S]) of G induced byS.

Exercise 13.Defineb(S) := |E[S]| − |S| + 1. Show that, for any subsetS of V , and any feedback
vertex setF of G, we have ∑

v∈F

(dS(v)− 1) ≥ b(S).

Exercise 14.Consider the following integer program

min
∑
v∈V

wvxv

subject to
∑
v∈S

(dS(v)− 1)xv ≥ b(S) S ⊆ V,

xv ∈ {0, 1}, ∀v ∈ V.

(11)

Prove thatx is a feasible solution to (11) iffx is the characteristic vector of a feedback vertex set. In
other words, the above IP is equivalent to the FVS problem.

In light for the previous exercise, we look at the LP-relaxation of (11)

min
∑
v∈V

wvxv

subject to
∑
v∈S

(dS(v)− 1)xv ≥ b(S) S ⊆ V,

xv ≥ 0, ∀v ∈ V.

(12)

max
∑
v∈V

b(S)yS

subject to
∑
S3v

(dS(v)− 1)yS ≤ wv S ⊆ V,

yS ≥ 0, ∀S ⊆ V.

(13)
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A semi-disjoint cycleof a graphG is a cycle ofG with has at most one vertex of degree more than2.
We apply the same idea as that of Algorithm 4.4. Basically, letF be the feedback vertex set constructed
so far, andV ′ be the rest of the vertices. IfG[V ′] has a semi-disjoint cycleC, then we increase the dual
variable corresponding toV (C). Otherwise, we increase the dual variable corresponding toV ′. We add
a saturated vertex toF at each step. When the loop is finished, reverse deletion is applied as before.
Formally, the algorithm is described as follows.

Algorithm 4.8. FSV-2

1: F ← ∅, y ← 0, j ← 0
2: V ′ ← V , E′ ← E
3: while F is not feasibledo
4: j ← j + 1
5: Recursively remove degree-one vertices and edges fromV ′ andE′

6: if (V ′, E′) contains a semi-disjoint cycleC then
7: S ← C
8: else
9: S ← V ′

10: end if
11: IncreaseyS until there is a saturatedvj ∈ S
12: F ← F ∪ {vj}
13: Removevj from (V ′, E′)
14: end while
15: for i← j downto 1 do
16: if F − {vj} is feasiblethen
17: F ← F − {vj}
18: end if
19: end for
20: Return F (refer to it asF )

Because the primal-dual pair (12) and (13) do not have the exact format as those in (4) and (5),
Theorem 4.5 does not apply directly. Algorithm 4.8 can be analyzed in a similar manner, as follows.

cost(F ) =
∑
v∈F

wv =
∑
v∈F

∑
S:v∈S

(dS(v)− 1)yS =
∑
S⊆V

(∑
v∈S

(dS(v)− 1)

)
yS .

We want to bound ∑
S⊆V

(∑
v∈S

(dS(v)− 1)

)
yS ≤ ρ ·

∑
S⊆V

b(S)yS ,

for some ratioρ. This will hold true if

yS > 0 implies
∑
v∈S

(dS(v)− 1) ≤ ρ · b(S).

Exercise 15.Consider anyS for which yS > 0. Show thatS ∩ F is a minimal feedback vertex set of
G[S]. Also, show that, ifS is a semi-disjoint cycle, then∑

v∈S

(dS(v)− 1) ≤ 2 · b(S).

11



Exercise 16.Show that, for any minimal feedback vertex setF of a graphG = (V,E) which contains
no semi-disjoint cycle, ∑

v∈S

(dS(v)− 1) ≤ 2 · b(S).

The previous two exercises finished our analysis of Algorithm 4.8.

Theorem 4.9. Algorithm 4.8 is a2-approximation algorithm.

Exercise 17.(TBD) Primal dual method for multi-cover problem.

4.3 Increasing simultaneously multiple dual variables

A MINIMUM SPANNING TREE (MST) instance can be viewed as aWEIGHTED SET COVERinstance
where the edges need to cover all non-trivial cuts in the graph. Prim’s algorithm for MST can be thought
of as a special case ofPRIMAL-DUAL BASIC. However, Kruskal’s algorithm is different. Kruskal’s
algorithm corresponds to increasing all dual variables simultaneously at the same rate until some edge
becomes saturated. This idea is summarized in the following more general form of the primal dual
method.

