
CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2006 Last update: November 25, 2006

Hardness of Approximation

1 Overview

To date, thousands of natural optimization problems have been shown to beNP-hard [11,18]. Designing
approximation algorithms [5, 27, 37] has become a standard path to attack these problems. For some
problems, however, it is evenNP-hard to approximate the optimal solution to within a certain ratio.
Approximating the VERTEX COVER to within 1.3606 is NP-hard. In an extreme case, the TSP problem
cannot even be approximated at all, since deciding if there is a TSP tour of length0 is alreadyNP-hard
(the HAMILTONIAN CIRCUIT problem).

Until 1990, few inapproximability results were known. To prove a typical inapproximability result
such as MAX -CLIQUE is not approximable to within some ratior unlessP = NP, a natural direction is
to find a reduction from someNP-complete problem, say3SAT, to MAX -CLIQUE which satisfies the
following properties:

• given a3CNF formulaφ, the reduction constructs in polynomial-time a graphGφ

• there is some polynomial-time computablethresholdt such that

– if φ is satisfiable, thenGφ has a clique of size at leastt

– if φ is not satisfiable, thenGφ does not have any clique of sizet/r or more.

If M AX -CLIQUE is r-approximable, then one can use thisr-approximation algorithm, along with the
reduction above, to decide if a3CNF formulaφ is satisfiable. We simply run the approximation algorithm
onGφ. If the answer ist/r or more, thenφ is satisfiable; otherwiseφ is not.

Current techniques for provingNP-hardness seem inadequate for this kind ofgap-producingreduc-
tions. Intuitively, the reason is that non-deterministic Turing Machines are sensitive to small changes:
the accepting computations and rejecting computations are not very far from one another (no gap). In
1990, the landmark work by Feige, Goldwasser, Lovász, Safra, and Szegedy [15] connects probabilistic
proof systems and the inapproximability ofNP-hard problems. This has become known asthe PCP
connection. A year later, the PCP theorem - a very strong characterization ofNP - was proved with the
works of Arora and Safra [4], Arora, Lund, Motwani, Sudan, and Szegedy [3]. A plethora of inapprox-
imability results using the PCP connection follow, some of them are optimal. See the historical notes
section for more related references.

In the rest of this note, we will present some basic techniques of proving hardness of approximation.
It will require a good deal of familiarity with the area to go beyond the basics presented here and to prove
more sophisticated inapproximability results.

2 Basic notions

2.1 NPO Problems, Approximation Algorithms, and Approximation Ratios

We begin with several definitions laying out a framework to analyze inapproximability results.

1

Definition 2.1 (NPO problems). Following Johnson [], anNP optimization problemΠ has five compo-
nents:

1. A setIΠ of instances which are polynomial time recognizable, i.e. we can tell in polynomial time
if an inputx is an instance ofΠ or not.

2. For each instancex ∈ IΠ, there is a polynomial time recognizable setS(x) of feasible solutions
to x, i.e. we can tell in polynomial time if a solutiony is a feasible solution of instancex or not.

3. A polynomial-time computable cost function costΠ which assigns a positive integer to each (in-
stance, feasible solution) pair.

4. An indication of whetherΠ is amaximizationor aminimizationproblem.

5. A polynomial time algorithm which gives some feasible solution to each instancex. This is to
ensure that the problem hassomepolynomial time approximation algorithm.

For each instancex, let Π(x) denote the optimal objective value forx.

As an example, forΠ = MAX -CLIQUE, x is some graphG, S(G) is the set of all cliques ofG, c
gives the size of the clique, the problem is a maximization problem, and we can give a single vertex as a
feasible solution to the problem.

Definition 2.2 (Problem size).We will assume that the encodings of instances arereasonablein the
sense described in Garey and Johnson []. More often than not, instead of the actual instance size|x|, we
use a parametern within a polynomial of|x| to describe the size. For instance, we often use the number
n of vertices to denote the size of a graph, even though in most cases the encoding requiresO(n2) bits.
In most cases,n is the size of the underlying set describing the instancex.

Definition 2.3 (Approximation algorithm). An approximation algorithmA is a polynomial time algo-
rithm that computes the objective value of some feasible solution to an instancex of Π. LetA(x) denote
the value thatA returns.

Definition 2.4 (Approximation ratio). An approximation algorithmA for Π hasapproximation ratio
µA(n) if, for all instancesx of Π,

Π(x)
µA(n)

≤ A(x) ≤ Π(x), for maximization problems,

and
Π(x) ≤ A(x) ≤ µA(n)Π(x), for minimization problems.

3 Probabilistically checkable proofs

A languageL is inNP if there is a Turing machine which can verify in polynomial time if a stringx is in
L, given that the Turing machine is provided with a good “witness string”w. Hence,NP can be viewed
as the class of languages which have an interactive proof system in which there is a polynomial time
verifierV (Turing machine) and an infinitely powerful proverP (an oracle) who, on in putx, provides
V with a proofπ to convinceV thatx belongs toL. Henceforth, verifiers implicitly are polynomial time
Turing machines. Ifx is in L, then there will be a proofπ for which V accepts. This means that the
proof system iscomplete. Whenx is not inL, the prover will not be able to foolV into acceptingx.
This means that the proof system issound.

2

A good example is a proof system for the satisfiability problem. Given a boolean formulaφ, the
prover can giveV a truth assignmenta. Then,V only needs to verify thatφ is evaluated to be TRUE

undera. In this scheme,V has to read the entire proof to be convinced thatφ is satisfiable. If verifiers
are only allowed to read a small piece of the proof, is it possible to design a proof system so that we can
be fairly confident (with a certain threshold on error probability) that the verification is correct?

