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Hardness of Approximation

1 Overview

To date, thousands of natural optimization problems have been showiN® Heard [11,18]. Designing
approximation algorithms [5, 27, 37] has become a standard path to attack these problems. For some
problems, however, it is eveNP-hard to approximate the optimal solution to within a certain ratio.
Approximating the \ERTEX COVER to within 1.3606 is NP-hard. In an extreme case, the TSP problem
cannot even be approximated at all, since deciding if there is a TSP tour of eigtfreadyNP-hard
(the HAMILTONIAN CIRCUIT problem).

Until 1990, few inapproximability results were known. To prove a typical inapproximability result
such as M\x-CLIQUE is not approximable to within some ratiaunlessP = NP, a natural direction is
to find a reduction from somBNP-complete problem, sa§SAT, to MAX-CLIQUE which satisfies the
following properties:

¢ given a3CNF formulag, the reduction constructs in polynomial-time a graph
o there is some polynomial-time computakibeesholdt such that

— if ¢ is satisfiable, thetr; has a clique of size at leaist
— if ¢ is not satisfiable, the@', does not have any clique of sizé- or more.

If M AX-CLIQUE is r-approximable, then one can use thiapproximation algorithm, along with the
reduction above, to decide if3CNF formulag is satisfiable. We simply run the approximation algorithm
onGy. If the answer ig/r or more, theny is satisfiable; otherwise is not.

Current techniques for provilyP-hardness seem inadequate for this kinda-producingeduc-
tions. Intuitively, the reason is that non-deterministic Turing Machines are sensitive to small changes:
the accepting computations and rejecting computations are not very far from one another (no gap). In
1990, the landmark work by Feige, Goldwasser, &s®; Safra, and Szegedy [15] connects probabilistic
proof systems and the inapproximability DfP-hard problems. This has become knowntlas PCP
connection. A year later, the PCP theorem - a very strong characterizat®R efwas proved with the
works of Arora and Safra [4], Arora, Lund, Motwani, Sudan, and Szegedy [3]. A plethora of inapprox-
imability results using the PCP connection follow, some of them are optimal. See the historical notes
section for more related references.

In the rest of this note, we will present some basic techniques of proving hardness of approximation.
It will require a good deal of familiarity with the area to go beyond the basics presented here and to prove
more sophisticated inapproximability results.

2 Basic notions

2.1 NPO Problems, Approximation Algorithms, and Approximation Ratios

We begin with several definitions laying out a framework to analyze inapproximability results.



Definition 2.1 (NPO problems). Following Johnson [], aiNP optimization problenil has five compo-
nents:

1. A setly of instances which are polynomial time recognizable, i.e. we can tell in polynomial time
if an inputz is an instance ofl or not.

2. For each instance € Iy, there is a polynomial time recognizable $&t:) of feasible solutions
to z, i.e. we can tell in polynomial time if a solutignis a feasible solution of instanaeor not.

3. A polynomial-time computable cost function ggsthich assigns a positive integer to each (in-
stance, feasible solution) pair.

4. An indication of whethefl is amaximizatioror aminimizationproblem.

5. A polynomial time algorithm which gives some feasible solution to each instan@éis is to
ensure that the problem hasmepolynomial time approximation algorithm.

For each instance, letII(z) denote the optimal objective value for

As an example, fofl = MAX-CLIQUE, x is some grapltz, S(G) is the set of all cliques of7, ¢
gives the size of the clique, the problem is a maximization problem, and we can give a single vertex as a
feasible solution to the problem.

Definition 2.2 (Problem size). We will assume that the encodings of instancesrassonablen the
sense described in Garey and Johnson []. More often than not, instead of the actual instantesize
use a parameter within a polynomial of|z| to describe the size. For instance, we often use the number
n of vertices to denote the size of a graph, even though in most cases the encoding @ @uijesits.

In most cases; is the size of the underlying set describing the instance

Definition 2.3 (Approximation algorithm). An approximation algorithmd is a polynomial time algo-
rithm that computes the objective value of some feasible solution to an instaridé. Let A(z) denote
the value that returns.