GENERAL PRIMAL-DUAL

1: y← 0, C ← ∅, j ← 0
2: while C is not a coverdo
3: j ← j + 1
4: νj ← UNCOVERED-ELEMENTS(C) // pick a subset of uncovered elements
5: For allk ∈ νj , increase allyk at the same rate, until someS is saturated.
6: Refer toS asSj and add it intoC
7: end while
8: C ← REVERSE DELETE(C)

Let l be the total number of iterations. Letεj be the amount by which each variable inνj was
increased. In the end we have ∑

k∈U

yk =
l∑

j=1

|νj |εj .

Following our usual line of analysis:

cost(xA) =
∑
i∈U

g(C, i)yi =
∑
i∈U

g(C, i)
∑

j:νj3i

εj =
l∑

j=1

∑
i∈νj

g(C, i)

 εj

Let ν(C) denoteUNCOVERED-ELEMENTS(C). The following theorem follows naturally. The Theorem
is a generalization of Theorem 4.5.

Theorem 4.10. If for any iterationj of algorithmGENERAL PRIMAL-DUAL with infeasible solutionC,

max
A : min. aug. ofC

∑
i∈ν(C)

g(A, i) ≤ ρ|ν(C)|

then the algorithm has approximation ratioρ.

We shall apply this algorithm to get a2-approximation for theGENERALIZED STEINER TREEprob-
lem. Recall that we have an edge-weighted graphG = (V,E) andm pairs of vertices(sj , tj) and we
need to find a minimum-cost set of edges covering allsj-tj cuts. In this algorithm,ν(C) = UNCOVERED-
ELEMENTS(C) is the set of all cutsδ(X) whereX is a connected component of(V,C) for which
|X ∩ {sj , tj}| = 1 for somej.

12



Theorem 4.11.The algorithm forGENERALIZED STEINER TREEas described above has approximation
ratio 2.

Proof. Consider an infeasible solutionC. The graph(V,C) has several connected components. IfA is
a minimal augmentation ofC, then the graph(V,A) is a forest if we view the connected components of
(V,C) as vertices. LetT denote this forest.

The forestT has two types of vertices: thered vertices correspond to the connected componentsX
whereδ(X) ∈ ν(C), and the rest arebluevertices. LetR denote the set of red vertices andB the set of
blue vertices with positive degrees. Noting that|ν(C)| = |R|, we have∑

i∈ν(C)

g(A, i) =
∑
v∈R

degT (v)

= 2|E(T )| −
∑
v∈B

degT (v)

≤ 2(|R|+ |B|)−
∑
v∈B

degT (v)

≤ 2(|R|+ |B|)− 2|B|
= 2|ν(C)|.

The last inequality follows because no blue vertex has degree one, otherwiseA is not a minimal augmen-
tation ofC.

Exercise 18. Many of the problems we have discussed can be formulated with the following integer
program. We assume that an edge-weighted graphG = (V,E) is given, and edgee is weighted with
we ∈ Z+.

min
∑
e∈E

wexe

subject to
∑

e∈δ(X)

xe ≥ f(X), ∅ 6= X ⊂ V,

xe ∈ {0, 1}, ∀e ∈ E.

(14)

Hereδ(X) = [X, X], andf : 2V → Z+ is a function that counts how many edges must crossδ(X) in a
feasible solution.

The dual of the LP relaxation of the above program is

max
∑

∅6=X⊂V

f(X)yX

subject to
∑

X:e∈δ(X)

yX ≤ we, e ∈ E,

yX ≥ 0, ∀X, ∅ 6= X ⊂ V.

(15)

In this problem, we shall develop an approximation algorithm for this general setting wheref is
a special class of function. To solve this problem, you must understand thoroughly the algorithm we
developed for the GENERALIZED STEINER TREEproblem, which will be a special case of this problem.

We assume thatf has the following properties:

• f(X) ∈ {0, 1}, for all X ⊆ V . In other words,f is a01-function. This problem is thus a special
case of ourWEIGHTED SET COVERproblem in which each cutδ(X) with f(X) = 1 has to be
covered.