To be more precise, by “fairly confident” we mean that, whenx is in L the verifier accepts with
high probability (completeness); and ifx is not inL, then the probability that the verifier acceptsx is
upperbounded by some small soundness probabilitys < 1. The probability is taken over the random
choicesV made, assuming there is some internal random source. Hence,V now becomes aprobabilistic
Turing machine.

These ideas can be formalized with aprobabilistically checkable proof(PCP) system. Aproof is
a binary string. An(r, q)-restricted verifierV is a probabilistic polynomial time verifier which uses at
mostr random bits and query the proof in at mostq places (q bits). Bothr andq are functions of the
input size.

Given a proofπ, a random stringR, and an inputx, let

V π(x;R) =

{
1 if V acceptsx

0 if V rejectsx.

Define the acceptance probability ofV given the proofπ as follows.

ACC[V π(x)] := Prob
R

[V π(x;R) = 1].

The maximum acceptance probability is an important measure, which is defined as

ACC[V (x)] := max
π
{ACC[V π(x)]}.

Let c, s : N+ → [0, 1] such that0 < s(n) < c(n) ≤ 1, ∀n ∈ N+. The classPCPc,s[q, r] consists
of all languagesL, for each of which there is an(r, q)-restricted verifierV which satisfies the following
conditions:

• Completeness.If x ∈ L, then there is some proofπ such thatV acceptsx with probability at least
c(|x|). In other words,

ACC[V (x)] ≥ c(|x|),∀x ∈ L.

• Soundness.If x /∈ L, thenV acceptsx with probability less thans(|x|), no matter what the proof
is. In other words,

ACC[V (x)] < s(|x|),∀x /∈ L.

For the sake of brevity, we writePCP[r, q] instead ofPCP1, 1
2
[r, q]. There are important parameters

of a PCP system other than the randomnessr and the query complexityq. We will define them later as
needed.

Exercise 1. Let poly(n) =
⋃

k≥0O(nk). Prove that

NP = PCP[0,poly(n)] (1)

NP = PCP[O(log n),poly(n)] (2)

Exercise 2. Prove that

PCP[O(log n), O(1)] = PCP[O(log n),poly(n)]. (3)

3

Exercise 3. The classRP consists of all languagesL which have a polynomial time randomized algo-
rithmA satisfying the following properties:

• if x ∈ L, thenA acceptsx with probability at least1/2,

• if x /∈ L, thenA does not acceptx.

The class co-RP consists of all languagesL for whichL ∈ RP. Prove that

PCP[poly(n), 0] = co-RP. (4)

One of the major results in theoretical computer science of the past two decades is the PCP theorem,
which gives a robust characterization of the classNP.

Theorem 3.1 (PCP Theorem).NP = PCP[O(log n), O(1)].

This theorem helps us devise gap-producing reductions as alluded to in Section 1. We illustrate this
point via several inapproximability results presented in the next section.

4 Direct reductions from PCP

4.1 Satisfiability problems

Our first interesting result is that MAX -E3SAT is a MAX SNP problem. (MAX SNP is the class of
problems which have a constant ratio approximation algorithm, but no approximation scheme unless
P=NP.) In an earlier lecture, we have shown that there is a8/7-approximation algorithm for MAX -
E3SAT. Thus, it remains to show that the problem cannot be approximated to within some constant
ρ > 1, unlessP = NP.

Theorem 4.1. There is some constantρ1 > 1 such that it isNP-hard to approximateMAX -E3SAT to
within ρ1.

Proof. The general strategy was outlined in Section 1. Consider anyNP-complete languageL. The
reduction works by constructing in polynomial time a CNF formulaϕx with m clauses, given an input
x. The formulaϕx satisfies the following properties.

x ∈ L ⇒ MAX -E3SAT(ϕx) = m,

x /∈ L ⇒ MAX -E3SAT(ϕx) < m/ρ1. (5)

Obviously, if we could find such a reduction then MAX -E3SAT is not approximable to withinρ1, estab-
lishing MAX -E3SAT membership in the class MaxSNP.

By the PCP theorem, is some(r, q)-restricted verifierV recognizingL, wherer = O(lg n) andq is
a fixed constant. We will useV to constructϕx for each input stringx. Note that, whenV is adaptive the
length of the proof does not need to be more than2r2q. WhenV is non-adaptive, the corresponding bound
is q2r. In both cases,V only needs polynomial-size proofs. Letp = 2r+q ≥ q2r be the upperbound on
proof sizes.

We constructϕx as follows. Createp variablesx1, . . . , xp, so that each truth assignment to these
variables corresponds to a proof presented toV . For each random stringR of lengthr, there are some
combinations of the answers toV ’s queries that makeV accept. We can model this fact by a CNF
formulaϕR on {x1, . . . , xp} such thatϕR(x) = TRUE iff V accepts the proofx. The formulaψR can
be constructed in polynomial time by simulatingV on the random stringR and generating all possible
combinations of answers. Sinceq is a constant, there are only2q answer combinations.

4

For example, suppose the queries ask for bits1, 4, 5, 9 of the proofs, andV rejectsx if the answers
are either(1, 0, 0, 0), (0, 1, 0, 1), or (1, 1, 1, 0), then we can assign

ϕR(x) = (x̄1 ∨ x4 ∨ x5 ∨ x9) ∧ (x1 ∨ x̄4 ∨ x5 ∨ x̄9) ∧ (x̄1 ∨ x̄4 ∨ x̄5 ∨ x9).