Definition 2.4 (Approximation ratio). An approximation algorithnd for I1 hasapproximation ratio
wa(n) if, for all instancese of I,

< A(z) <II(z), for maximization problems

and
II(z) < A(x) < pa(n)I(x), for minimization problems

3 Probabilistically checkable proofs

A languagel is in NP if there is a Turing machine which can verify in polynomial time if a strinig in

L, given that the Turing machine is provided with a good “witness stringHence NP can be viewed

as the class of languages which have an interactive proof system in which there is a polynomial time
verifier V' (Turing machine) and an infinitely powerful prover(an oracle) who, on in put, provides

V with a proofr to convincel” thatz belongs tal.. Henceforth, verifiers implicitly are polynomial time
Turing machines. Ifc is in L, then there will be a proof for which V' accepts. This means that the
proof system iomplete Whenz is not in L, the prover will not be able to fodV into acceptingr.

This means that the proof systenssund



A good example is a proof system for the satisfiability problem. Given a boolean formtiee
prover can give/ a truth assignment. Then,V only needs to verify thad is evaluated to be RUE
undera. In this scheme} has to read the entire proof to be convinced th# satisfiable. If verifiers
are only allowed to read a small piece of the proof, is it possible to design a proof system so that we can
be fairly confident (with a certain threshold on error probability) that the verification is correct?

To be more precise, by “fairly confident” we mean that, wheis in L the verifier accepts with
high probability (completeness); anduifis not in L, then the probability that the verifier acceptss
upperbounded by some small soundness probability 1. The probability is taken over the random
choicesl made, assuming there is some internal random source. HEnmu®y becomes probabilistic
Turing machine.

These ideas can be formalized wittpeobabilistically checkable proofPCP) system. Aproof is
a binary string. An(r, ¢)-restricted verifierl” is a probabilistic polynomial time verifier which uses at
mostr random bits and query the proof in at mgsplaces § bits). Bothr andgq are functions of the
input size.

Given a proofr, a random string?, and an input, let

1 if V acceptse
0 if V rejectsz.

V(x; R) = {
Define the acceptance probability Bfgiven the proofr as follows.
ACC[V™(z)] := PE{O@V”(:{:; R) =1].
The maximum acceptance probability is an important measure, which is defined as
ACC[V ()] := max{ACC[V™(z)]}.

Lete,s : NT — [0,1] such tha0 < s(n) < ¢(n) < 1, Vn € NT. The clasPCP, ;[q, r] consists
of all languaged., for each of which there is afr, ¢)-restricted verified” which satisfies the following
conditions:

e Completenesslf x € L, then there is some proafsuch thal” acceptse with probability at least
¢(|z|). In other words,
ACCIV (z)] > c(|z|),Vx € L.

e Soundnesslf x ¢ L, thenV acceptse with probability less thar(|z|), no matter what the proof
is. In other words,
ACC[V (2)] < s(|z|),Vx ¢ L.

For the sake of brevity, we writPCP]r, ¢] instead ofPCP, 1[r,q]. There are important parameters
2

of a PCP system other than the randomneand the query complexity. We will define them later as

needed.

Exercise 1. Let poly(n) = [J;, O(n*). Prove that

NP = PCPJ0,poly(n)] (1)
NP = PCP[O(logn),poly(n)] (2)

Exercise 2. Prove that
PCP[O(logn),O(1)] = PCP[O(logn), poly(n)]. (3)



Exercise 3. The clasRP consists of all languagels which have a polynomial time randomized algo-
rithm A satisfying the following properties:

e if x € L, thenA acceptse with probability at least /2,
e if x ¢ L, thenA does not accept.

The class cdR P consists of all languagés for which L € RP. Prove that
PCP[poly(n),0] = co-RP. (4)

One of the major results in theoretical computer science of the past two decades is the PCP theorem,
which gives a robust characterization of the clhEB.

Theorem 3.1 (PCP Theorem).NP = PCP[O(logn), O(1)].

This theorem helps us devise gap-producing reductions as alluded to in Section 1. We illustrate this
point via several inapproximability results presented in the next section.

4 Direct reductions from PCP

4.1 Satisfiability problems

Our first interesting result is that Mk-E3SAT is a MAXSNP problem. (MXxSNP is the class of
problems which have a constant ratio approximation algorithm, but no approximation scheme unless
P=NP.) In an earlier lecture, we have shown that there & &approximation algorithm for Mx -
E3SAT. Thus, it remains to show that the problem cannot be approximated to within some constant
p > 1,unlessP = NP.

