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Approximation Algorithms Based on the Primal-Dual Method

The primal-dual methodor primal-dual schema) is another means of solving linear programs. The
basic idea of this method is to start from a feasible solugida the dual program, then attempt to find a
feasible solutiorx to the primal program that satisfies the complementary slackness conditions. If such
anx cannot be found, it turns out that we can find a begter terms of its objective value. Then, another
iteration is started.

The above idea can also be modified to design approximation algorithms. An approximate solution
to the primal IP and a feasible solution to the dual LP can be constructed simultaneously and improved
step by step. In the end, the approximate solution can be compared with the dual feasible solution to
estimate the approximation ratio. One of the key strengths of this method is that it often allows for a
combinatorial algorithm (based on the primal/dual view) which is very efficient.

1 Motivations: duality-base algorithms for VERTEX COVERand SET COVER

Recall the (unweightedyERTEX COVER problem. Given a grapty = (V, E), taking all vertices of
a maximal matching oz would give a vertex cover fo€;. This is a very efficien2-approximation
algorithm for the vertex cover problem.

The above algorithm runs much faster than the rounding algorithm we have seen. One might wonder
how this algorithm looks from the angle of linear programming. The answer is a surprisingly nice one.
Let us consider the linear relaxation of the integer program for vertex cover:

min E Ty

veV 1
subjectto =, +xz, > 1, Yuv € F, 1

x, >0, YveV.

The dual program is

max 3 g

uwvel
subjectto > g <1, VeV, (2

u: wwek
Yo => 0, Yuv € F.

An integral feasible solution to (2) corresponds to a matching' ofBased on the idea of a maximal
matching in the view of this linear program, we define a feasible solgtitmbemaximalif there is no
feasible solutiory’ for whichy; , > yu., Yuv € E,and}", c p Vo, > D upcp Yuo- IN Other wordsy is
maximal iff we cannot increase any componenyg @fithout making it infeasible.

Now that we had the linear programming semantics of a maximal matching, the next question is:
what does it mean to take both vertices of the maximal matchings? Easy, this corresponds to setting
r, = 1L whenevery . ..o%uw = 1.

Theorem 1.1. Let¥ be a maximal feasible solution (&), then the strategy of setting® = 1 whenever
> w: woeE Yuw = 1 gives a2-approximation to the’/ERTEX COVERproblem.



Proof. We first show thak“ indeed defines a feasible vertex cover. If there is an edge E such that
bothz2 andz:} are0, then we must have

Z Yus < 1, and Z Tro < 1.

s: usel t: tvelR

But theng,, can be increased by an amount of

(5:min{<1— Z yu5>,(1— Z %u)},
s: usel t: tveE

contradicting the maximality of.
Secondly, we need to verify the approximation ratio2of This could be done easily using weak
duality. We knowy gives a lower bound on the optimal value for (1), which is a lower bound of the

optimal vertex cover:
DAY, D Fuw=2 ) Juw <2 OPT.
v

v ou: weEER uwwelR

O]

This algorithm can be extended straightforwardly to the weighted case, while the matching idea does
not extend that well. Instead of solving the weighted case, let us see how this idea can be extended to the
WEIGHTED SET COVERproblem.

Recall that in thevEIGHTED SET COVERproblem, we are given a universe $&tand a collection
C of subsets ot/ Implicitly, let m = |U| andn = |C|. Each sefS in C is weighted with a non-negative
integer weightwg. The corresponding integer program is

min Z WSTS
SeC

subjectto » zg>1, Viel, )
55
xzs € {0,1}, VS eC.

min Z WETS

Sec
subjectto » zg>1, VieU, (4)
55
xg >0, VSeC(.

The corresponding dual program can be written as follows.

The LP relaxation for (3) is

max Dicu Vi
subject to Zyz <wg, VS eC, (5)
ieS
y; >0, VieUl.

Combinatorially, to each se&t of C we associate a non-negative numberand to each elemeritof
U we associate a non-negative numbper The primal constraints say that the sum of nhumbers corre-
sponding to sets containing an elemeistat least one. The dual constraints say that the sum of numbers
corresponding to elements in a $kis at most the weights of the set.

A feasible solutiory for (5) is said to benaximaliff we cannot increase any componengofvithout
making it infeasible. The following theorem can be shown in a similar manner as that of Theorem 1.1.
We will prove a stronger version of this theorem in the next section.



Theorem 1.2. Lety be a maximal feasible solution {6), then the strategy of settinzg,4 = 1 whenever
Ziesj y; = w; gives anf-approximation to thevEIGHTED SET COVERproblem, where

f:rineag(\{S\SEC,zES}\.

Note that, one way to get a maximal dual feasible solution is to solve the dual LP. An optimal solution
is certainly maximal.

2 The basic primal-dual method

We can get away with solving the dual LP altogether, which is great because solving the dual LP takes
quite a bit of running time. All we wanted was a maximal dual feasible solution. This section presents
an approach to get such a solution. (There are other approaches, which we shall not discuss here.) In
fact, we will not even need to explicitly compute the maximal dual feasible solution at all. The linear
program is really used as an analytical device, guiding our search for a good approximation algorithm.

Consider the dual LP (5) for th&EIGHTED SET COVERproblem. Certainlyy = 0 is a feasible
solution. One way to obtaigr is to find an appropriate componeptof y and increase it as much as
possible to turn one more of the inequalities into equality. When this is no longer possible, we get our
maximal feasible solution. The following algorithm implements this idea.

PRIMAL-DUAL BASIC
1. y«—0
2. C 0 [/lthisis like settingeg = 0,VS.
3: while C'is not a covedo
4:  Choose an uncovered elemént
5. Increasey; until 35 : Y, _¢vy; = ws //in other words, the5-constraint is “binding”
6: AddSintoC //same as settingg‘ = 1 because its constraint is binding.
7: end while
8: ReturnC' // we will refer to this final solution a€’.

