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Analyzing approximation algorithms with the dual-fitting method

1 A greedy algorithm for WEIGHTED SET COVER

One of the best examples of combinatorial approximation algorithms is a greedy algorithm approximat-
ing theWEIGHTED SET COVERproblem. An instance of the SET COVER problem consists of a universe
setU of m elements, a familyS of n subsets ofU , where setS ∈ S is weighted withwS . We want to
find a sub-family ofS with minimum total weight such that the union of the sub-family isU (i.e. covers
U ). Consider the following greedy algorithm.

Algorithm 1.1. GREEDY-SET-COVER(U,S, w)
1: C ← ∅, A← U
2: while A 6= ∅ do
3: PickS ∈ S with the least cost per un-covered element, i.e. pickS such that wS

|S∩A| is minimized.
4: A← A− S
5: C ← C ∪ {S}
6: end while
7: return C

In this section, we analyze this algorithm combinatorially. Then, a linear programming based analysis
will be derived in the next section.

Without loss of generality, suppose the algorithm returns a collection{S1, . . . , Sk} of k sets. LetXi

be the set of newly covered elements ofU after theith step. Letxi = |Xi|, andwi = wSi which is the
weight of theith set picked by the algorithm. Assign a costc(u) = wi/xi to each elementu ∈ Xi, for
all i ≤ k.

For any setS ∈ S, we first estimate
∑

u∈S c(u). Let ai = |S ∩ Xi|. Then, it is easy to see the
following:

wS

a1 + · · ·+ ak
≥ w1

x1
wS

a2 + · · ·+ ak
≥ w2

x2

...
...

...
wS

ak
≥ wk

xk
.

Hence, ∑
u∈S

c(u) =
k∑

i=1

ai
wi

xi
≤

k∑
i=1

ai
wS

ai + · · ·+ ak
≤ wS ·H|S|,

whereH|S| = 1+1/2+ · · ·+1/|S| is the|S|th harmonic number. Since|S| ≤ m for all S, we conclude
that ∑

u∈S

c(u) ≤ Hm · wS , ∀S ∈ S. (1)
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One may ask, what ifai+· · ·+ak = 0 for somei. This is not a problem. SinceS 6= ∅, a1+· · ·+ak 6=
0. If ai + · · ·+ ak = 0 for somei, then all the termsai

wi
xi

, . . . , ak
wk
xk

can be ignored.
Let T be any optimal solution, then

cost(C) =
∑
u∈U

c(u) ≤
∑
T∈T

∑
u∈T

c(u) ≤
∑
T∈T

H|T | · wT ≤ Hm · cost(T ).

We thus have proved the following theorem.

Theorem 1.2. GREEDY-SET-COVER has approximation ratioHm.

Exercise 1. In the SET MULTICOVER problem, each elementu is required to be coveredmu times,
wheremu is a positive integer. Each set can be picked multiple times. The cost of pickingS k times is
kwS . Devise a greedy algorithm for SET MULTICOVER with approximation ratioHm (and prove that!).

Exercise 2. In the MAXIMUM COVERAGEproblem, we are given a universeU , a collectionS of subsets
of U , and a positive integerk. Each elementu in the universe has a non-negative integer weightwu. The
problem is to findk members ofS whose union has the maximum total weight.

Suppose we solve this problem by greedily pick the best set in each iteration untilk sets are picked.
(“Best” set is the set maximizing total weight of uncovered elements.) Prove that this strategy has
approximation ratio1−

(
1− 1

k

)k
.

Exercise 3. Consider theWEIGHTED VERTEX COVERproblem in which each vertexv is weighted with
wv > 0. Consider the following algorithm

Algorithm 1.3. LR VERTEX COVER(G, w)
1: C = ∅
2: For eachv ∈ V (G), let c(v) ≤ wv

3: while C is not a vertex coverdo
4: Pick an uncovered edge(u, v), let ε ≤ min{c(u), c(v)}
5: c(u)← c(u)− ε; c(v)← c(v)− ε
6: Add intoC all verticesv havingc(v) = 0.
7: end while
8: return C

Prove that this is a2-approximation algorithm.