Theorem 4.1. There is some constapt > 1 such that it iSNP-hard to approximatéM AX-E3SATto
within p;.

Proof. The general strategy was outlined in Section 1. ConsidemM@Rycomplete languagé. The
reduction works by constructing in polynomial time a CNF formglawith m clauses, given an input
x. The formulap, satisfies the following properties.

x€L = MAX-E3SAT(p,) =m,
x¢ L = MAX-E3SAT(p,) <m/pi. (5)

Obviously, if we could find such a reduction themd-E3SAT is not approximable to withip, , estab-
lishing MAX-E3SAT membership in the class MaxSNP.

By the PCP theorem, is sonte, ¢)-restricted verifiel/ recognizingL, wherer = O(lgn) andq is
a fixed constant. We will usg to constructp, for each input string:. Note that, wheV is adaptive the
length of the proof does not need to be more t&9. WhenV is non-adaptive, the corresponding bound
is ¢2". In both casesl’ only needs polynomial-size proofs. Let= 2”17 > ¢2" be the upperbound on
proof sizes.

We constructp,, as follows. Creatg variableszy,...,z,, so that each truth assignment to these
variables corresponds to a proof presentetf td~or each random string of lengthr, there are some
combinations of the answers 16's queries that mak& accept. We can model this fact by a CNF
formulayr on{z,...,x,} such thatpr(x) = TRUEff V accepts the proat. The formulayr can
be constructed in polynomial time by simulatifgon the random string? and generating all possible
combinations of answers. Singeés a constant, there are orily answer combinations.



For example, suppose the queries ask for hits 5,9 of the proofs, and’ rejectsz if the answers
are either(1,0,0,0), (0,1,0,1), or (1,1, 1,0), then we can assign

ch(X):(fl\/a:4\/x5\/x9)/\(a:1VE4\/x5\/:?:9)/\(§c1\/@\/:?:5\/3:9).

Each clause says that the corresponding combination mimekold. Thus, the conjunction of these
clauses says thaf acceptse.

By adding a few auxiliary variables, we can conveit into E3-CNF form. This conversion is
standard. For exampléy; + x2 + x3 + x4 + x5) iS equivalent to

(x1+z2 +y1)(J1 + 23 + y2) (Y2 + x4 + x5).

We create at most clauses of siz8 for each of the original? clauses. The resultingtCNF formula
@R has at mos#29 clauses.
Finally, lety, = [[; ¢r, theny, itself can be constructed in polynomial time since there are only
polynomially many random stringB. (This is why the randomness 6f(logn) is crucial.) Letm be
the total number 08-CNF clauses op.., thenm = r(|z|)¢2? = O(log n)q29.

e Whenz € L, there is a proofr (a truth assignment) such thidtalways accepts. Hence, under this
assignmend,, is satisfiable.

e Whenz ¢ L, setm; = z; for all i and feedr as a proof toV. In this caseV only accepts
with probability < 1/2. Hence, at least half of ther are not satisfiable by any truth assignment.
For eachyppg that is not satisfied, there is at least one clause that is not satisfied. The number of
non-satisfied clauses is thus at legst|z|). Consequently,

1 1
MAX-E3SAT(y;) < m — §T(|:IZD =m(l — M)

q2q+1

Letpr = Har—

and the proof is completed. O

Exercise 4. Show thalPCP[O(logn),O(1)] € NP.

It is interesting to know that the converse of the above theorem is also true, i.e. one can theoretically
prove the PCP theorem by showing a constant-ratio inapproximability resultAcr-E3SAT.

Theorem 4.2. If there is a reduction satisfyin¢b) from an NP-complete languagé., thenNP =
PCP[O(logn),O(1)].
Proof. By Exercise 4PCP[O(logn), O(1)] € NP. Conversely, to show th&P C PCP[O(logn), O(1)]
we design an(r, q)-verifier V for L. This can be used as dn, q)-verifier for any other language
L’ € NP, sinceL’ reduces td_.