• f(V ) = 0. This is natural sinceδ(V ) = ∅.

13



• f(X) = f(X) for all subsetsX of V . This is also natural, sinceδ(X) = δ(X) in an undirected
graph.

• If X andY are two disjoint subsets ofV , thenf(X) = f(Y ) = 0 impliesf(X ∪ Y ) = 0. This
means ifδ(X) andδ(Y ) do not have to be covered, then so doesδ(X ∪ Y ).

A functionf satisfying the above properties is called a01-proper function.

1. LetC be an infeasible subset of edges ofG (with respect tof , of course). Prove that there is some
connected componentX of (V,C) for whichf(X) = 1. (Here, we useX to also denote the set of
vertices of the connected componentX.)

2. LetC be an infeasible subset of edges ofG. Let X be a connected component of(V,C). Let Y
be a subset of vertices such thatY ∩X 6= ∅ andX 6⊆ Y . Prove thatC coversδ(Y ).

(Note: this means that we only have to worry about covering theδ(Y ) for which Y contains one
or a few connected components of(V,C).)

3. Consider the following algorithm for our problem.

Algorithm 4.12. PRIMAL-DUAL FOR 01-PROPER FUNCTION

1: y← 0; C ← ∅; j ← 0
2: while C is infeasibledo
3: j ← j + 1
4: Let νj be the set of allX which is a connected component of(V,C) andf(X) = 1
5: Increase allyX at the same rate,X ∈ νj , until ∃e :

∑
Z:e∈δ(Z)

yZ = we

6: Refer toe asej and add it intoC
7: end while
8: C ← REVERSE DELETE(C)

Prove that this is a2-approximation algorithm for our problem.

5 Advanced applications of the primal-dual method

5.1 Metric uncapacitated facility location

FACILITY LOCATION is a fundamental optimization problem appearing in various context. In the un-
capacitated version of the problem, we are given a complete bipartite graphG = (F,C;E) whereF
represents a set of “facilities” andC a set of “cities.” The cost of opening facilityi is fi, and the cost of
assigning cityj to facility i is cij . The problem is to find a subsetI ⊆ F of facilities to be open and an
assignmenta : C → I assigning every cityj to some facilitya(j) to minimize the cost function∑

i∈I

fi +
∑
j∈C

ca(j),j .

In the metric version of the problem, the costcij satisfies the triangle inequality.
Designate a variablexi indicating if facility i is open andyij indicating if cityj is assigned to facility

i, we get the following integer program:

min
∑
i∈F

fixi +
∑

i∈F,j∈C

cijyij

subject to
∑
i∈F

yij ≥ 1 j ∈ C,

xi − yij ≥ 0 i ∈ F, j ∈ C,
xi, yij ∈ {0, 1}, i ∈ F, j ∈ C.

(16)
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Relaxing this integer program gives the following linear program

min
∑
i∈F

fixi +
∑

i∈F,j∈C

cijyij

subject to
∑
i∈F

yij ≥ 1 j ∈ C,

xi − yij ≥ 0 i ∈ F, j ∈ C,
xi, yij ≥ 0, i ∈ F, j ∈ C.

(17)

The dual linear program is

max
∑
j∈C

sj

subject to
∑
j∈C

tij ≤ fi i ∈ F,

sj − tij ≤ cij i ∈ F, j ∈ C,
sj , tij ≥ 0, i ∈ F, j ∈ C.

(18)

This primal-dual pair does not fit nicely into the covering primal-dual approximation framework we
discussed. In particular, there are negative coefficients. The general idea of applying the primal-dual
method to this problem is still to find some sort of “maximal” dual-feasible solution, and then set to1
the primal variables corresponding to saturated primal constraints.

PRIMAL -DUAL FOR METRIC UNCAPACITATED FACILITY LOCATION

Phase 1.