The idea of the algorithm is very clear. Obviouglyis a feasible solultion. For the approximation
ratio, notice that from the linear programming vie\@ = lonly when}_._¢y; = wg (in this case we
say S is saturated. Also note that there might be saturated sgtwhich are not inC (i.e., xgl # 1),
because we only chose one saturaidd add intoC' at each iteration. The analysis goes as follows.

cos(x?) = Z wsrh = Z (Zyl> = Z {S:S e C,iec S}Huy.
seC SeC \i€S iceU
For any collectiorC' of subsets o/, and anyi € U, let
g(Ci)={S:SeC,ieS}. (6)

If there exists a number such thaty; > 0 impliesg(C, i) < p, then we have

cos(z?) = g(C,i)yi <p» yi < p-OPT.
eU €U

We just proved the following theorem.



Theorem 2.1. Let C be the collection returned byRIMAL-DUAL BASIC. Letp be any number such
that, for eachi € U, y; > 0 impliesg(C,7) < p. Then,PRIMAL-DUAL BASIC is a p-approximation
algorithm forset COVER

For thewEIGHTED SET COVERproblem,p can be chosen to be the maximum number of appearances
of an element in the given collection, thus proving Theorem 1.2.

Exercise 1. Consider the following algorithm to compute an approximate solution toMBESHTED
SET COVERproblem:

WSC-RRIMAL-DUAL-B
1. C 0
2. 1 —U
3: while I # () do
4. LetS be a setirC whose ratiows/|S| is minimum. //NOTE: the fraction isx if S is empty.
5: 7“<—7|%9|, C—CU{S}, I—I1I-S
6: for eachT € C do
7 wr «—wp —|TNS|r
8 T—T-58
9: end for
10: end while

11: ReturnC

() In words, explain what the algorithm does.

(i) Show that the algorithm is afi-approximation algorithm to th&EIGHTED SET COVERproblem,
where
fzmea[u}d{S\SEC, i€ SY}.

Exercise 2. Given a universd/ and a collectiorC of subsets of/. Consider the following integer

program.
min Z WSTS
SeC
subjectto » " |SNT|zs > |T|, VT CU, )
sec

xg €{0,1}, VS eC.

(i) Prove that this program is equivalent to th€IGHTED SET COVERproblem. Equivalence means
every optimal solution tavEIGHTED SET COVERcorresponds to an optimal solution of (7) and
vice versa.

(i) Write down its LP relaxation and the LP’s dual program.

(iii) Design an approximation algorithm using the primal-dual method similar to the one presented in
the lecture. Your algorithm should have approximation fag¢tas usual.
You should briefly describe the idea and write down the pseudo code. Also, what'’s the running
time of your method?

Exercise 3. Consider thedITTING SET problem, in which we are given a universe 8ewith weighted
elements, and a collection of subs@éts. .., T, of U. The problem is to find a minimum-weight subset
A of U which hits everyT;, namelyA NT; # 0, for all i € [k].



o Write an integer program formulation of this problem. Also write the dual linear program of the
relaxed version of the IP.

e Devise a primal-dual approximation algorithm for this problem.

e What's your approximation ratio and running time?

3 Optimization problems formulated asSET COVER

There are quite a few optimization problems that can be formulated as a specical caseBfdRgED
SET CcOVERproblem. In the following problems, we assume all weights are non-negative integers.

Consider the BORTESTs-t PATH PROBLEM, in which we need to find a shortest path between two
verticess andt of a graphG = (V, E). Let the universé/ be the set of alk-¢ cuts. For each edge
(u,v) € E, letS,, be the set of all cuts ity that containu, v). LetC be the collection of alb,, ,,. If E
is weighted, then the weight &, ,, is the weight of(u, v). Then, by the max-flow min-cut theorem it is
easy to see thatfRTESTs-t PATH is equivalent to thevEIGHTED SET covERonU andC. The basic
idea is to pick a minimum-weight set of edges that “coversi4dlicuts!

Similarly, in theMINIMUM SPANNING TREE problem we need a minimum-weight set of edges that
cover all cuts in a grapty.

The GENERALIZED STEINER TREEproblem is defined as follows. Given an edge-weighted undi-
rected graplG = (V, E') andm pairs of verticegs;,t;), j € [m]. Find a minimum-weight subset of
edgesC C E such thats; andt; are connected iV, C'), for eachj € [m]. In this problem, we want’
to cover alls;-t; cuts.

In the FEEDBACK VERTEX SET problem, we are given an undirected graph= (V, E) with
weighted vertices. The goal is to find a minimum-weight suldsetf vertices so that every cycle in
G contains some vertex ifi. Thus, we wantC to cover all cycles of-.

TheMINIMUM -COST ARBORESCENCHProblem, also called theINIMUM -COST BRANCHING PROB
LEM is defined as follows. Given a directed, edge-weighted gt@ph (V, E) with a special vertex
called the root. Find a minimum-cost spanning tree where edges are directed away frothis case,
we want the edges of the tree to coverratlirected cuts.

Many of the problems above can be formulated with the following integer program. We assume that
an edge-weighted gragh = (V, E) is given, and edge is weighted withw, € Z*.

min Z Wele
ecl
subjectto Y =z, > f(X), 0£XCV, (8)
e€d(X)

ze €{0,1}, Vee€FE.

Here§(X) = [X, X], andf : 2" — Z* is a function that counts how many edges must c6038) in a
feasible solution. In theHORTESTs-t PATH problem, for instance, eacht cut must be crossed at least
once. Other problems follow the same trend, except foFHEDBACK VERTEX SETproblem.

Exercise 4 (-join). TheT'-JOIN problem is defined as follows. Given a sub&eatf an even number of
vertices of an edge-weighted gragh find a minimum cost forest aff such that all vertices iff’ have
odd degrees and the rest of the vertices have even degrees in the forest.

Show that formulation (8) can be used to capture this problem by defining ffkatis, and argue
why the formulation is correct.



Exercise 5 (Steiner tree).In the STEINER TREE problem, we are given a subsgtof vertices of an
edge-weighted grapty. We need to find a minimum-cost connected subgrapty dfiat contains all
vertices inT" (and perhaps some other vertices).

Show that formulation (8) can be used to capture this problem by defining f¢katis, and argue
why the formulation is correct.