Consider any input string. Use the assumed reduction to construgct The strategy foi/ is to pick
a constant numbek of clauses ofp, at random, ask the prover for the values of (at n3dgtvariables
in these clauses, and accept iff all the clauses are satisfied. Cleddg perfect completeness. When
x ¢ L, more thanl — 1/p;)m clauses are satisfied. The probability thaaccepts is at most

((1—12p1)m)
(%)
(m—m/p)m —m/pr—1)...(m—m/p1 — k+1)
mm—1)...(m—k+1)

 (mepin)

- 1-1/n)"

ACC[V (z)] <




Whenk > lg(p1/(p1 — 1)), ACC[V(z)] < (1 —1/p1)¥ < 1/2. Sincem = poly(|z|), the number of
random bitsl” used isO(lgm) = O(lg|z|), and the number of query bits needed is at¥dg(p1 /(p1 —
1)), which is a constant. O

4.2 MAX CLIQUE and the FGLSS reduction

The PCP connectiorrefers to the use of a PCP characterizatio™Nd® to show hardness results for
optimization problems. This connection was first noticed via a reduction from interactive proofs to
MAXx-CLIQUE in the pioneering work of Feige, Goldwasser, bse, Safra, and Szegedy [15]. Since
then, the reduction is referred to as the FGLSS reduction.

Consider ar(r, g)-restricted verifiel/” for a languagd. € PCP_ (g, r]. On inputz atranscriptis
atupleT = (R, Q1,a1,...,Qq,aq) such thaiR| = r is a random string, th€; anda; are the queries
and corresponding answers tiatmade and received, in that order, given the random strings an
accepting transcriptf V' acceptse after seeing the answers.

Two transcriptsl” = (R, Q1,a1, . ..,Qq,aq) andT’ = (R, Q' a}, ..., Qy, a;) areconsistenwith
each other ifQ; = Q;- = q; = a;. Vi, j, i.e. if for the same questions we get the same answers.

On an inpute which V' tries to verify if z is in L or not, we will construct a grapfy',, in polynomial
time such that

r€L = MAX-CLIQUE(G,) > %]VM
r¢ L = MAX-CLIQUE(G,) < %]Vx].

Let G, = (V,, E,), whereV,, represents all accepting transcriptsiofon = and E, consists of edges
connecting consistent pairs of transcripts. It follows g < 2"t9. We can add dummy vertices so
that|V,| = 2719,

Note that the first questiolr asks is deterministic, knowing and R. Then, knowing the first
answer the second question is known, etc. Thus, the questions in a transcript are in fact redundant for the
encoding of transcripts. Consequently, the vertice§ pfvith the same random strin§ form a cluster
of independent vertices.

If z € L, then there is some proafsuch that ACCY " (x)] > c. Consider the set of all transcripts
whose answers come from then all these transcripts are consistent with each other. In other words,
they form a clique. The fact that ACE[ (x)] > ¢ implies that the clique size is at leag!’. Hence,

MAX-CLIQUE(G,) > 2" = Q—Cqm\.

Conversely, from a clique af, of sizek, say, we can construct a proofor which V™ accepts with
probability k/2". The proof is constructed by taking the union of the answers of the transcripts from the
clique, adding dummy answers if they were not part of any transcript in the clique. Consequently, when
x ¢ L there cannot be a clique of siz&” or more, otherwise there would be a praofor which V™
accepts with probability at least Hence, in this case

MAX-CLIQUE(G,) < s2" = 2—Sq|Vgc|.

Theorem 4.3. It is NP-hard to approximatéM AX CLIQUE to within any constant ratio.

Proof. By the PCP theorem, we have(@(Ign), O(1))-restricted verified” for any choserdNP-hard
languageL. The reduction above implies thatA® CLIQUE cannot be approximated to withjm =
¢/s = 1/(1/2) = 2. By repeating the verifier independenttytimes and accepting iff alk rounds
accept the input, we can redulés soundness exponentially down1¢2*. Given any constant, setk
to be slightly more thatg p. Now the approximation ratio lowerbound is at least O



4.3 Reductions using better verifiers

Hastad [25, 26] showed the following remarkable result.

Theorem 4.4 (Hastad). For everye > 0,
NP = PCP, _, ,, [O(logn),3].

Furthermore, there is a verifier for SAT which works as follows. It computes three query positiohs
and a bitb. Then, it accepts the input iff

mi+7mj+m, =0 (mod 2).
One can easily use his result to prove quite a few strong inapproximation results.