1: O ← ∅; // set of temporarily open facilities
2: J ← ∅; // set of connected cities thus far
3: s← 0; t← 0
4: while J 6= C do
5: Increase uniformly allsj , j ∈ C − J
6: After a while, if for some edgeij, we reachsj − tij = cij , then increase uniformlytij also.
7: // Edges withsj − tij = cij are called “tight” Edges withtij > 0 are called “special”
8: As soon as an edgeij becomes tight, ifi ∈ O then addj into J and declarei the “connection

witness” forj
9: After a while, there is somei such thatfi =

∑
j∈C

tij .

10: for each suchi in any orderdo
11: O ← O ∪ {i}
12: for each tight edgeij with j /∈ J do
13: J ← J ∪ {j} // i is called a “connection witness” forj
14: end for
15: end for
16: end while

Phase 2.

1: Let H = (O,C) be the bipartite graph containing only special edges
2: Let I be a maximal subset ofO such that there is no path of length2 in H between any two vertices

in I
3: for eachj ∈ C do
4: if ∃i ∈ I such thatij is specialthen
5: a(j)← i // call j “directly connected” toi
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6: else
7: Let i be the connection witness forj
8: if i ∈ I then
9: a(j)← i call j “directly connected” toi // note thatij is tight but not special

10: else
11: There must be somei′ ∈ I within H-distance2 from i
12: a(j)← i′ call j “indirectly connected” toi′

13: end if
14: end if
15: end for

We shall use(s̄, t̄) to denote the returned dual-feasible solution(s, t).

Theorem 5.1. The algorithm above gives approximation ratio3.

Proof. The idea is to compare the cost of the approximated solution∑
i∈I

fi +
∑
j∈C

ca(j),j

to the cost of the dual-feasible solution(s̄, t̄), which is
∑

j∈C s̄j .

We shall break each̄sj into two parts, and writēsj = s̄f
j + s̄c

j in the following way. Ifj is directly

connected toi = a(j), then set̄sf
j = t̄ij ands̄c

j = cij . If j is indirectly connected toi = a(j), then set

s̄f
j = 0 ands̄c

j = s̄j . Intuitively, the terms̄f
j is the contribution ofj into opening facilityi, and the term

s̄c
j is the contribution ofj to the cost of having edgeij.

Firstly, if i ∈ I andij is special, thenj is directly connected toi. Consequently∑
i∈I

fi =
∑
i∈I

∑
j:ij special

t̄ij =
∑
j∈C

s̄f
j .

Secondly, we claim thatcij ≤ 3s̄c
j , wherei = a(j). If j is directly connected toi, thencij = s̄c

j by
definition. Whenj is indirectly connected toi, there is ani′ ∈ I, j′ ∈ C such thatij′ andi′j′ are special,
and thati′ is a connection witness forj. By the triangle inequality, it is sufficient to prove that all three
of ci′j , ci′j′ , andcij′ are at most̄sj .

Sincei′ is a connection witness forj, the edgei′j is tight, implyingci′j ≤ s̄j . If we can show that
sj′ ≤ sj , then the other two inequalities follow. Sincei′ is a connection witness forj, sj got increased
until right at or after the timei′ became temporarily open. Since bothi′j′ andij′ are special,sj′ could
not have gotten increased after the timei′ became temporarily open. We thus havesj′ ≤ sj .

Consequently, ∑
i∈I

fi +
∑
j∈C

ca(j),j ≤
∑
j∈C

(
s̄f
j + 3s̄c

j

)
≤ 3OPT.

Exercise 19.The vector̄s found by the algorithm above is maximal in the sense that, if we increase any
s̄j and keep other̄sj the same, then there is no way to adjust thet̄ij so that(s̄, t̄) is still dual-feasible. Is
every maximal solution̄s within 3 times the optimal solution to the dual linear program?

Hint : considern facilities with opening cost of1 each,n cities connected to distinct facilities with
costε each. In addition, there is another city that is connected to each facility with an edge of cost1.

Exercise 20.Suppose the cost of connecting cityi to facility j is c2
ij , where the costscij still satisfy the

triangle inequality (but their squares may not). Show that our algorithm gives performance ratio9.
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Exercise 21.Suppose we slightly change the problem in the following way. Each cityj has a demand
dj . The cost of connectingj to an open facilityi is now cijdj . (Previously, alldj are1.) Modify our
algorithm to get a3-approximation for this problem. (Hint : raisesj at ratedj .)