2 Analyzing GREEDY SET COVERwith dual-fitting

It is natural to find out how Algorithm 1.1 relates to the integer programming formulation of SET COVER.
The IP for SET COVER is

min
∑
S∈S

wSxS

subject to
∑
S3u

xS ≥ 1, ∀u ∈ U,

xS ∈ {0, 1}, ∀S ∈ S.

(2)

The LP-relaxation is
min

∑
S∈S

wSxS

subject to
∑
S3u

xS ≥ 1, ∀u ∈ U,

xS ≥ 0, ∀S ∈ S.

(3)
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And, the dual LP is
max

∑
u∈U

yu

subject to
∑
u∈S

yu ≤ wS , ∀S ∈ S,

yu ≥ 0, ∀u ∈ U.

(4)

The dual constraints look very much like relation (1), except that we need to divide both sides of (1) by
Hm. Thus, for eachu ∈ U , if we setyu = c(u)/Hm, theny is a dual feasible solution. It follows that

cost(C) =
∑
u∈U

c(u) = Hm cost(y) ≤ Hm · OPT.

3 More general covering problems

The CONSTRAINEDSET MULTICOVER problem is a generalization of the SET COVER problem in which
each elementsu ∈ U needs to be coveredmu times, wheremu is a positive integer.

The corresponding integer program can be written as

min
∑
S∈S

wSxS

subject to
∑
S3u

xS ≥ mu, ∀u ∈ U,

xS ∈ {0, 1}, ∀S ∈ S.

(5)

When relaxing this program, it is no longer possible to remove the upper boundsxS ≤ 1 (otherwise an
integral optimal solution to the LP may not be an optimal solution to the IP). The LP-relaxation is

min
∑
S∈S

wSxS

subject to
∑
S3u

xS ≥ mu, ∀u ∈ U,

−xS ≥ −1, ∀S ∈ S,
xS ≥ 0, ∀S ∈ S.

(6)

The dual linear program is now

max
∑
u∈U

muyu −
∑
S∈S

zS

subject to
∑
u∈S

yu − zS ≤ wS , ∀S ∈ S,

yu, zS ≥ 0, ∀u ∈ U,∀S ∈ S.

(7)

We will try to devise a greedy algorithm to solve this problem and analyze it using the dual-fitting
method.

Algorithm 3.1. GREEDY-SET-MULTICOVER(U,S, w, m)
1: C = ∅; A← U
2: // We call an elementu ∈ U “alive” if mu > 0. Initially all of A are alive
3: while A 6= ∅ do
4: PickS such that wS

|S∩A| is minimized.
5: C = C ∪ {S}
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6: mu ← mu − 1 for eachu ∈ S ∩A
7: Remove fromA all elementsu with mu = 0
8: end while
9: return C

The next step is to write the cost ofC as a multiple of the cost of a feasible solution to (7), namely
cost(C) = ρ(

∑
u muyu −

∑
S zS) for some feasible solution(y, z) of (7). For each elementu ∈ U and

eachj ∈ [mu], let c(u, j) be the cost of coveringu for thejth time. If S coversu for thejth time, and
AS is the set of alive elements beforeS was picked, thenc(u, j) = wS

|S∩AS | . If S was chosen beforeT ,
thenAT ⊆ AS . Thus,

wS

|S ∩AS |
≤ wT

|T ∩AS |
≤ wT

|T ∩AT |
.

Consequently, for anyu we havec(u, 1) ≤ · · · ≤ c(u, mu). The final cost is

cost(C) =
∑
u∈U

mu∑
j=1

c(u, j).

In order to write this sum asρ(
∑

u∈U muyu −
∑

S∈S zS) (keeping in mind thatyu, zS ≥ 0), it makes
sense to try

cost(C) =
∑
u∈U

muc(u, mu)−
∑
u∈U

mu−1∑
j=1

[c(u, mu)− c(u, j)]

=
∑
u∈U

muc(u, mu)−
∑
u∈U

mu∑
j=1

[c(u, mu)− c(u, j)]

The double sum (after the minus sign) is non-negative, which is good. We need to write it in the form
ρ
∑

S∈S zS somehow. Note that, each timeu is covered, a termc(u, mu) − c(u, j) is added into the
double sum. For eachS ∈ C, supposeS coversu ∈ S ∩AS theju,S th time. Then,∑

u∈U

mu∑
j=1

[c(u, mu)− c(u, j)] =
∑
S∈C

∑
u∈S∩AS

[c(u, mu)− c(u, ju,S)] .