Exercise 5. The MAX EELINEQ-2 problem is the problem of finding a solution which satisfies the most
number of equations among the givenlinear equations oveF,, where each equation has exadtly
variables. From BEstad’s theorem, show thatA® E3LINEQ-2 cannot be approximated to within any
constant less thal unlessP = NP.

5 Hardness reductions among problems

5.1 Gap-preserving reductions

As we have seen from the previous section, to show thafMi’shard to approximate some maximiza-
tion problemlI to within some ratig(n) we do the following. Start from sonl§P-complete language
L, find a polynomial time reduction frorh to IT such that: given an input the reduction constructs in
polynomial time an instancg, of II satisfying

e z € LimpliesII(I;) > ¢(I,), and
o v ¢ LimpliesII(I,) < t(I;)/p(|L|),

wheret(I,,) is some threshold function on the instadgePut it another wayt is NP-hard to distinguish
between instances of whose optimal value is at least/) and instances dfl whose optimal value is
less thant(I)/p(|1]). For example, for the Mx CLIQUE problemI, = G,, t(Gz) = |Vz|/24, and

P(|Ga]) = 2.
Similarly, if IT is a minimization problem the reduction should satisfy

e z € LimpliesII(I;) < (), and
o z ¢ LimpliesII(I;) > p(|I;|)t(Iz).

Just the usual reductions amoNgP-complete problems, we do not need to do reductions directly
from somePCP. The notion ofgap preservingeductions plays the role of Karp reductions among
NP-complete problems. To define a gap preserving reduction figro I1,, we need to know if each
of them is a maximization or minimization problem.

There are four cases which are completely similar. We will consider only one caselhere:a
maximization andI; is a minimization problem. A gap preserving reduction frimto II, comes with
four functionsty, p1, t2, p2. Given an instancé; of ITy, the reduction constructs in polynomial time an
instancels of I, such that

o f Hl(Il) > tl(Il), thenHQ(IQ) < tg([g)



o if Hl(Il) < mh([l), thenHQ(Ig) > p(|12‘)t2(12)

The following theorem is straightforward.

Theorem 5.1. Suppose there is a reduction frofy to IT, as described above. If it iNP-hard to
distinguish between instancesldf with optimal value at least; and instances dfi; with optimal value
less thart; /p1, then it isSNP-hard to distinguish between instanced bf with optimal value at most
and instances dfls with optimal value more thapsts; in particular, it is NP-hard to approximatél,
to within ps.

Exercise 6. Suppose we know that Mx E3LINEQ-2 cannot be approximated to withn- e for anye >
0, unlessP = NP. Give a gap-preserving reduction to show that ME3SAT cannot be approximated
to within 8/7 — ¢, for anye > 0.

Hint: the equation: + y + z = 0 (mod 2) is equivalent to the conjunction of foBCNF clauses

(ZVyvVa)AN(xVgVz)A(zVyVZI)AN(ZVYVZ).

5.2 MAaAXx-3SAT with bounded occurrences

Definition 5.2 (Expanders). A A-expanderis a k-regular graphG for which & is a constant, and
I[S, S]| > A|S] for all subsetsS C V(G) where|S| < |[V(G)]/2.

For our purposes, we will need the following fatkiere is anng such that, for eachh > ng a 1-
expander withn vertices can be constructed in polynomial tinEhere is some technical discrepancies
between the above statement and the actual result; however, the difference is neglectable.) The reader is
referred to the recent survey [28] for more information on expander graphs and their various applications.

The problem M\x-3SAT-d is MAX-3SAT restricted to formulas where each variable appear (as
itself or as its negation) in at modtclauses. For reasons to be clear later, we will need the result that
Max-3SAT-d cannot be approximated to a certain constant ratio.

Theorem 5.3. There is a constang, > 1 and a constant! such that it iSNP-hard to approximate
MAX-3SAT-d to within p. More specifically, given anECNF formulay with m clauses, there is a
polynomial time reduction which construct8&NF- formulay’ with m’ clauses such that

e If MAX-E3SAT(p) = m, thenMAX-3SAT-d(¢') = m/; and,
e if MAX-E3SAT(p) < m/p1, thenMAX-3SAT-d(¢’) < m’/ps.