A very general problem of this type is called tBBRVIVABLE NETWORK DESIGN PROBLEM also
called theGENERALIZED STEINER PROBLEM We are given an edge-weighted gra@h= (V, ). For
each pairu, v of vertices, there is a non-negative integey,. We must find a least-cost subggtof
edges such that ifV, C') there arem,,, edge disjoint paths joining andv, for each pain, v. In this

case, we wanf(X) = max m,, for each subseX of vertices.
ueX vgX

We shall see how the primal-dual method helps design approximation algorithms for problems for-
mulated as (8) for several classes of functigns

4 Tuning PRIMAL-DUAL BASIC

4.1 Be particular in choosing the uncovered element

Consider theeEEDBACK VERTEX SETproblem on a grapli = (V, E). We want to cover the universe
of cycles ofG with vertices inV. For a collection of vertice§’ and some cycle, g(C, i) is the number
of vertices ofC' in the cycle. The rough boundis because a cycle may contain as many agrtices.
This is a very bad approximation ratio.

Fortunately, to obtain a ratio gfwe only need;(C, i) < p wheny; > 0, i.e. when cycle is chosen
at some point during the execution PRIMAL-DUAL BASIC. Thus, if we try our best to pick small
cycles, we would have a better approximation. Further more, not all vertices in a chosen cycle will be in
C atthe end. Hencey(C, i) can still be smaller than the length of cyéle

To this end, one needs to be creative to take advantage of the above observations. We will limit the
set of vertices which have the potential to be in the final cover. We shall refer to tharesesting
vertices. If we never pick a uninteresting vertex to be in the cover, gb€hi) is upper-bounded by the
number of interesting vertices on cyclewvhich can potentially be smaller than the size of this cycle.

All vertices of degred are not interesting. If there was a patof G, all of whose internal vertices
have degreg, then only a least-weight internal vertexheeds to be interesting among all internal ver-
tices, because a cycle containingvill contain all of P. Consequently, if at each step of the algorithm
we can somehow choose an uncovered cycle containing a small number of interesting vertices, then we
would be able to improve the approximation ratio. A result ofdsrdnd Bsa in 1962 tells us how to do
this.

Theorem 4.1 (Erdds-Fosa [13]). Let G’ = (V/, E') be a graph with no degreévertex in which each
degree2 vertex is adjacent to two vertices of degrees at I&asthen,G’ has a cycle of length at most
41g|V'|. Moreover, this cycle can be found in polynomial time.

Exercise 6. Consider a grapty with no degreet vertex in which each degrekvertex is adjacent to two
vertices of degrees at ledstLet H be the graph obtained from by shortcutting all vertices of degree
2, namely for each vertex € V(G) whose only two neighbors is andw, we removey and connect,
andw with an edge. (Note thal now has only vertices with degree more tlzan

1. Suppose we build a breadth-first tree starting from some veréx?. Prove that by the time we
reach depthg |V (H)|, we will have discovered a cycle of length at m@$g |V (H)|.

2. Prove Erés-Poé theorem.



This theorem suggests the following algorithm F®@EDBACK VERTEX SET(FVS).

Algorithm 4.2. FVS-1

1.y 0

2. C 0

3: Let G’ be a graph obtained frod by removing all uninteresting vertices.
4: while G’ is not emptydo

5. Choose cyclé: in G’ of length at mosti 1g |V (G')]

6: /I note that this cycle corresponds uniquely to a cycle in the original gi@ph
7. Increasey; until there is some saturated vertex

8: AddwvintoC

9:  Removev from G’ and then all uninteresting vertices fra@
10: end while
11: ReturnC (call it C)

The following theorem is now immediate from the above analysis.
Theorem 4.3. Algorithm FVS-1is a4 lg n-approximation algorithm fOFEEDBACK VERTEX SET.

A 2-approximation for this problem can be obtained with a different integer programming formula-
tion, as we shall see in a later section.

4.2 Refining the final solution with reverse deletion
4.2.1 Motivations for reverse deletion

Consider thes-t SHORTEST PATHproblem and how algorithrRRIMAL-DUAL BASIC applies to it. In
this case, we want to pick a minimum-weight subset of edges which covers allts(X).

Consider a typical iteration of the algorithm with the current@edf edges chosen so far. 4fandt
is not connected iV, C'), then there will be a number of “uncovered” cuts to choose from. A sensible
approach is to choose a minimal cut that contairie. we chosé (X ) whereX is the set of vertices of
the connected component @f, C') that contains. It is not difficult to see that this strategy corresponds
to Dijkstra’s algorithm for theSINGLE SOURCE SHORTEST PATiroblem.

Exercise 7. Prove that the strategy above corresponds to Dijkstra’s algorithm.

Unfortunately, this algorithm produces redundant edges, which are in a shortest path tree rooted at
s. Hence, it makes sense to remove redundant edges from the final s@lutieer some problems, it is
better to remove redundant elements in the reverse order of their addition. This step is cakeedrte
deletion stefand is illustrated in the following refinement of the basic algorithm.

Algorithm 4.4. PRIMAL-DUAL WITH REVERSE DELETION
1L.y<0, C«—0, j<0
: while C is not a covedo
J—=J+1
k <— UNCOVERED-ELEMENT(C) // we can adapt this procedure for different problems
Increasey;, until somesS is saturated, denotg by S;
Add S; into C'
end while
: C « REVERSE DELETKC)

O N O R WD

REVERSE DELETEC)



: for j = |C| downto 1 do
if ¢ —{S;} is feasiblethen
removesS; from C
end if
end for
: ReturnC

o g kR wdR

Fix ak for whichy; > 0. As before we would like to estimate an upper boundy{@, k). The situ-
ation becomes a little bit more complicated because of the reverse deletion. For notational conveniences,
let £(C') = UNCOVERED-ELEMENT(C), where we assume a deterministic strategy of choosingieen
acC.
At the point where we are about to increagethe current solution i€’ = {51, ..., 5;_} for some
jandk = k(C) is not in any of these sets. Thus,

g(C k) = g(é uac, k(C))

The collectiond = C' U C' is aminimal augmentatioof C' in the sense that is feasible, and removing
any member fromd — C will result in an infeasible solution. This follows from the reverse deletion step.
The following theorem follows readily.

Theorem 4.5. If for any iteration of algorithmPRIMAL-DUAL WITH REVERSE DELETIONWith its in-
feasible solutiorC,

A <
A: miﬁ.lgﬁg. ong( ,k(C)) =P

then the algorithm has approximation ratio

Exercise 8. Suppose we applyRIMAL-DUAL WITH REVERSE DELETIONtO thes-t SHORTEST PATH
problem, using the rule of picking a minimal cut containingach time. Show that the = 1 satisfies
Theorem 4.5. In other words, the algorithm returns an optimal solution.