Now, letρ be a number to be determined. Define

yu =
1
ρ
c(u, mu), ∀u ∈ U

zS =


1
ρ

∑
u∈S∩AS

[c(u, mu)− c(u, ju,S)] S ∈ C

0 S /∈ C

For (y, z) to be dual-feasible, we would like to findρ so that, for eachS ∈ S,
∑

u∈S yu − zS ≤ wS .
Consider anyS /∈ C. In this case,∑

u∈S

yu − zS =
1
ρ

∑
u∈S

c(u,mu).

Let u1, . . . , uk be the elements ofS. Without loss of generality, assume thatu1 was completely cov-
ered beforeu2, and so on. Then, right beforeui is completely covered,|AS | ≥ k − (i − 1). Hence,
c(ui,mui) ≤ wS/(k − i + 1). Consequently,

∑
u∈S

yu − zS ≤
1
ρ

k∑
i=1

wS

k − i + 1
≤ Hm

ρ
· wS .
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Now, consider anyS ∈ C. In this case we have∑
u∈S

yu − zS =
1
ρ

∑
u∈S

c(u, mu)− 1
ρ

∑
u∈S∩AS

[c(u, mu)− c(u, ju,S)]

=
1
ρ

 ∑
u∈S\AS

c(u, mu) +
∑

u∈S∩AS

c(u, ju,S)


Letu1, . . . , uk′ be elements inS\AS which were completely covered in that order. Note that0 ≤ k′ < k.
Note also that

∑
u∈S∩AS

c(u, ju,S) = wS . Similar to the previous reasoning, we get

∑
u∈S

yu − zS =
1
ρ

(
k′∑

i=1

wS

k − i + 1
+ wS

)
≤ Hm

ρ
· wS .

Hence,(y, z) would be a dual feasible solution if we pickρ = Hm, which is also an approximation ratio
for Algorithm 3.1.

Exercise 4. Devise a greedy algorithm for SET MULTICOVER with approximation ratioHm. Analyze
your algorithm using the dual-fitting method.

Exercise 5. In the MULTISET MULTICOVER problem, we are given a collectionS of multisets of a
universeU . For eachS ∈ S, let M(S, u) be the multiplicity ofu in S. Each elementu needs to be
coveredmu times. We can assumeM(S, u) ≤ mu for all S, u.

Devise a greedy algorithm for MULTISET MULTICOVER with approximation ratioHd, whered is
the largest multiset size. The size of a multiset is the total multiplicity of its elements. Analyze your
algorithm using the dual-fitting method.

Exercise 6. Consider the integer programmin{cTx |Ax ≥ b}, whereA,b have non-negative integral
entries, andx is required to be non-negative and integral also. This is called a covering integer program.

Use scaling and rounding to reduce covering integer programs to MULTISET MULTICOVER, so that
we can use the greedy algorithm for the MULTISET MULTICOVER instance to get a greedy algorithm
for the COVERING INTEGERPROGRAM instance with approximation ratioO(lg n), wheren is the input
size of the covering integer program. (Thus, the instance of MULTISET MULTICOVER must have size
polynomial inn.)

Exercise 7. Vazirani’s book. Problem 24.12, page 241.

Historical Notes

The greedy approximation algorithm for SET COVER is due to Johnson [5], Lovász [6], and Chv́atal [2].
Feige [4] showed that approximating SET COVER to an asymptotically better ratio thanlnm isNP-hard.

The dual-fitting analysis for GREEDY SET COVER was given by Lov́asz [6]. Dobson [3] and Ra-
jagopalan and Vazirani [8] studied approximation algorithms for covering integer programs. The dual-
fitting method has found applications in other places [1,7].
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