Proof. Letzq, ..., x, be the variables ap. First, repeat each clause pfng times so that each variable
appears in at least, clauses. Call the resulting formuda which hasmng clause<’;, Cy, . . ., Crun, -

Create one variablg;; if z; appears (as itself or as its negation) in claG$eLet ¢’ be the formula
obtained by replacing; in C; by y;;. For example, itC; = (z1 + Z3 + z7), then the clause becomes
(y1; + U35 + y7;) in¢’. Thus,y)’ hasmng clauses and each variahjg appears only once. The clauses
of ¢/ are calledsatisfiability clauses

DefineS; = {j | z; € C;}. For each variable; that appears;; > ng times in, let G; be a
k-regular1-expander with the set of vertices. By the aforementioned faofy; can be constructed in
polynomial time.

To this end, let); be the formula which is the conjunction of clauses of the fogyH- 55/ ) (Vi +vij ).
for each edgé¢y, j') in the graphG;. The key point to notice is that botly;; + 7;;+) and (ys; + yijr) if
and only ify;; = y;;-. Note that, each variablg; appeargk times inv;; and that there are;k clauses
in v;. These clauses are callednsistency clauses



Finally, let
o =9 A /\ ;.

=1

Then,¢’ hasm’ = mng + k>, ni = m(no + 3k) clauses.
Claim 1. If MAX-E3SAT(¢) = m, then Max-3SAT-d(¢’) = m/.

The proof is immediate. Consider any truth assignment that satisfiessigny,;; = x; for all
JES;
Claim 2. If MAX-E3SAT(y) < m/p1, then MaX-3SAT-d(¢') < m'/pa, wherep, = ;1030

A truth assignment fop' is consistentf, for each, all y;; are assigned with the same boolean value.
To prove that claim, we first show the following crucial fact: there is an optimal truth assignmesit for
which is consistent.

Consider any optimal truth assignment ot Suppose there is sonigfor which not ally;; are
assigned with the same boolean value. £gt= {j | v;; = TRUE} andS; = {j | y;; = FALSE}. Then
S¢ U Sy is a partition of the vertices af;. WLOG, assuméS;| < |S¢|. The number of edge), ;)
with j € Sy andj’ € S; is at least|S;|. For each such edgg, j), exactly one of the two clauses
(vij + i) and (75 + y45) is satisfied by the current truth assignment. Now, invert the values gf;all
for j € S;. Then, in the conjunctiof\"_; ¢; we gain at leasitS;| more satisfied clauses. We might turn
some clauses i’ from being satisfied to being unsatisfied, however. Fortunately, the number of such
clauses is at mos$b;|. Consequently, the new truth assignment satisfies as many clauses as the previous
one. Repeat this process for anfor which not ally;; are assigned with the same boolean value. We
finally end up with a consistent truth assignmentgar

Now, consider any optimal and consistent truth assignment'fdetz; = y;; for any; € S;. Then,
the fraction of satisfied clauses gfis equal to the fraction of satisfied clauseg/6f In other words, if
an optimal truth assignment fgr cannot satisfyn/p; clauses, then an optimal truth assignmentgor
cannot satisfy
,no/p1 + 3k

no + 3k

clauses ofy'. O

mno/p1 + 3km =m

Exercise 7. Show that there are constants> 1 andd such that it iSNP-hard to approximate Mx -
E3SAT-d to within p.

5.3 INDEPENDENTSET and VERTEX COVER on bounded degree graphs

The problem \ERTEX COVER-d is the VERTEX COVER problem restricted to graphs with maximum
degree at most. Similarly we define NDEPENDENT SET-d.

Consider any3-CNF formulap with m clauses. By repeating some literal in any clause of giz&
we can assume that the formula i3-ENF. Consider the grap&’, constructed as follows. For each
clause(l, + Iy + I.) in ¢, there corresponds a triangle in the graph. Thus, the grapBrhasrtices.
The edges of the triangles are calldduse edgesNext, connect:; andz; for all occurrences af; and
Z;. These edges are callednsistency edgesince each variable appears in at mbstauses, for each
vertex of G, there are incident clause edges and at mdst 1 incident consistency edges. Thus,
has maximum degreé—+ 1.