Each clause says that the corresponding combination doesnot hold. Thus, the conjunction of these
clauses says thatV acceptsx.

By adding a few auxiliary variables, we can convertϕR into E3-CNF form. This conversion is
standard. For example,(x1 + x2 + x3 + x4 + x5) is equivalent to

(x1 + x2 + y1)(ȳ1 + x3 + y2)(ȳ2 + x4 + x5).

We create at mostq clauses of size3 for each of the original2q clauses. The resulting3-CNF formula
ϕR has at mostq2q clauses.

Finally, letϕx =
∏

R ϕR, thenϕx itself can be constructed in polynomial time since there are only
polynomially many random stringsR. (This is why the randomness ofO(log n) is crucial.) Letm be
the total number of3-CNF clauses ofϕx, thenm = r(|x|)q2q = O(log n)q2q.

• Whenx ∈ L, there is a proofπ (a truth assignment) such thatV always accepts. Hence, under this
assignmentφx is satisfiable.

• Whenx /∈ L, setπi = xi for all i and feedπ as a proof toV . In this case,V only accepts
with probability< 1/2. Hence, at least half of theϕR are not satisfiable by any truth assignment.
For eachϕR that is not satisfied, there is at least one clause that is not satisfied. The number of
non-satisfied clauses is thus at least1

2r(|x|). Consequently,

MAX -E3SAT(ϕx) < m− 1
2
r(|x|) = m(1− 1

2q2q
).

Let ρ1 = q2q+1

q2q+1−1
and the proof is completed.

Exercise 4. Show thatPCP[O(log n), O(1)] ⊆ NP.

It is interesting to know that the converse of the above theorem is also true, i.e. one can theoretically
prove the PCP theorem by showing a constant-ratio inapproximability result for MAX -E3SAT.

Theorem 4.2. If there is a reduction satisfying(5) from anNP-complete languageL, thenNP =
PCP[O(log n), O(1)].

Proof. By Exercise 4,PCP[O(log n), O(1)] ⊆ NP. Conversely, to show thatNP ⊆ PCP[O(log n), O(1)]
we design an(r, q)-verifier V for L. This can be used as an(r, q)-verifier for any other language
L′ ∈ NP, sinceL′ reduces toL.

Consider any input stringx. Use the assumed reduction to constructϕx. The strategy forV is to pick
a constant numberk of clauses ofϕx at random, ask the prover for the values of (at most3k) variables
in these clauses, and accept iff all the clauses are satisfied. ClearlyV has perfect completeness. When
x /∈ L, more than(1− 1/ρ1)m clauses are satisfied. The probability thatV accepts is at most

ACC[V (x)] <

((1−1/ρ1)m
k

)(
m
k

)
=

(m−m/ρ1)(m−m/ρ1 − 1) . . . (m−m/ρ1 − k + 1)
m(m− 1) . . . (m− k + 1)

<

(
m−m/ρ1

m

)k

= (1− 1/ρ1)k.

5

Whenk ≥ lg(ρ1/(ρ1 − 1)), ACC[V (x)] < (1 − 1/ρ1)k ≤ 1/2. Sincem = poly(|x|), the number of
random bitsV used isO(lgm) = O(lg |x|), and the number of query bits needed is about3 lg(ρ1/(ρ1−
1)), which is a constant.

4.2 MAX CLIQUE and the FGLSS reduction

The PCP connectionrefers to the use of a PCP characterization ofNP to show hardness results for
optimization problems. This connection was first noticed via a reduction from interactive proofs to
MAX -CLIQUE in the pioneering work of Feige, Goldwasser, Lovász, Safra, and Szegedy [15]. Since
then, the reduction is referred to as the FGLSS reduction.

Consider an(r, q)-restricted verifierV for a languageL ∈ PCPc,s[q, r]. On inputx a transcript is
a tupleT = 〈R,Q1, a1, . . . , Qq, aq〉 such that|R| = r is a random string, theQi andai are the queries
and corresponding answers thatV made and received, in that order, given the random string.T is an
accepting transcriptif V acceptsx after seeing the answers.

Two transcriptsT = 〈R,Q1, a1, . . . , Qq, aq〉 andT ′ = 〈R′, Q′
1, a

′
1, . . . , Q

′
q, a

′
q〉 areconsistentwith

each other ifQi = Q′
j ⇒ ai = a′j ∀i, j, i.e. if for the same questions we get the same answers.

On an inputx whichV tries to verify ifx is inL or not, we will construct a graphGx in polynomial
time such that

x ∈ L ⇒ MAX -CLIQUE(Gx) ≥ c

2q
|Vx|

x /∈ L ⇒ MAX -CLIQUE(Gx) <
s

2q
|Vx|.

Let Gx = (Vx, Ex), whereVx represents all accepting transcripts ofV on x andEx consists of edges
connecting consistent pairs of transcripts. It follows that|Vx| ≤ 2r+q. We can add dummy vertices so
that|Vx| = 2r+q.

Note that the first questionV asks is deterministic, knowingw andR. Then, knowing the first
answer the second question is known, etc. Thus, the questions in a transcript are in fact redundant for the
encoding of transcripts. Consequently, the vertices ofGx with the same random stringR form a cluster
of independent vertices.