Exercise 9. In the MINIMUM -COST ARBORESCENCHIroblem, we are given a directed edge-weighted
graphG = (V, E) and a root vertex. The goal is to find a minimum-cost tree rooted-atll of whose
edges are directed away fram

This problem can be viewed as a special case af&TED SET COVERin the following sense: for
each subseX of V' — {r}, we want the minimum-cost set of edges to cave(X ), wherej—(X) =
{(u,v) |u ¢ X,v e X}. (Here,(u,v) coverss™ (X) iff (u,v) € §~(X).)

Suppose we applyRIMAL-DUAL WITH REVERSE DELETIONtO this problem.

(a) Consider an infeasible set of edgém some iteration of the algorithm and the gragh= (V, C).
Show that there is a strongly connected componeid¥’ofith vertex setX such that- ¢ X, and
CnNé (X)=0.

(b) Describe how to find this component in polynomial time.
(c) LetuNcoVvERED-ELEMENT(C) returnd— (X) with X found as in (a). Apply Theorem 4.5 to show
that this algorithm has approximation ratipi.e. it returns an optimal solution.
4.2.2 An application: MULTICUT IN TREES

In the MuLTICUT problem, we are given a gragh = (V, E') with edge capacity function: £ — Z*,
andm pairs of verticegs;, t;), i € [m]. The pairs are different, but the vertices in different pairs do not
have to be distinct. Anulticutis a set of edges whose removal disconnecendt;, for all i € [m]. The
problem is to find a multicut with minimum capacity.



Exercise 10. Show that MuLTICUT is NP-hard even whers is a tree by a reduction from BRTEX
COVER.

Throughout this section, we assur@ieis a tree, so that there is a unique p&thfrom s; to t; in
G. This can be viewed as &$ CoVER problem in which an edge covers alls;, ¢;-paths that contain
e. We will show that the algorithm ®MAL -DUAL WITH REVERSE DELETIONQives an approximation
ratio 2 for this problem.

The LP-relaxation of the IP for this problem is

min E Cele

ecl
subjectto > x.>1 i€ [m], )
ecP;
ze >0, Vee FE.

The dual program is

m
max g Y;
—

7
subjectto > yi<c. ece, (10)
i: e€P;
y; >0, Vie [m]

In the context of this problem, we need to be very specific on choosing an unceyetgeath at
each iteration. Fix a vertexof G as the root of the tree. For each pgif, t;), let LCA(s;, t;) denote the
least common ancestoff s; andt;, which is the vertex at the intersection of the paths frgrto » and
from ¢; to . Note thatLCA(s;, ¢;) could bes; or ¢;. Letd(s;,t;) denote thalepthof LCA(s;, t;), which
is the distance betweerandLCA(s;, t;). Our primal-dual based algorithm is as follows.

Algorithm 4.6. PRIMAL -DUAL FOR MULTICUT IN TREES
C—0,y<—0,7<0
: while C'is not a multicudo
Choose an uncovered palt with largestd(sy, tr)
Increasey,, until there is a saturated edgg
Adde; into C
end while
: C «+ REVERSEDELETE(C)

[EnY

No ahrwN

Theorem 4.7. The algorithm above gives approximation ragio

Proof. Let C' be an infeasible set of edges. Létbe a minimal augmentation @f. Let P, be the
uncovered path returned by the algorithm in line 3. We only have to show that there are atadgss
of P, on A.

Let v = LCA(sk,tx). Suppose there are at le&sedges ofA on P,. These edges are not @
Without loss of generality, assume there are two edgemnde, of A on the part ofP, from s, to v
(otherwise, there are at least two edges on the part framv). Suppose; is closer tov thane,. Since
Ais minimal, there is a patR; such thats € P; bute; ¢ P;. Consequently](s;,t;) > d(sg,tx), which
meanskP; should have been chosen instead’pf This is a contradiction. O

Note that the integer version of (10) is tleXIMUM INTEGER MULTI -COMMODITY FLOW problem
in trees. The algorithm above implicitly gives a feasible solution for this problem (defined by the
This feasible solution is at least half of the optimal cost of the primal IP, hence it is alap@oximation
for the multi-commodity flow problem.



Open Problem 1. No non-trivial approximation algorithm is known for teAXIMUM INTEGER MULT]I -
COMMODITY FLOW problem on graphs more general than trees. (Trivial ones give fa¢tor.)

Exercise 11. Suppose instead of doirgeVERSEDELETE (which deletes edges in the reverse order

of which they were added int@'), we apply the following procedure: sort edges in the fiGaby
decreasing capacity and remove redundant edges in this order. What factor can you prove for the modified
algorithm?

Exercise 12.Give a polynomial time algorithm to compute a maximum integer multi-commodity flow
on trees with unit edge-capacities. You can use as a subroutine a maximum matching algéfitthm. (
dynamic programming.)

4.2.3 Another application: better approximation for FEEDBACK VERTEX SET

This application illustrates several very important points about the primal-dual method, and about LP-
based approximation algorithms in general. Firstly, the right LP/DLP formulation is key to having a
good approximation ratio. Secondly, the primal-dual method applies just as well to multicover type of
problems.

We shall derive an interesting IP formulation for tREEDBACK VERTEX SETproblem. For any
subsetS of vertices of the grapliz under consideration, lets(v) be the degree of vertex in the
subgraghz[S| = (S, E[S]) of G induced bys.

Exercise 13.Defined(S) := |E[S]| — |S| + 1. Show that, for any subsét of V, and any feedback
vertex setf” of GG, we have

> (ds(v) = 1) = b(S).

veF

Exercise 14.Consider the following integer program

min g Wy Ty

veV

subjectto > (dg(v) — D)ay > b(S) SCV, (11)
veES
x, € {0,1}, YveV.

Prove thatx is a feasible solution to (11) itk is the characteristic vector of a feedback vertex set. In
other words, the above IP is equivalent to the FVS problem.