5.2 Metric k-median

Thek-MEDIAN problem is very similar to theFACILITY LOCATION problem. The difference is that there
is no cost for opening facilities. On the other hand, there is an upper bound ofk on the number of open
facilities.

Keepingxi andyij as in the previous section, we can obtain an integer program for thek-MEDIAN

problem. Its LP-relaxation is as follows.

min
∑

i∈F,j∈C

cijyij

subject to
∑
i∈F

yij ≥ 1 j ∈ C,

xi − yij ≥ 0 i ∈ F, j ∈ C,∑
i∈F

(−xi) ≥ −k

xi, yij ≥ 0, i ∈ F, j ∈ C.

(19)

The dual linear program is

max
∑
j∈F

sj − ku

subject to
∑
j∈C

tij ≤ u i ∈ F,

sj − tij ≤ cij i ∈ F, j ∈ C,
sj , tij , u ≥ 0, i ∈ F, j ∈ C.

(20)

This primal-dual pair looks strikingly similar to the primal-dual pair of theFACILITY LOCATION

problem. In fact, if we assign a cost ofu to each facility in theFACILITY LOCATION problem and solve
for the primal optimal solution(x,y) and dual optimal solution(s, t), then by strong duality∑

i∈F

uxi +
∑

i∈F,j∈C

cijyij =
∑
j∈F

sj .

Consequently, if there is a value ofu such that the primal optimal solution(x,y) opens exactlyk facilities
(fractionally), i.e.

∑
i∈F xi = k, then it is clear that(x,y) and (s, t, u) are optimal solutions to the

primal-dual pair of thek-MEDIAN problem.
On the same line of thought, suppose we can find a value ofu for which the approximation algorithm

for FACILITY LOCATION returns an integral solution(x,y) and a dual-feasible solution(s, t) such that
exactlyk facilities are open, then

3
∑
i∈F

uxi +
∑

i∈F,j∈C

cijyij = 3
∑
i∈I

fi +
∑
j∈C

ca(j),j

≤ 3
∑
j∈C

(sf
j + sc

j)

= 3
∑
j∈C

sj .
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This implies ∑
i∈F,j∈C

cijyij =
∑
j∈C

ca(j),j ≤ 3

∑
j∈C

sj − ku

 ,

and we would have gotten a3-approximation algorithm for thek-MEDIAN problem. Unfortunately, it is
an open problem to find au so that this happens. We will take a different path.

Let nc be the number of cities,nf number of facilities,n = nc + nf , andm = ncnf the number of
edges in the graph.

In the algorithm forFACILITY LOCATION , the largeru is the fewer number of facilities will be
opened. (More edges will become tight before the costu is reached.) Whenu = 0, all facilities will
be opened. Whenu = nccmax, wherecmax is the maximumcij andn is the number of cities, only one
facility will be opened, because all edges are tight when this cost is reached. Assuming we break ties
canonically, it is easy to see that the number of opened facilities is inversely proportional tou.

Apply binary search on the interval[0, nccmax] to find two valuesu1 < u2 such that the correspond-
ing number of opened facilitiesk1, k2 satisfyk1 > k > k2 and thatu2 − u1 ≤ cmin/(12n2

f ), wherecmin

is the minimum value ofcij . (If we can find a value ofu for which the number of opened facilities isk,
then we are done.) Let the corresponding integral primal solutions be(x(1),y(1)) and(x(2),y(2)), and
the corresponding (fractional) dual solutions be(s(1), t(1)) and(s(2), t(2)), respectively.

First, the idea is to get a convex combination

(x,y) = α(x(1),y(1)) + β(x(2),y(2))

such that(x,y) opensk facilities fractionally. This meansαk1 +βk2 = k andα+β = 1, which implies
α = k−k2

k1−k2
, andβ = k1−k

k1−k2
. Let

(s, t) = α(s(1), t(1)) + β(s(2), t(2)).