If x ∈ L, then there is some proofπ such that ACC[V π(x)] ≥ c. Consider the set of all transcripts
whose answers come fromπ, then all these transcripts are consistent with each other. In other words,
they form a clique. The fact that ACC[V π(x)] ≥ c implies that the clique size is at leastc2r. Hence,

MAX -CLIQUE(Gx) ≥ c2r =
c

2q
|Vx|.

Conversely, from a clique ofGx of sizek, say, we can construct a proofπ for whichV π accepts with
probabilityk/2r. The proof is constructed by taking the union of the answers of the transcripts from the
clique, adding dummy answers if they were not part of any transcript in the clique. Consequently, when
x /∈ L there cannot be a clique of sizes2r or more, otherwise there would be a proofπ for which V π

accepts with probability at leasts. Hence, in this case

MAX -CLIQUE(Gx) < s2r =
s

2q
|Vx|.

Theorem 4.3. It is NP-hard to approximateMAX CLIQUE to within any constant ratio.

Proof. By the PCP theorem, we have a(O(lg n), O(1))-restricted verifierV for any chosenNP-hard
languageL. The reduction above implies that MAX CLIQUE cannot be approximated to withinρ =
c/s = 1/(1/2) = 2. By repeating the verifier independentlyk times and accepting iff allk rounds
accept the input, we can reduceV ’s soundness exponentially down to1/2k. Given any constantρ, setk
to be slightly more thanlg ρ. Now the approximation ratio lowerbound is at leastρ.

6

4.3 Reductions using better verifiers

Håstad [25,26] showed the following remarkable result.

Theorem 4.4 (H̊astad). For everyε > 0,

NP = PCP1−ε, 1
2
+ε[O(log n), 3].

Furthermore, there is a verifier for SAT which works as follows. It computes three query positionsi, j, k
and a bitb. Then, it accepts the input iff

πi + πj + πk = b (mod 2).

One can easily use his result to prove quite a few strong inapproximation results.

Exercise 5.The MAX EkL INEQ-2 problem is the problem of finding a solution which satisfies the most
number of equations among the givenm linear equations overF2, where each equation has exactlyk
variables. From H̊astad’s theorem, show that MAX E3L INEQ-2 cannot be approximated to within any
constant less than2, unlessP = NP.

5 Hardness reductions among problems

5.1 Gap-preserving reductions

As we have seen from the previous section, to show that it isNP-hard to approximate some maximiza-
tion problemΠ to within some ratioρ(n) we do the following. Start from someNP-complete language
L, find a polynomial time reduction fromL to Π such that: given an inputx the reduction constructs in
polynomial time an instanceIx of Π satisfying

• x ∈ L impliesΠ(Ix) ≥ t(Ix), and

• x /∈ L impliesΠ(Ix) < t(Ix)/ρ(|Ix|),

wheret(Ix) is some threshold function on the instanceIx. Put it another way,it is NP-hard to distinguish
between instances ofΠ whose optimal value is at leastt(I) and instances ofΠ whose optimal value is
less thant(I)/ρ(|I|). For example, for the MAX CLIQUE problemIx = Gx, t(Gx) = |Vx|/2q, and
ρ(|Gx|) = 2.

Similarly, if Π is a minimization problem the reduction should satisfy

• x ∈ L impliesΠ(Ix) ≤ t(Ix), and

• x /∈ L impliesΠ(Ix) > ρ(|Ix|)t(Ix).

Just the usual reductions amongNP-complete problems, we do not need to do reductions directly
from somePCP. The notion ofgap preservingreductions plays the role of Karp reductions among
NP-complete problems. To define a gap preserving reduction fromΠ1 to Π2, we need to know if each
of them is a maximization or minimization problem.

There are four cases which are completely similar. We will consider only one case here:Π1 is a
maximization andΠ2 is a minimization problem. A gap preserving reduction fromΠ1 to Π2 comes with
four functionst1, ρ1, t2, ρ2. Given an instanceI1 of Π1, the reduction constructs in polynomial time an
instanceI2 of Π2 such that

• if Π1(I1) ≥ t1(I1), thenΠ2(I2) ≤ t2(I2)

7

• if Π1(I1) < 1
ρ(|I1|) t1(I1), thenΠ2(I2) > ρ(|I2|)t2(I2)

The following theorem is straightforward.

Theorem 5.1. Suppose there is a reduction fromΠ1 to Π2 as described above. If it isNP-hard to
distinguish between instances ofΠ1 with optimal value at leastt1 and instances ofΠ1 with optimal value
less thant1/ρ1, then it isNP-hard to distinguish between instances ofΠ2 with optimal value at mostt2
and instances ofΠ2 with optimal value more thanρ2t2; in particular, it is NP-hard to approximateΠ2

to withinρ2.

Exercise 6.Suppose we know that MAX E3L INEQ-2 cannot be approximated to within2−ε for anyε >
0, unlessP = NP. Give a gap-preserving reduction to show that MAX E3SAT cannot be approximated
to within 8/7− ε, for anyε > 0.

Hint : the equationx+ y + z = 0 (mod 2) is equivalent to the conjunction of four3CNF clauses

(x̄ ∨ y ∨ z) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z̄).

5.2 MAX -3SAT with bounded occurrences

Definition 5.2 (Expanders). A λ-expanderis a k-regular graphG for which k is a constant, and
|[S, S̄]| ≥ λ|S| for all subsetsS ⊂ V (G) where|S| ≤ |V (G)|/2.