In light for the previous exercise, we look at the LP-relaxation of (11)

min g Woy Loy

veV

subjectto Y (ds(v) — )z, > b(S) SCV, (12)
veS
Ty, >0, YveV.

max Z b(S)ys

veV

subjectto Y “(dg(v) —1)ys <w, SCV, (13)
Sov
ys >0, VSCV.

10



A semi-disjoint cyclef a graphG is a cycle ofG with has at most one vertex of degree more than

We apply the same idea as that of Algorithm 4.4. BasicallyF1&ie the feedback vertex set constructed

so far, and/’’ be the rest of the vertices. &[V'] has a semi-disjoint cyclé€, then we increase the dual
variable corresponding t@ (C'). Otherwise, we increase the dual variable correspondifg .tdVe add

a saturated vertex té' at each step. When the loop is finished, reverse deletion is applied as before.
Formally, the algorithm is described as follows.

Algorithm 4.8. FSV-2

1: F—0, y«<0, j«<0

2V «V, BN — FE

3: while F'is not feasibledo

4 j—j+1
Recursively remove degree-one vertices and edges ¥foamd £’
if (V', E’) contains a semi-disjoint cyclé then

S—C
else
S~V

10: endif
11:  Increaseys until there is a saturated € S
12: F— FU {’Uj}
13:  Removey; from (V', E’)
14: end while
15: for ¢ +— j downto 1 do
16: if F' — {v;} is feasiblethen
17: F — F —{v;}
18: endif
19: end for
20: Return F (refer to it asF)

Because the primal-dual pair (12) and (13) do not have the exact format as those in (4) and (5),
Theorem 4.5 does not apply directly. Algorithm 4.8 can be analyzed in a similar manner, as follows.

cos(F) = Y w0 = Y Y (dse) - Dys — 3 (zus(m - 1>) s

vEF veF SweS SCV \wesS

We want to bound

> (Z(ds(v) - 1)) ys < p- Y b(S)ys,

SCV \wes SCcv

for some ratiqg. This will hold true if

ys >0 implies > (dg(v) —1) < p- b(S).
vES

Exercise 15. Consider anys for whichys > 0. Show thatS N F is a minimal feedback vertex set of
G|[S]. Also, show that, ifS is a semi-disjoint cycle, then

> (ds(v) — 1) <2-b(S).

vES

11



Exercise 16.Show that, for any minimal feedback vertex $&bf a graphG = (V, E') which contains
no semi-disjoint cycle,

D (ds(v) = 1) <2-b(S).

veS
The previous two exercises finished our analysis of Algorithm 4.8.

Theorem 4.9. Algorithm 4.8 is &-approximation algorithm.

Exercise 17.(TBD) Primal dual method for multi-cover problem.

4.3 Increasing simultaneously multiple dual variables

A MINIMUM SPANNING TREE (MST) instance can be viewed aSMEIGHTED SET COVERinstance

where the edges need to cover all non-trivial cuts in the graph. Prim’s algorithm for MST can be thought
of as a special case GRIMAL-DUAL BASIC. However, Kruskal's algorithm is different. Kruskal's
algorithm corresponds to increasing all dual variables simultaneously at the same rate until some edge
becomes saturated. This idea is summarized in the following more general form of the primal dual
method.

GENERAL PRIMAL-DUAL
1Ly<0, C«—0, j<0
: while C is not a covedo
J—=J+1
vj +— UNCOVERED-ELEMENTS(C) // pick a subset of uncovered elements
For allk € v;, increase all, at the same rate, until sonseis saturated.
Refer toS asS; and add it inta’”
end while
: C « REVERSE DELETKC)

Let [ be the total number of iterations. Let be the amount by which each variable in was
increased. In the end we have

© N R WD

l

>y =Y lyles.

keU Jj=1
Following our usual line of analysis:

!
costx") =) g(C.iJyi =) 9(C.i) Y =) | D 9(C.i)|¢
j=1

€U €U YBZED S
Let v(C') denoteUNCOVERED-ELEMENTS(C). The following theorem follows naturally. The Theorem
is a generalization of Theorem 4.5.
Theorem 4.10. If for any iteration;j of algorithmGENERAL PRIMAL-DUAL with infeasible solutiorC,
Ai) <
PR > g(Ai) < plv(O)]
iev(C)
then the algorithm has approximation ratio

We shall apply this algorithm to get2aapproximation for thesENERALIZED STEINER TREEprob-
lem. Recall that we have an edge-weighted grapk (V, £') andm pairs of verticegs;,¢;) and we
need to find a minimum-cost set of edges covering;all; cuts. In this algorithmy (C') = UNCOVERED-
ELEMENTS(C) is the set of all cut$(X) where X is a connected component ¢V, C') for which
| X N {sj,t;}| =1 for somej.

12



Theorem 4.11.The algorithm fOIGENERALIZED STEINER TREEas described above has approximation
ratio 2.

Proof. Consider an infeasible solutiali. The graph(V, C') has several connected components4 i
a minimal augmentation af', then the grapliV, A) is a forest if we view the connected components of
(V,C) as vertices. Lef’ denote this forest.

The forestT" has two types of vertices: thred vertices correspond to the connected compon&nts
whered(X) € v(C), and the rest arbluevertices. LetR denote the set of red vertices aBdthe set of
blue vertices with positive degrees. Noting thatC')| = |R|, we have

Y og(Ai) = ) degp(v)

iev(C) veER

— 2B(T) - Y degr(v)

veEB

< 2(|R|+|B|) =) _ degr(v
veEB

2(|R| + |B]) — 2|B|
= 2(C)].

The last inequality follows because no blue vertex has degree one, otheénigiset a minimal augmen-
tation of C. O

Exercise 18. Many of the problems we have discussed can be formulated with the following integer
program. We assume that an edge-weighted gt@ph (V, E) is given, and edge is weighted with

we € Z7T.
min Z Wele
ecE
subjectto Y =z, > f(X), 0£XCV, (14)
e€d(X)

z. € {0,1}, VeeE.

Here§(X) = [X, X], andf : 2" — Z* is a function that counts how many edges must c6038) in a
feasible solution.
The dual of the LP relaxation of the above program is

max Z f(X
0£AXCV
subjectto > yx < we, ecE, (15)
X:e€d(X)

yx >0, VX, 0#X CV.