Note that(s, t, u2) is a feasible solution to the dual program (20).
Let us estimate how good this fractional combination is. We have

∑
i∈F,j∈C

cijy
(1)
ij ≤ 3

∑
j∈C

s
(1)
j − k1u1

 (21)

∑
i∈F,j∈C

cijy
(2)
ij ≤ 3

∑
j∈C

s
(2)
j − k2u2

 . (22)

We want to turnu1 in the first inequality intou2 with a small increase in the factor3, and then take the
convex combination to estimate the cost of(x,y). Using the facts thatu2 − u1 ≤ cmin

12n2
f
, k1 ≤ nf , and

cmin ≤
∑

i∈F,j∈C cijy
(1)
ij , we get

∑
i∈F,j∈C

cijy
(1)
ij ≤ (3 + 1/nf )

∑
j∈C

s
(1)
j − k1u2

 . (23)

Now, anα, β convex combination of (23) and (22) gives

∑
i∈F,j∈C

cijyij ≤ (3 + 1/nf )

∑
j∈C

sj − ku2

 .
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Thus, the fractional solution(x,y) is within (3 + 1/nf ) of the optimal. To turn the fractional solution
into an integral solution, we apply randomized rounding.

Let I1 andI2 be the set of facilities returned by the algorithm corresponding tou1 andu2 respectively.
We know|I1| = k1 and|I2| = k2, and thatk1 > k > k2. The fractionsα andβ indicate how much the
solution should be leaning towardsI1 andI2. Hence, it is natural to use them as rounding probability.
The trouble is thatI2 does not have enough elements, whileI1 has too many elements.

We resolve this problem in the following way. For eachi in I2, let ν(i) be a facility inI1 nearest to
i. Let Iν be the set of theseν(i). Clearly|Iν | ≤ k2 < k1. We arbitrarily padIν with elements fromI1

until |Iν | = k2. Our rounding procedure goes as follows.

• Open all facilities inI2 with probabilityβ and all facilities inIν with probabilityα.

• Pick uniformly a subsetI3 of I1 − Iν of size|I3| = k − k2 and open all facilities inI3. Note that
each element inI1 − Iν has a probability of(

k1−k2−1
k−k2−1

)(
k1−k2

k−k2

) =
k − k2

k1 − k2
= α

of being chosen.

• Return the setI of k opened facilities.

The next thing to do is to assign cities to these opened facilities. Consider any cityj. Let i1 andi2 be
the facilities thatj was connected to in the solutionsI1 andI2. In the first case, supposei1 ∈ Iν . Since
eitheri1 or i2 is open, we seta(j) to be the open facility. In the second case, supposei1 /∈ Iν , in which
case we connectj to i1 if it is open (i.e. i1 ∈ I3), otherwise toi2 if it is open. If bothi1 andi2 are not
open, we connectj to i3 = ν(i2).

We estimate the expected cost of connectingj to a(j). In the first case (i1 ∈ Iν),

E[ca(j),j ] = αci1j + βci2j .

In the second case wheni1 /∈ Iν , there is a probability ofα thati1 is in I3, a probability of(1−α)β = β2

thati1 /∈ I3 but i2 is open, and a probability of(1−α)(1−β) = αβ thatj will be connected toi3. Thus,
in this case

E[ca(j),j ] = αci1j + β2ci2j + αβci3j .

By the triangle inequality, we have

ci3j ≤ ci3i2 + ci2j ≤ ci1i2 + ci2j ≤ ci1j + 2ci2j .

Consequently,

E[ca(j),j ] ≤ α(1 + β)ci1j + β(1 + α)ci2j ≤ (1 + max{α, β})[αci1j + βci2j ].

We have just shown the following theorem.

Theorem 5.2. The above rounding procedure gives expected cost at most(1 + max{α, β}) the cost of
(x,y).

Thus, in total the rounded solution is of cost at most(3+1/nf )(1+max{α, β}) of the optimal. Since
max{α, β} is at mostnf/(nf +1), and(3+1/nf )(1+nf/(nf +1)) ≤ 6, we obtain a6-approximation.