For our purposes, we will need the following fact:there is ann0 such that, for eachn ≥ n0 a 1-
expander withn vertices can be constructed in polynomial time.(There is some technical discrepancies
between the above statement and the actual result; however, the difference is neglectable.) The reader is
referred to the recent survey [28] for more information on expander graphs and their various applications.

The problem MAX -3SAT-d is MAX -3SAT restricted to formulas where each variable appear (as
itself or as its negation) in at mostd clauses. For reasons to be clear later, we will need the result that
MAX -3SAT-d cannot be approximated to a certain constant ratio.

Theorem 5.3. There is a constantρ2 > 1 and a constantd such that it isNP-hard to approximate
MAX -3SAT-d to within ρ2. More specifically, given an E3-CNF formulaϕ with m clauses, there is a
polynomial time reduction which constructs a3-CNF-d formulaϕ′ withm′ clauses such that

• If MAX -E3SAT(ϕ) = m, thenMAX -3SAT-d(ϕ′) = m′; and,

• if MAX -E3SAT(ϕ) < m/ρ1, thenMAX -3SAT-d(ϕ′) < m′/ρ2.

Proof. Let x1, . . . , xn be the variables ofϕ. First, repeat each clause ofϕ n0 times so that each variable
appears in at leastn0 clauses. Call the resulting formulaψ, which hasmn0 clausesC1, C2, . . . , Cmn0 .

Create one variableyij if xi appears (as itself or as its negation) in clauseCj . Letψ′ be the formula
obtained by replacingxi in Cj by yij . For example, ifCj = (x1 + x̄3 + x7), then the clause becomes
(y1j + ȳ3j + y7j) in ψ′. Thus,ψ′ hasmn0 clauses and each variableyij appears only once. The clauses
of ψ′ are calledsatisfiability clauses.

DefineSi = {j | xi ∈ Cj}. For each variablexi that appearsni ≥ n0 times inψ, let Gi be a
k-regular1-expander with the set of verticesSi. By the aforementioned fact,Gi can be constructed in
polynomial time.

To this end, letψi be the formula which is the conjunction of clauses of the form(yij+ȳij′)(ȳij+yij′),
for each edge(j, j′) in the graphGi. The key point to notice is that both(yij + ȳij′) and(ȳij + yij′) if
and only ifyij = yij′ . Note that, each variableyij appears2k times inψi; and that there arenik clauses
in ψi. These clauses are calledconsistency clauses.

8

Finally, let

ϕ′ = ψ′ ∧
n∧

i=1

ψi.

Then,ϕ′ hasm′ = mn0 + k
∑

i ni = m(n0 + 3k) clauses.
Claim 1. If M AX -E3SAT(ϕ) = m, then MAX -3SAT-d(ϕ′) = m′.

The proof is immediate. Consider any truth assignment that satisfiesϕ. Assignyij = xi for all
j ∈ Si

Claim 2. If M AX -E3SAT(ϕ) < m/ρ1, then MAX -3SAT-d(ϕ′) < m′/ρ2, whereρ2 = n0+3k
n0/ρ1+3k .

A truth assignment forϕ′ is consistentif, for eachi, all yij are assigned with the same boolean value.
To prove that claim, we first show the following crucial fact: there is an optimal truth assignment forϕ′

which is consistent.
Consider any optimal truth assignment forϕ′. Suppose there is somei for which not allyij are

assigned with the same boolean value. LetSt = {j | yij = TRUE} andSf = {j | yij = FALSE}. Then
St ∪ Sf is a partition of the vertices ofGi. WLOG, assume|St| ≤ |Sf |. The number of edges(j, j′)
with j ∈ Sf and j′ ∈ St is at least|St|. For each such edge(j, j′), exactly one of the two clauses
(yij + ȳij′) and(ȳij + yij′) is satisfied by the current truth assignment. Now, invert the values of allyij

for j ∈ St. Then, in the conjunction
∧n

i=1 ψi we gain at least|St| more satisfied clauses. We might turn
some clauses inψ′ from being satisfied to being unsatisfied, however. Fortunately, the number of such
clauses is at most|St|. Consequently, the new truth assignment satisfies as many clauses as the previous
one. Repeat this process for anyi for which not allyij are assigned with the same boolean value. We
finally end up with a consistent truth assignment forϕ′.

Now, consider any optimal and consistent truth assignment forϕ′. Setxi = yij for anyj ∈ Si. Then,
the fraction of satisfied clauses ofϕ is equal to the fraction of satisfied clauses ofψ′. In other words, if
an optimal truth assignment forϕ cannot satisfym/ρ1 clauses, then an optimal truth assignment forϕ′

cannot satisfy

mn0/ρ1 + 3km = m′n0/ρ1 + 3k
n0 + 3k

clauses ofϕ′.

Exercise 7. Show that there are constantsρ > 1 andd such that it isNP-hard to approximate MAX -
E3SAT-d to within ρ.

5.3 INDEPENDENTSET and VERTEX COVER on bounded degree graphs

The problem VERTEX COVER-d is the VERTEX COVER problem restricted to graphs with maximum
degree at mostd. Similarly we define INDEPENDENTSET-d.