In this problem, we shall develop an approximation algorithm for this general setting vfhisre
a special class of function. To solve this problem, you must understand thoroughly the algorithm we
developed for the EBNERALIZED STEINER TREE problem, which will be a special case of this problem.

We assume that has the following properties:

o f(X) e {0,1}, forall X C V. Inother wordsf is a01-function. This problem is thus a special
case of OUWEIGHTED SET COVERproblem in which each cut(X) with f(X) = 1 has to be
covered.

e f(V) =0. Thisis natural sincé(V) = 0.

13



e f(X) = f(X) for all subsetsX of V. This is also natural, sinc§ X) = §(X) in an undirected
graph.
o If X andY are two disjoint subsets df, thenf(X) = f(Y) = 0 implies f(X UY') = 0. This
means if6(X) andd(Y") do not have to be covered, then so dée¥ U Y').
A function f satisfying the above properties is calle@llaproper function
1. LetC be an infeasible subset of edgegb{with respect tof, of course). Prove that there is some

connected componen¥ of (V, C') for which f(X) = 1. (Here, we useX to also denote the set of
vertices of the connected componént)

2. LetC be an infeasible subset of edgestaf Let X be a connected component(@f, C'). LetY
be a subset of vertices such than X # () andX ¢ Y. Prove thaC coverss(Y').

(Note: this means that we only have to worry about covering){he for which Y contains one
or a few connected components(df, C').)

3. Consider the following algorithm for our problem.
Algorithm 4.12. PRIMAL-DUAL FOR 01-PROPER FUNCTION
Ly«0;,C+0; j«0
2: while C'is infeasibledo
3 je—g+1
4:  Lety; be the set of allX which is a connected component(@f, C') and f(X) =1
5

Increase alx at the same rateY € v;, until Je : Z Yz = W,
Z:e€5(2)

o

Refer toe ase; and add it intaC
7: end while
8: C' «+ REVERSE DELETEC)

Prove that this is &-approximation algorithm for our problem.

5 Advanced applications of the primal-dual method

5.1 Metric uncapacitated facility location

FAcILITY LocATION is a fundamental optimization problem appearing in various context. In the un-
capacitated version of the problem, we are given a complete bipartite graph(F, C; E) where F’
represents a set of “facilities” ard a set of “cities.” The cost of opening facilityis f;, and the cost of
assigning city;j to facility ¢ is ¢;;. The problem is to find a subsetC F' of facilities to be open and an
assignment : C' — I assigning every city to some facilitya(j) to minimize the cost function
D fit D caty
icl jeC
In the metric version of the problem, the cestsatisfies the triangle inequality.
Designate a variable; indicating if facility : is open andy;; indicating if city j is assigned to facility
1, we get the following integer program:
min Z fizi + Z CijYij
iEF i€F,jeC
subjectto » yi; > 1 jec, (16)
iEF
xi—yijZO iGF,jEC,
TiyYij € {0,1}, 1 E F, j e C.

14



Relaxing this integer program gives the following linear program

min Zfz':m + Z CijYij

iEF ieF,jeC
subjectto » yi; > 1 jedq, (17)
ier

ri—y; >0 i€F, jeC,
l‘z»yszO, iGF,jGC.

The dual linear program is

max ZSJ
jec
subjectto Y "ty < fi ieF, (18)
jel
sj—tijgcij 1eF, jeC,
Sj,tij ZO, ’iGF, j e C.

This primal-dual pair does not fit nicely into the covering primal-dual approximation framework we
discussed. In particular, there are negative coefficients. The general idea of applying the primal-dual
method to this problem is still to find some sort of “maximal” dual-feasible solution, and then et to
the primal variables corresponding to saturated primal constraints.

PRIMAL -DUAL FOR METRIC UNCAPACITATED FACILITY LOCATION
Phase 1.

1: O « 0; Il set of temporarily open facilities

2: J < ; Il set of connected cities thus far

3s—0;t<—0

4: while J # C do

: Increase uniformly als;, j € C — J

After a while, if for some edgéj, we reachs; — ¢;; = c;;, then increase uniformls; also.
Il Edges withs; — t;; = ¢;; are called “tight” Edges witl;; > 0 are called “special”
As soon as an edgg becomes tight, if € O then add; into J and declareg the “connection
witness” forj
9:  After a while, there is somésuch thatf; = Z tij.

© N o g

jeC
10:  for each suchi in any orderdo
11: O —0U{i}
12: for each tight edge; with j ¢ J do
13: J — Ju{j} Iliiscalled a “connection witness” fgr
14: end for
15:  end for
16: end while
Phase 2.

1: Let H = (O, C) be the bipartite graph containing only special edges

2. Let I be a maximal subset @? such that there is no path of lengtlin H between any two vertices
in 7

: for eachj € C' do

4: if 4¢ € I such thatj is speciathen

a(j) « ¢ [l call j “directly connected” ta

w

a
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else
Lets be the connection witness fgr
if i € I then
a(j) < ¢ callj “directly connected” ta // note thatij is tight but not special
10: else

11: There must be somg € I within H-distance2 from
12: a(j) « i’ call j “indirectly connected” to’

13: end if

14:  endif

15: end for

We shall us€s, t) to denote the returned dual-feasible solutisnt).
Theorem 5.1. The algorithm above gives approximation rasio

Proof. The idea is to compare the cost of the approximated solution

D+ catyi

i€l jeC

to the cost of the dual-feasible solutiofn ¢), whichis ", 5;.
We shall break each; into two parts, and writ@; = gf + 57 in the following way. Ifj is directly
connected ta = a(j), then set§§ = t;; ands§ = ¢;;. If j is indirectly connected t6 = a(j), then set

.§§ = 0 ands; = s;. Intuitively, the term§f is the contribution ofj into opening facilityi, and the term
5; is the contribution ofj to the cost of having edgg.
Firstly, if i € I andij is special, ther is directly connected td Consequently

SheY Y w-X

i€l i€l j:ij special jeC

Secondly, we claim that;; < 357, wherei = a(j). If j is directly connected tg, thenc;; = 55 by
definition. Whery is indirectly connected tg there is an’ € I, ;' € C such that;’ andi’;j’ are special,
and that’ is a connection witness fgr. By the triangle inequality, it is sufficient to prove that all three
of ¢ys;, cijr, andc;; are at mosk;.