The algorithm can be derandomized with the method of conditional expectation. Note that the expec-
tations E[ca(j),j ] can be calculated explicitly and efficiently. To derandomize this algorithm, we compute
the expectations of the final cost given that we openI2 or Iν . We then follow the smaller expectation (in
theα or β weighted sense). To compute whichI3 to open, we can compute the conditional expectations
of the cost given that elementsi1, . . . , ik2−k1 of I1 − I2 are inI3, then repeat this process.
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Exercise 22 (Vazirani’s book - Exercise 25.3).Use Lagrangian relaxation technique to give a constant
factor approximation algorithm for the following common generalization of theFACILITY LOCATION

andk-MEDIAN problems. Consider theUNCAPACITATED FACILITY LOCATION problem with the addi-
tional constraint that at mostk facilities can be opened.

Exercise 23 (Jain and Vazirani [25]). Consider thel22-CLUSTERINGproblem. Given a set ofn points
S = {v1, . . . , vn} in Rd and a positive integerk, the problem is to find a minimum costk-clustering, i.e.,
to findk points, calledcenters, f1, . . . , fk ∈ Rd, so as to minimize the sum of squares of distances from
each pointvi to its closest center. This naturally defines a partitioning of then points intok clusters.
Give a constant factor approximation algorithm for this problem.

(Hint : first show that restricting the centers to a subset ofS increases the cost of the optimization
solution by a factor of at most2.)

Historical Notes

The primal-dual method was proposed by Dantzig, Ford, and Fulkerson [11] to solve linear programs.
This method was motivated by the works of Egerváry [12] and Kuhn [26] on the so-called “Hungarian
algorithm” for the assignment problem (or the minimum cost bipartite perfect matching problem). The
primal-dual method is not effective as a method for solving linear programs in general. Its strength lies in
the fact that it can be used to “transform” a weighted optimization problem into a purely combinatorial
and unweighted optimization problem. Many fundamental combinatorial optimization algorithms are
either a special case of this method or can be understood in terms of it. For more details, consult standard
combinatorial optimization textbooks such as [10,18,29–32].

Bar-Yehuda and Even [3] gave the first truly primal-dual algorithm to approximate theVERTEX

COVER and theSET COVER problem, as presented in algorithm WSC-PRIMAL -DUAL -A. The LP-
algorithms for these problems were due to Hochbaum [21]. The algorithm for theGENERAL COVER

problem is by Hall and Hochbaum [20]. Chapter 3 of [23] is a good survey on covering and packing
problems.

The survey papers by Goemans and Williamson [16], Williamson [37], Shmoys [33], and many
chapters in [23,36] discuss the primal-dual method for approximation in more details.

The 2-approximation for multicut in trees was due to Garg, Vazirani, and Yannakakis [15]. Re-
cent works on integer multi-commodity flow can be found in [6–8, 19, 35]. For an example of multi-
commodity flow in networking, see [28].

For theFEEDBACK VERTEX SETproblem, Goemans and Williamson [17] gave a9/4-approximation
for planar graphs, Becker and Geiger [4] and independently Bafna, Berman, and Fujito [2] gave2-
approximation algorithms, whose primal-dual interpretation was given by Chudak, Goemans, Hochbaum,
and Williamson [9]. Later, Fujito [14] generalizes this idea to design primal-dual algorithms for node-
deletion problems forhereditarygraph properties.

For theUNCAPACITATED FACILITY LOCATION problem, Hochbaum [22] obtained ratioO(lg n),
Shmoys, Tardos, and Aardal [34] got3.16 ratio with an LP-rounding based algorithm. The3-approximation
algorithm we described was due to Jain and Vazirani [25]. Jain, Mahdian and Saberi [24] reduce the ratio
further to1.61 with a greedy algorithm analyzed by the dual-fitting method.

For theMETRIC k-MEDIAN problem, Bartal [] gave the first algorithm which achieved approximation
ratio O(lg n lg lg n). Charikar, Guha, Tardos, and Shmoys [5] achieved62

3 using ideas from Lin and
Vitter [27]. The6-approximation algorithm we described was due to Jain and Vazirani [25]. Arya, Garg,
Khandekar, Meyerson, Munagala, and Pandit [1] achieved ratio(3 + 2/p) with running timeO(np), for
anyp using the local search method. Jain, Mahdian, and Saberi [24] gave a hardness ratio of1 + 2/e for
approximating this problem.
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