Consider any3-CNF formulaϕ with m clauses. By repeating some literal in any clause of size< 3,
we can assume that the formula is E3-CNF. Consider the graphGϕ constructed as follows. For each
clause(la + lb + lc) in ϕ, there corresponds a triangle in the graph. Thus, the graph has3m vertices.
The edges of the triangles are calledclause edges. Next, connectxi andx̄i for all occurrences ofxi and
x̄i. These edges are calledconsistency edges. Since each variable appears in at mostd clauses, for each
vertex ofGϕ there are2 incident clause edges and at mostd − 1 incident consistency edges. Thus,Gϕ

has maximum degreed+ 1.
It is straightforward to see that

MAX -3SAT-d(ϕ) = INDEPENDENTSET-(d+ 1)(Gϕ)
MAX -3SAT-d(ϕ) = 3m− VERTEX COVER-(d+ 1)(Gϕ)

Consequently,

9

• if M AX -3SAT-d(ϕ) = m, then INDEPENDENT SET-(d + 1)(Gϕ) = m and VERTEX COVER-
(d+ 1)(Gϕ) = 2m = 2

3(3m).

• if M AX -3SAT-d(ϕ) < m/ρ2, then INDEPENDENT SET-(d + 1)(Gϕ) < m/ρ2 and VERTEX

COVER-(d+ 1)(Gϕ) > (3− 1/ρ2)m = (9/2− 3/(2ρ2))2
3(3m).

The following theorems are immediate.

Theorem 5.4. There is a constantd such that it isNP-hard to approximateINDEPENDENT SET-d to
within ρ2.

Theorem 5.5. Letρ3 = (9/2− 3/(2ρ2)), then there is a constantd such that it isNP-hard to approxi-
mateVERTEX COVER-d to withinρ3.

Exercise 8. Show that there are constantsρ > 1 andd such that it isNP-hard to approximate the
VERTEX COVER problem forconnectedgraphs with maximum degree at mostd.

5.4 STEINER TREE and METRIC STEINER TREE

In the STEINER TREE problem, we are given an edge-weighted graphG and a subsetS ⊆ V (G) of
“terminals.” The problem is to find a minimum weight subtree ofG which spans the terminals. Note that
the tree may contain non-terminal vertices, which are also commonly referred to as Steiner vertices. In
the METRIC STEINER TREE problem,G is a complete graph and the edge weights satisfy the triangle
inequality.

Exercise 9.Prove that STEINER TREEcan be approximated to withinρ iff M ETRIC STEINER TREEcan
be approximated to withinρ.

Now, we show an inapproximability result for METRIC STEINER TREE with a reduction from
bounded degree VERTEX COVER. Let G = (V,E) be aconnectedgraph with maximum degree at
mostd, where|V | = n and|E| = m. LetH be the complete graph onn+m vertices labeled byV ∪E.
To avoid confusion, we use[v] and [u, v] to denote vertices ofH, for all v ∈ V and(u, v) ∈ E. The
edge weights ofH are defined as follows. For any two verticesu, v ∈ V , ([u], [v]) has weight1. For any
edge(u, v) ∈ E, ([u], [u, v]) and([v], [u, v]) has weight1. All other edges have weights2. Elements of
E are the terminals. Clearly,H is an instance of METRIC STEINER TREE.

Lemma 5.6.G has a vertex cover of sizek iff H has a Steiner tree of costm+ k − 1.

Proof. Necessity is obvious. For sufficiency, supposeH has a Steiner treeT of costm+ k− 1. We first
show that there is another Steiner tree of the same cost which uses only edges of weight1.

• If there is an edge([u], [v, w]) of weight2, replace it by two edges([u], [v]) and([v], [v, w]).

• If there is an edge([u, v], [v, w]) of weight2, replace it by([u, v], [v]) and([v], [v, w]).

• The last case is the most interesting, which is when there is an edge([u, v], [x, y]) of weight 2.
If we remove this edge fromT , then the setE of vertices ofH is partitioned into two partsE1

andE2 which are contained in two connected components ofT . Note that[u, v] belongs to one
connected component and[x, y] belongs to the other. SinceG is connected, there are two edges in
E1 andE2 which share a vertex. Denote these two edges by(r, s) and(s, t). Now, add back toG
two edges([r, s], [s]) and([s], [s, t]), we get a connected subgraph ofG with the same cost as the
original Steiner tree.

10

Repeat the above steps untilT no longer contains a weight-2 edge. The Steiner vertices inT form a
vertex cover ofG with size at mostk.

Theorem 5.7. There is a constantρ3 > 1 such that it isNP-hard to approximateMETRIC STEINER

TREE to withinρ3.

Proof. By the previous lemma, ifG has a vertex cover of size at most2n/3, then there is a Steiner tree
for H of cost at mostm+ 2n/3− 1.

Conversely, supposeG has no vertex cover of sizeρ2 · 2n/3, thenH has no Steiner tree of cost
m+ ρ2 · 2n/3− 1. We want aρ3 for which

m+ ρ2 · 2n/3− 1 ≥ ρ3(m+ 2n/3− 1),

which is equivalent to

m ≤ 2(ρ2 − ρ3)
3(ρ3 − 1)

n+ 1.

SinceG has maximum degree at mostd, we knowm ≤ d
2n. Thus, anyρ3 for which

d

2
≤ 2(ρ2 − ρ3)

3(ρ3 − 1)

would be sufficient. Elementary computations confirm that

ρ3 =
d+ 4ρ2/3
d+ 4/3

works. Note thatρ3 > 1 as desired.

Historical Notes

The reader is referred to excellent recent surveys by Feige [14], Trevisan [36], and Johnson [] for the
topic of hardness of approximation. See also a recent paper on Dinur’s proof of thePCP theorem [] and
Wigderson’s report at ICM 2006 [].