Sincei’ is a connection witness fgt, the edge’; is tight, implyingc;/; < 5;. If we can show that
sy < s;, then the other two inequalities follow. Sin¢ds a connection witness fgr, s; got increased
until right at or after the time’ became temporarily open. Since batji andi;’ are specials; could
not have gotten increased after the tithbecame temporarily open. We thus haye< s;.

Consequently,
Z fi+ Z Ca(j),j = Z (55 + 355) < 30PT.

el jeC jec
OJ

Exercise 19.The vectors found by the algorithm above is maximal in the sense that, if we increase any
5; and keep othe§; the same, then there is no way to adjustfheso that(s, t) is still dual-feasible. Is
every maximal solutioB within 3 times the optimal solution to the dual linear program?

Hint: considem facilities with opening cost of each,n cities connected to distinct facilities with
coste each. In addition, there is another city that is connected to each facility with an edge df cost

Exercise 20. Suppose the cost of connecting citto facility j is cfj, where the costs;; still satisfy the
triangle inequality (but their squares may not). Show that our algorithm gives performance ratio
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Exercise 21. Suppose we slightly change the problem in the following way. Eachjdigs a demand
d;. The cost of connecting to an open facility; is nowc;;d;. (Previously, alld; are1.) Modify our
algorithm to get &-approximation for this problemHint: raises; at rated;.)

5.2 Metric k-median

Thek-MEDIAN problem is very similar to theaciLITY LOCATION problem. The difference is that there
is no cost for opening facilities. On the other hand, there is an upper boundrothe number of open
facilities.

Keepingz; andy;; as in the previous section, we can obtain an integer program fdr-thepIAN
problem. Its LP-relaxation is as follows.

min Z cijyij
i€F,jeC
subjectto  "yi; > 1 jec,

i€EF 19
xi—yijZO 1€ F, je€C, ( )

> (-a) 2~k
i€EF
iy Yij >0, ieF, jeC.

The dual linear program is

max Zsj — ku
jEF
subject to thj <u i€F, (20)
jeC
Sj_tijécij 1eF, jeC,
sj,tij,u > 0, 1€ F, j e C.

This primal-dual pair looks strikingly similar to the primal-dual pair of #h&CILITY LOCATION
problem. In fact, if we assign a cost ofto each facility in thecFACILITY LOCATION problem and solve
for the primal optimal solutiorix, y) and dual optimal solutiofs, t), then by strong duality

Zuxi + Z CijlYij = Z ;-

el i€l jeC jeF

Consequently, if there is a valuewBuch that the primal optimal solutig®, y) opens exactly: facilities
(fractionally), i.e. >, ; = k, then it is clear thafx,y) and (s, t,u) are optimal solutions to the
primal-dual pair of the;-MEDIAN problem.

On the same line of thought, suppose we can find a valudafwhich the approximation algorithm
for FACILITY LOCATION returns an integral solutiofx, y) and a dual-feasible solutigs, t) such that
exactlyk facilities are open, then

3ZU551'+ Z CijYi; = 3Zfi+zca(j),j

ieF ieFjeC icl jec
f c
< 3Z(sj + 55)
jec
= 3ZSJ'.
jec
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This implies

Z CijYij = an(j),j <3 ZSJ' —ku |,
i€F,jeC jeC jeC
and we would have gotten3aapproximation algorithm for the-MEDIAN problem. Unfortunately, it is
an open problem to find @ so that this happens. We will take a different path.

Let n. be the number of cities; ; number of facilitiesp = n. + ny, andm = n.ny the number of
edges in the graph.

In the algorithm forFACILITY LOCATION, the largeru is the fewer number of facilities will be
opened. (More edges will become tight before the eoist reached.) When = 0, all facilities will
be opened. When = n.cpnax, Wherecnax is the maximuny;; andn is the number of cities, only one
facility will be opened, because all edges are tight when this cost is reached. Assuming we break ties
canonically, it is easy to see that the number of opened facilities is inversely proportianal to

Apply binary search on the intervil, n.cmax| to find two values:; < ug such that the correspond-
ing number of opened facilitiels , ko satisfyk; > k > ks and thatus — u; < Cmin/(12n3£), wherecyin
is the minimum value of;;. (If we can find a value of. for which the number of opened facilitiesks
then we are done.) Let the corresponding integral primal solutioris®& y()) and (x(?, y(?)), and
the corresponding (fractional) dual solutions(b€’, t(1)) and(s(?), t(?)), respectively.

First, the idea is to get a convex combination

(x,y) = a(xW, yD) + g(x®,y@)

such thaix, y) opensk facilities fractionally. This meansk; + Sk2 = k anda+ 3 = 1, which implies

_ k—ko _ k1-k
a == andg = 1= Let

(s,t) = a(s), tM)) + (s, £)).

Note that(s, t, uo) is a feasible solution to the dual program (20).
Let us estimate how good this fractional combination is. We have

Z Czjyl(jl) S 3 Z 8;1) — k:lul (21)
i€F,jeC jeC

Z c,]yz(f) < 3 Z 85»2) - kQUQ . (22)
i€F,jeC jeC

We want to turnu in the first inequality intau, with a small increase in the fact8r and then take the

convex combination to estimate the cost®fy). Using the facts thaty — u; < f;“n? ki1 < ny, and

1)
Cmin < ZiGF,jGC cijyz‘j , we QEt

Sl <G+ 1ng) [ s~ ks | @3)
ieF,jeC Jjec

Now, ana, 5 convex combination of (23) and (22) gives

> iy < B+ 1/ng) [ D s — kug

ieF,jeC jeC
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Thus, the fractional solutio(x, y) is within (3 + 1/n) of the optimal. To turn the fractional solution
into an integral solution, we apply randomized rounding.

Let I; and/s be the set of facilities returned by the algorithm corresponding tndu, respectively.
We know|I;| = ky and|I;| = ko, and that; > k > ko. The fractionsy and indicate how much the
solution should be leaning towards and I,. Hence, it is natural to use them as rounding probability.
The trouble is thaf; does not have enough elements, wtildas too many elements.