It is straightforward to see that

MAX-3SAT-d(¢) = INDEPENDENTSET-(d+ 1)(Gy)
MAX-3SAT-d(¢) = 3m — VERTEXCOVER-(d+ 1)(G,)

Consequently,



o if MAX-3SAT-d(p) = m, then NDEPENDENTSET-(d + 1)(G,) = m and VERTEX COVER-
(d+1)(Gy) = 2m = 2(3m).

o if MAX-3SAT-d(¢) < m/ps, then NDEPENDENT SET-(d + 1)(G,) < m/pe and VERTEX
COVER-(d+ 1)(Gy) > (3 —1/pa)m = (9/2 — 3/(2p2))2(3m).

The following theorems are immediate.

Theorem 5.4. There is a constand such that it iSNP-hard to approximatd NDEPENDENT SET-d t0o
within po.

Theorem 5.5. Letps = (9/2 — 3/(2p2)), then there is a constartsuch that it iSNP-hard to approxi-
mateV ERTEX COVER-d to within ps.

Exercise 8. Show that there are constanis> 1 andd such that it iSNP-hard to approximate the
VERTEX COVER problem forconnectedyraphs with maximum degree at mast

5.4 STEINER TREEand METRIC STEINER TREE

In the STEINER TREE problem, we are given an edge-weighted grépland a subses C V(G) of
“terminals.” The problem is to find a minimum weight subtreezoivhich spans the terminals. Note that

the tree may contain non-terminal vertices, which are also commonly referred to as Steiner vertices. In
the METRIC STEINER TREE problem,G is a complete graph and the edge weights satisfy the triangle
inequality.

Exercise 9. Prove that SEINER TREE can be approximated to withimiff M ETRIC STEINER TREE can
be approximated to withip.

Now, we show an inapproximability result for 8#RIC STEINER TREE with a reduction from
bounded degree BRTEX COVER. Let G = (V, E) be aconnectedyraph with maximum degree at
mostd, where|V| = n and|E| = m. Let H be the complete graph on+ m vertices labeled by U E.
To avoid confusion, we use| and[u, v] to denote vertices off, for all v € V and(u,v) € E. The
edge weights off are defined as follows. For any two vertiees € V, ([u], [v]) has weightl. For any
edge(u,v) € E, ([u], [u,v]) and([v], [u, v]) has weightl. All other edges have weighgs Elements of
E are the terminals. Clearlyy is an instance of MTRIC STEINER TREE.

Lemma 5.6. G has a vertex cover of sizZeiff H has a Steiner tree of cost + k — 1.

Proof. Necessity is obvious. For sufficiency, suppdsdas a Steiner tre€ of costm + k£ — 1. We first
show that there is another Steiner tree of the same cost which uses only edges oflweight

e Ifthere is an edg€[ul, [v, w]) of weight2, replace it by two edgedu], [v]) and([v], [v, w]).
e If there is an edgé€[u, v], [v, w]) of weight2, replace it by([u, v], [v]) and([v], [v, w]).

e The last case is the most interesting, which is when there is an(¢dgs, [z, y]) of weight 2.
If we remove this edge frorf’, then the sefr of vertices ofH is partitioned into two partd;
and E» which are contained in two connected component® .ofNote that[«, v] belongs to one
connected component afd y| belongs to the other. Sin&gis connected, there are two edges in
E; and B> which share a vertex. Denote these two edgeg-by) and(s, ¢t). Now, add back ta@~
two edgeq[r, s, [s]) and([s], [s, t]), we get a connected subgraph@fvith the same cost as the
original Steiner tree.
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Repeat the above steps urifilno longer contains a weigl2t-edge. The Steiner vertices i form a
vertex cover of7 with size at moskt. O

Theorem 5.7. There is a constants > 1 such that it iSNP-hard to approximatéM ETRIC STEINER
TREEto within ps.

Proof. By the previous lemma, ifr has a vertex cover of size at mast/3, then there is a Steiner tree
for H of cost at mosin + 2n/3 — 1.

Conversely, suppos€ has no vertex cover of size, - 2n/3, then H has no Steiner tree of cost
m+ p2 - 2n/3 — 1. We want gps for which

m+p2-2n/3—12> ps(m+2n/3 —1),

which is equivalent to
2(p2 — p3)
= 3(ps—1)

SinceG has maximum degree at magtwe knowm < gn. Thus, anyps for which

n+ 1.