The idea of checking proofs probabilistically dates back to the seminal papers oninteractive proofs
(IP) by Goldwasser, Micali and Rackoff [21], and Babai [6]. Later development led to the notion ofmulti-
prover interactive proof systems(MIP) introduced by Ben-Or, Goldwasser, Kilian, and Wigderson [10].
MIPs in turn led to the idea of a probabilistic verifier with oracle access (PCP verifier) originated in the
paper by Fortnow, Rompel and Sipser [17].

Restrictions on resources of the proof system, of the verification process in particular, led to other
interesting concepts and ideas. The first of such papers was that by Babai, Fortnow, Levin and Szegedy
[7], who gave attention to the computation time of the verifier and the proof size.

The idea that a prover can convince someone the validity of a statement without that someone reading
the entire proof has numerous practical and theoretical implications and applications, especially in the
area of cryptography and security. Zero-knowledge proofs [21], for instance, is a perfect example of
this theme. The reader is referred to [20] for a sample discussion of these ideas. Lovász [31] gave an
introduction with interesting every-day’s examples on this topic.

In 1990, the landmark work by Feige, Goldwasser, Lovász, Safra, and Szegedy [15] connects prob-
abilistic proof systems and the inapproximability ofNP-hard problems. This has become known asthe
PCP connection. A year later, the PCP theorem - a very strong characterization ofNP - was proved
with the works of Arora and Safra [4], Arora, Lund, Motwani, Sudan, and Szegedy [3]. A plethora of

11

inapproximability results using the PCP connection follow, some of them are optimal [2, 12, 13, 16, 22,
24,25,32].

Following Madhu Sudan’s lectures at ISA, we can summarize the results on PCP into several phases
as follows.

Phase 0:

NP = PCP[0,poly]
NP = PCP[log,poly]

Phase 1:

NEXP = PCP[poly,poly] [8,9]

NP ⊆ PCP[poly(log),poly(log)] [7]

Phase 2:

NP = PCP[O(log), o(log)] [4]

NP = PCP[O(log), O(1)], [3] – The PCP Theorem

Phase 3:

SAT ∈ PCP[(1 + ε) log, O(1)], ∀ε > 0 [35]

NP = PCP1−ε,1/2+ε[O(log), 3], ∀ε > 0 [25]

NP = PCP1,1/2+ε[O(log), 3], ∀ε > 0 [23]

P = PCP1,1/2[O(log), 3] [30]

The results in phase 3 are pretty amazing. In a sense, P and NP are onlyε apart, and thus the NP
characterizations in [23, 25] are optimal! It is also interesting to note that the last result by Karloff and
Zwick [30] made use ofsemi-definite programmingmethods introduced by Goemans and Williamson
[19] to design approximation algorithms for the MAX -CUT and satisfiability problems.

The class MAX SNP was formulated in Papadimitriou and Yannakakis [34]. The8/7-approximation
algorithm for MAX -E3SAT follows the line of Yannakakis [38], who gave the first4/3-approximation
for MAX -SAT. A 2-approximation for MAX -SAT was given in the seminal early work of Johnson [29].
Johnson’s algorithm can also be interpreted as a derandomized algorithm, mostly the same as the one
we presented. Details on derandomization can be found in the standard texts by Alon and Spencer [1],
and Motwani and Raghavan [33]. Later, Karloff and Zwick [30] gave an8/7-approximation algorithm
for MAX -3SAT based on semidefinite programming. This approximation ratio is optimal as shown by
Håstad [25, 26]. In fact, by designing special purpose PCPs for different problems, Håstad was able
to obtain optimal non-approximability results for MAX -EkSAT for all k ≥ 3, MAX L INEQ, and SET

SPLITTING.

References
[1] N. A LON AND J. H. SPENCER, The probabilistic method, Wiley-Interscience Series in Discrete Mathematics and Opti-

mization, Wiley-Interscience [John Wiley & Sons], New York, second ed., 2000. With an appendix on the life and work
of Paul Erd̋os.

[2] S. ARORA, L. BABAI , J. STERN, AND Z. SWEEDYK, The hardness of approximate optima in lattices, codes, and
systems of linear equations, J. Comput. System Sci., 54 (1997), pp. 317–331. 34th Annual Symposium on Foundations
of Computer Science (Palo Alto, CA, 1993).

[3] S. ARORA, C. LUND, R. MOTWANI , M. SUDAN , AND M. SZEGEDY, Proof verification and the hardness of approxi-
mation problems, J. ACM, 45 (1998), pp. 501–555. Prelim. version in FOCS’92.

12

[4] S. ARORA AND S. SAFRA, Probabilistic checking of proofs: a new characterization of NP, J. ACM, 45 (1998), pp. 70–
122. Prelim. version in FOCS’92.

[5] G. AUSIELLO, P. CRESCENZI, G. GAMBOSI, V. KANN , A. MARCHETTI-SPACCAMELA, AND M. PROTASI, Complex-
ity and approximation, Springer-Verlag, Berlin, 1999. Combinatorial optimization problems and their approximability
properties, With 1 CD-ROM (Windows and UNIX).

[6] L. BABAI , Trading group theory for randomness, in STOC ’85 (Providence, Rhode Island), ACM, New York, 1985,
pp. 421–429.

[7] L. BABAI , L. FORTNOW, L. A. L EVIN , AND M. SZEGEDY, Checking computations in polylogarithmic time, in Proceed-
ings of the twenty-third annual ACM symposium on Theory of computing, ACM Press, 1991, pp. 21–32.