We resolve this problem in the following way. For eaah I, let (i) be a facility in7; nearest to
i. Let I, be the set of these(i). Clearly|I,| < ko < k1. We arbitrarily padl,, with elements from/;
until |I,,| = k2. Our rounding procedure goes as follows.

e Open all facilities inl, with probability 5 and all facilities inZ,, with probability o.

e Pick uniformly a subseifs of I; — I, of size|I3| = k — ky and open all facilities if;. Note that
each element id; — I,, has a probability of

(]21:1522:11) k—ky

O

of being chosen.

e Return the set of k£ opened facilities.

The next thing to do is to assign cities to these opened facilities. Consider anjy tigti; andi, be
the facilities thatj was connected to in the solutiofisand/s. In the first case, suppose € I,,. Since
eitheri; or i2 is open, we set(j) to be the open facility. In the second case, suppose I,,, in which
case we connegtto 4, if it is open (i.e.i; € I3), otherwise ta if it is open. If bothi; andis are not
open, we connectto iz = v(iz).

We estimate the expected cost of conneclinga(j). In the first caseif € I,),

Elca(j),j] = aciyj + Beiyj.

In the second case when¢ 1, there is a probability of; thati; is in I3, a probability of(1 — o) = 32
thati; ¢ I5 butiy is open, and a probability ¢t — «)(1 — 3) = a3 that;j will be connected tas. Thus,
in this case

Elcagj), ] = aciyj + ﬁQCin + afciy;.
By the triangle inequality, we have
Cizj < Cigig + Cinj < Ciyiy + Cigj < Ciyj + 2Ciz .
Consequently,
E[ca(j),j] <a(l+B)cij+ B(1+ a)ci,; < (14 max{e, B})]aci,j + Beiyjl-
We have just shown the following theorem.
Theorem 5.2. The above rounding procedure gives expected cost at fhestnax{«, 3}) the cost of
(x,y).

Thus, in total the rounded solution is of cost at m@st 1 /n ¢ ) (14+max{«, 3}) of the optimal. Since
max{a, A} isatmosts/(ng+1),and(3+1/n¢)(1+n¢/(nf+1)) < 6, we obtain &-approximation.

The algorithm can be derandomized with the method of conditional expectation. Note that the expec-
tations Ec,(;) ;] can be calculated explicitly and efficiently. To derandomize this algorithm, we compute
the expectations of the final cost given that we opgar I,,. We then follow the smaller expectation (in
the« or 5 weighted sense). To compute whighto open, we can compute the conditional expectations
of the cost given that elemenis . . ., ix,_x, Of I1 — Iz are inl3, then repeat this process.
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Exercise 22 (Vazirani’'s book - Exercise 25.3)Use Lagrangian relaxation technique to give a constant
factor approximation algorithm for the following common generalization ofAReILITY LOCATION
andk-MEDIAN problems. Consider theNCAPACITATED FACILITY LOCATION problem with the addi-
tional constraint that at mostfacilities can be opened.

Exercise 23 (Jain and Vazirani [25]). Consider thd3-CLUSTERING problem. Given a set of points
S = {v1,...,v,} in R? and a positive intege, the problem is to find a minimum coktclustering, i.e.,
to find k points, calleccenters fi, ..., fr € R%, so as to minimize the sum of squares of distances from
each pointy; to its closest center. This naturally defines a partitioning ofrthmoints intok clusters.
Give a constant factor approximation algorithm for this problem.

(Hint: first show that restricting the centers to a subse$ aficreases the cost of the optimization
solution by a factor of at mogt)

Historical Notes

The primal-dual method was proposed by Dantzig, Ford, and Fulkerson [11] to solve linear programs.
This method was motivated by the works of Egaww[12] and Kuhn [26] on the so-called “Hungarian
algorithm” for the assignment problem (or the minimum cost bipartite perfect matching problem). The
primal-dual method is not effective as a method for solving linear programs in general. Its strength lies in
the fact that it can be used to “transform” a weighted optimization problem into a purely combinatorial
and unweighted optimization problem. Many fundamental combinatorial optimization algorithms are
either a special case of this method or can be understood in terms of it. For more details, consult standard
combinatorial optimization textbooks such as [10, 18, 29-32].

Bar-Yehuda and Even [3] gave the first truly primal-dual algorithm to approximateselre EX
COVER and thesSET COVER problem, as presented in algorithm WS@+RAL-DUAL-A. The LP-
algorithms for these problems were due to Hochbaum [21]. The algorithm fasERERAL COVER
problem is by Hall and Hochbaum [20]. Chapter 3 of [23] is a good survey on covering and packing
problems.

The survey papers by Goemans and Williamson [16], Williamson [37], Shmoys [33], and many
chapters in [23, 36] discuss the primal-dual method for approximation in more details.

The 2-approximation for multicut in trees was due to Garg, Vazirani, and Yannakakis [15]. Re-
cent works on integer multi-commodity flow can be found in [6-8, 19, 35]. For an example of multi-
commodity flow in networking, see [28].

For theFEEDBACK VERTEX SETproblem, Goemans and Williamson [17] gave/d-approximation
for planar graphs, Becker and Geiger [4] and independently Bafna, Berman, and Fujito [2}-gave
approximation algorithms, whose primal-dual interpretation was given by Chudak, Goemans, Hochbaum,
and Williamson [9]. Later, Fujito [14] generalizes this idea to design primal-dual algorithms for node-
deletion problems fohereditarygraph properties.

For the UNCAPACITATED FACILITY LOCATION problem, Hochbaum [22] obtained ratio(lgn),
Shmoys, Tardos, and Aardal [34] gh16 ratio with an LP-rounding based algorithm. T3@pproximation
algorithm we described was due to Jain and Vazirani [25]. Jain, Mahdian and Saberi [24] reduce the ratio
further to1.61 with a greedy algorithm analyzed by the dual-fitting method.

For theMETRIC k-MEDIAN problem, Bartal [] gave the first algorithm which achieved approximation
ratio O(lgnlglgn). Charikar, Guha, Tardos, and Shmoys [5] achieﬁrédJsing ideas from Lin and
Vitter [27]. The6-approximation algorithm we described was due to Jain and Vazirani [25]. Arya, Garg,
Khandekar, Meyerson, Munagala, and Pandit [1] achieved (atio2/p) with running timeO(n?), for
anyp using the local search method. Jain, Mahdian, and Saberi [24] gave a hardnesslIratid /effor
approximating this problem.
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