2(p2 — p3)
3(ps — 1)

would be sufficient. Elementary computations confirm that

d
— <
5=

d+4py)3
P8 = T 4/3

works. Note thaps > 1 as desired. O

Historical Notes

The reader is referred to excellent recent surveys by Feige [14], Trevisan [36], and Johnson [] for the
topic of hardness of approximation. See also a recent paper on Dinur's proof€tRetheorem [] and
Wigderson’s report at ICM 2006 [].

The idea of checking proofs probabilistically dates back to the seminal papéreaactive proofs
(IP) by Goldwasser, Micali and Rackoff [21], and Babai [6]. Later development led to the notionltf
prover interactive proof systen(slIP) introduced by Ben-Or, Goldwasser, Kilian, and Wigderson [10].
MIPs in turn led to the idea of a probabilistic verifier with oracle access (PCP verifier) originated in the
paper by Fortnow, Rompel and Sipser [17].

Restrictions on resources of the proof system, of the verification process in particular, led to other
interesting concepts and ideas. The first of such papers was that by Babai, Fortnow, Levin and Szegedy
[7], who gave attention to the computation time of the verifier and the proof size.

The idea that a prover can convince someone the validity of a statement without that someone reading
the entire proof has numerous practical and theoretical implications and applications, especially in the
area of cryptography and security. Zero-knowledge proofs [21], for instance, is a perfect example of
this theme. The reader is referred to [20] for a sample discussion of these ide@sz L[8%] gave an
introduction with interesting every-day’s examples on this topic.

In 1990, the landmark work by Feige, Goldwasser, &sw; Safra, and Szegedy [15] connects prob-
abilistic proof systems and the inapproximabilityd§-hard problems. This has become knowritees
PCP connection. A year later, the PCP theorem - a very strong characterizald® efwas proved
with the works of Arora and Safra [4], Arora, Lund, Motwani, Sudan, and Szegedy [3]. A plethora of
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inapproximability results using the PCP connection follow, some of them are optimal [2,12, 13, 16, 22,
24,25, 32].

Following Madhu Sudan’s lectures at ISA, we can summarize the results on PCP into several phases
as follows.

Phase O:
NP = PCPJ0, poly]
NP = PCP]log, poly]
Phase 1:
NEXP = PCP|poly,poly] [8,9]
NP C PCPIpoly(log), poly(log)] [7]
Phase 2:
NP = PCP[O(log),o(log)] [4]
NP = PCP[O(log),O(1)], [3]— The PCP Theorem
Phase 3:

SAT € PCP[(1+e¢) log,0(1)], Ve >0 [35]

NP = PCP,_.,/5;[O(l0g),3], Ve > 0 [25]

NP = PCPy;),[0(l0g),3], Ve > 0 [23]
P = PCP,,[0(log),3] [30]

The results in phase 3 are pretty amazing. In a sense, P and NP areapdyt, and thus the NP
characterizations in [23, 25] are optimal! It is also interesting to note that the last result by Karloff and
Zwick [30] made use ofemi-definite programmingnethods introduced by Goemans and Williamson
[19] to design approximation algorithms for theaM-CuT and satisfiability problems.

The class Mx SNP was formulated in Papadimitriou and Yannakakis [34]. §feapproximation
algorithm for Max-E3SAT follows the line of Yannakakis [38], who gave the fi#gB-approximation
for MAX-SAT. A 2-approximation for MAx-SAT was given in the seminal early work of Johnson [29].
Johnson’s algorithm can also be interpreted as a derandomized algorithm, mostly the same as the one
we presented. Details on derandomization can be found in the standard texts by Alon and Spencer [1],
and Motwani and Raghavan [33]. Later, Karloff and Zwick [30] gaves Ai-approximation algorithm
for MAX-3SAT based on semidefinite programming. This approximation ratio is optimal as shown by
Hastad [25, 26]. In fact, by designing special purpose PCPs for different problessaddwas able
to obtain optimal non-approximability results foraM-EkLSAT for all £ > 3, MAX LINEQ, and &T
SPLITTING.
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