[8] L. BABAI , L. FORTNOW, AND C. LUND, Nondeterministic exponential time has two-prover interactive protocols, Com-
put. Complexity, 1 (1991), pp. 3–40.

[9] L. BABAI , L. FORTNOW, AND C. LUND, Addendum to: “Nondeterministic exponential time has two-prover interactive
protocols” [Comput. Complexity1 (1991), no. 1, 3–40], Comput. Complexity, 2 (1992), p. 374.

[10] M. BEN-OR, S. GOLDWASSER, J. KILIAN , AND A. W IGDERSON, Multiprover interactive proofs: How to remove
intractability assumptions, in STOC ’88 (Chicago, Illinois), ACM, New York, 1988, pp. 113–131.

[11] P. CRESCENZI ANDV. K. (EDS.), A compendium of NP-optimization problems. http://www.nada.kth.se/

[12] I. D INUR AND S. SAFRA, On the hardness of approximating label-cover, Inform. Process. Lett., 89 (2004), pp. 247–254.

[13] U. FEIGE, A threshold ofln n for approximating set cover (preliminary version), in Proceedings of the Twenty-eighth
Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), New York, 1996, ACM, pp. 314–318.

[14] , Approximation thresholds for combinatorial optimization problems, in Proceedings of the International Congress
of Mathematicians, Vol. III (Beijing, 2002), Beijing, 2002, Higher Ed. Press, pp. 649–658.

[15] U. FEIGE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA, AND M. SZEGEDY, Interactive proofs and the hardness of ap-
proximating cliques, J. ACM, 43 (1996), pp. 268–292. Prelim. version in FOCS’91.

[16] U. FEIGE AND J. KILIAN , Zero knowledge and the chromatic number, J. Comput. System Sci., 57 (1998), pp. 187–199.
Complexity 96—The Eleventh Annual IEEE Conference on Computational Complexity (Philadelphia, PA).

[17] L. FORTNOW, J. ROMPEL, AND M. SIPSER, On the power of multi-prover interactive protocols, Theoret. Comput. Sci.,
134 (1994), pp. 545–557.

[18] M. R. GAREY AND D. S. JOHNSON, Computers and intractability, W. H. Freeman and Co., San Francisco, Calif., 1979.
A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences.

[19] M. X. GOEMANS AND D. P. WILLIAMSON , Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming, J. Assoc. Comput. Mach., 42 (1995), pp. 1115–1145.

[20] O. GOLDREICH, Modern cryptography, probabilistic proofs and pseudorandomness, vol. 17 of Algorithms and Combi-
natorics, Springer-Verlag, Berlin, 1999.

[21] S. GOLDWASSER, S. MICALI , AND C. RACKOFF, The knowledge complexity of interactive proof systems, SIAM J.
Comput., 18 (1989), pp. 186–208.

[22] V. GURUSWAMI, J. HÅSTAD, AND M. SUDAN, Hardness of approximate hypergraph coloring, SIAM J. Comput., 31
(2002), pp. 1663–1686 (electronic).

[23] V. GURUSWAMI, D. LEWIN, M. SUDAN , AND L. TREVISAN, A tight characterization of NP with 3 query PCPs, in
IEEE Symposium on Foundations of Computer Science, 1998, pp. 8–17.

[24] J. HÅSTAD, Clique is hard to approximate withinn1−ε, Acta Math., 182 (1999), pp. 105–142.

[25] , Some optimal inapproximability results, in STOC ’97 (El Paso, TX), ACM, New York, 1999, pp. 1–10 (electronic).

[26] , Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859 (electronic).

13

[27] D. S. HOCHBAUM, ed.,Approximation Algorithms for NP Hard Problems, PWS Publishing Company, Boston, MA,
1997.

[28] S. HOORY, N. LINIAL , AND A. W IGDERSON, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.),
43 (2006), pp. 439–561 (electronic).

[29] D. S. JOHNSON, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974), pp. 256–278.
Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).

[30] H. KARLOFF AND U. ZWICK, A 7/8-approximation algorithm for MAX 3SAT?, in Proceedings of the 38th Annual IEEE
Symposium on Foundations of Computer Science, Miami Beach, FL, USA, IEEE Press, 1997.

[31] L. L OVÁSZ, Interactive proofs: a new look at passwords, proofs, and refereeing.
http://research.microsoft.com/users/lovasz/popular.htm.

[32] C. LUND AND M. YANNAKAKIS , On the hardness of approximating minimization problems, J. Assoc. Comput. Mach.,
41 (1994), pp. 960–981.

[33] R. MOTWANI AND P. RAGHAVAN , Randomized algorithms, Cambridge University Press, Cambridge, 1995.

[34] C. H. PAPADIMITRIOU AND M. YANNAKAKIS , Optimization, approximation, and complexity classes, J. Comput. System
Sci., 43 (1991), pp. 425–440.

[35] A. POLISHCHUK AND D. A. SPIELMAN, Nearly-linear size holographic proofs, in STOC ’94 (Montral, Qubec, Canada),
ACM, New York, 1994, pp. 194–203.

[36] L. TREVISAN, Inapproximability of combinatorial optimization problems, Tech. Rep. 65, The Electronic Colloquium in
Computational Complexity, 2004.

[37] V. V. VAZIRANI , Approximation algorithms, Springer-Verlag, Berlin, 2001.

[38] M. YANNAKAKIS , On the approximation of maximum satisfiability, J. Algorithms, 17 (1994), pp. 475–502. Third Annual
ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992).

14

