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LP Relaxation, Rounding, and Randomized Rounding

1 Cut Problems

1.1 Max-flow min-cut

A flow networkis a directed grap® = (V, E) with two distinguished verticesandt called thesource
and thesink respectively. Moreover, each are,v) € E has a certaicapacityc(u, v) > 0 assigned to
it.

Let X be a proper non-empty subsetlof Let X := V — X, then the paif X, X) forms a partition
of V, called acutof D. The set of arcs oD going from X to X is called aredge cubf G, denoted by
(X, X].

A source/sink cubf a networkD is a cut(S, T') with s € S andt € T'. (Note that, implicitly? = S.)
Given a source/sink cufs, T'), thecapacityof the cut, denoted by cég, T') is the total capacity of edges
leaving.S:

cap S, T) := Z c(u,v).
ueSweT,
(u,v)EE
A cut with minimum capacity is called minimum cut

A flowfor a networkD = (V, E) is a functionf : E — R which assigns a real number to each edge

(u,v). Aflow f is called afeasible flowif it satisfies the following conditions:

() 0< f(u,v) < c(u,v),V(u,v) € E. These are theapacity constraints
(i) Forallv € V — {s,t}, the total flow intov is the same as the total flow out af
Yo fww)y= Y flvw). (1)
u:(u,v)EE w:(v,w)EE
These are called tHeow conservation law

Thevalueof a flow f for D, denoted by vdlf), is the net flow out of the source:

val(f) .= Y flsu)— D flvs).

u:(s,u)eE vi(v,8)EE

The evasiveanax-flow min-cutheorem states that the value of a maximum flow is equal to the capac-
ity of a minimums, ¢-cut. This theorem can be shown using linear programming duality as follows. Let
P be the set of all paths fromto ¢. Let fp denote the flow value sent along pdthlt is easy to see that
the following linear program is equivalent to the maximum flow problem:

max Z fp

Pep
subjectto »  fp<c., Ve€E, 2
P:ecP
fp>0 VPcP.



The dual of this program is

min Z Cele
ecE
subjectto ) "y, >1, VPP, )
ecP
Ye >0, Vee E.

Note that, eacld1-solution to (3) corresponds to a set of edges whose removal discanfrent ¢ and
vice versa. In particular, eacht-cut corresponds to @l-solution of (3). Thus, to prove the max-flow
min-cut theorem, we only need to show that there is an optimal integral solution to (3). (An optimal
integral solution must be @l -solution.)

Exercise 1.Show that the linear program (3) can be solved in polynomial time with the ellipsoid method.

We will use randomized rounding to obtain such an integral solutionytdte an optimal solution
to (3). Interprety’ as the length of edge For each vertex, let d(s,v) be the distance from to v,
i.e. the length of a shortest path frofrio v according to the distance functigri. Then, for each arc
e = (u,v) we haved(s,v) < d(s,u) + y:. For each radius > 0, let B(r) be the set of vertices of
distance at most from s. Note thatt ¢ B(r) if » < 1.

Now, choose- uniformly at random fronj0, 1). Consider the cut’ = [B(r), B(r)] and an arbitrary
arce = (u,v). The arce belongs taC' iff d(s,u) <r < d(s,v). Thus,

d(s,v) B d(s,u) < y:.
1-0

Prole € C] =

Thus,
E[cafC)] = > c.Profe € C] < ) " cey; = costy™).
eck eclE
Thus, there must be at least one (integral)€with capacity at most cogt™*). That is the cut that we
are looking for.
| personally found this result to be rather surprising (and obviously elegant). The argunaent is
typical of the probabilistic method. Let us delve a little more technically into this argument.

e LetC be the set of alk, t-cuts of the form{B(r), B(r)], for » € [0,1). Even though number of
possible values of is infinite, there are only finitely many such cuts. By choostrat random,
each cuC € C has a probability Prdld’] of being chosen. (This is a slight abuse of notation, since
ProlC] is often used to denote the probability that evéhholds.) Then, caf@’) is a random
variable defined on this finite sample space. We have, by definition of expectation,

p = E[cap(C)] = ) _ cap(C) Prol{C].
cec
Thus, there must be a cdt with capacity at mosi.. (Recall the basic probabilistic method
discussed at the beginning of this note.)

e Secondly, I'd like to explain the relation
E[cap(C)] = ) _ ¢ Prolje € C]
eclk

that we used earlier. This fact does not come directly from the definition of expectation. For any
C €, letI. be theO1-random variable indicating # is in C' or not, namely

1
Iez{ eEC’.
0 ow.



Then, Probl, = 1] = Prole € C]. Moreover,

capC) = Z Ce = Zcele.

ecC ecE

By linearity of expectation

ElcadC)] =E[) cele] = ccE[l] = ) cc Prolje € C].

ecE ecF eclR

This is a very typical argument of the probabilistic method! The nice thing about the linearity of
expectation is that it holds whether or not the varialilesre independent.

e The above two bullets are not surprising. What is surprising is the following relation:

>~ cafC) ProfC] = costy™).

cecC

The characteristic vectgro of any s, t-cut C' is a feasible solution to the linear program. Thus,
cosly™) < costyc) = capC).

Hence,

> " cagC) ProC] > )~ costy*) ProtC] = costy™).

cec cec
Equality holds iff capC'’) = cos{y*) whenever Prole’] # 0. In other words, all cuts i€ are
minimum cuts! That | found surprising! Can we prove this fact some other way? The following
exercise aims to explain this.

Exercise 2. Let y* be an optimal solution to (3). Let be any number if0,1). Show that the cut
[B(r), B(r)] has capacity co&y™) without using probabilistic arguments. From this exercise, it is clear
that we can find a minimum cut in polynomial time. Just take the cut corresponding=ta0, for
example. Hint: complementary slackness.)

Exercise 3. This exercise shows a stronger result than that of the previous ong. heetny vertex of
the polyhedron corresponding to (3). Show that

1. yo = d(s,v) — d(s,u) for any edges = (u, v) of the graph,

2. and thaty is a convex combination of characteristic vectors of membe& dfonclude thay
must be a characteristic vector of a cutin

Exercise 4. There is another common way to formulate the min-cut problemzl @étdicates ifv € S
of the s, t-cut (S, T'), andy,, indicates if edgéu, v) belongs to the cut. We need a constraint to ensure
thatz, = 1, 2, = 0 impliesy,, = 1. As usual, this constraint can be writtenias < z, — x,. The

ILP is then
min Z CuvYuv
ecFE
subjectto yu, > xy — Xy, Yuv € E, 4)

rs =12, =0,
Ty, Yup € {0,1}, Yuv € E,Yv € V.



Relaxation gives the following LP:

min E CuvYuv

ecFE
subjectto vy, > xy — T, Yuv € E, (5)
rs=1,2; =0,
Ty, Yuo => 0, Yuv € E,Vv e V.

Show that (5) has an optimal integral solution using the randomized rounding metHod: (ick
r € (0,1] atrandom. Se$ = {v | z, > r}.)

Exercise 5. Explain how to use the min-cut procedure for directed graphs (which we have developed) to
find a minimums, ¢-cut in an undirected graph.

Exercise 6 (Multiway cut). The MUuLTIWAY CcUT problem is a natural generalization of the min-cut
problem. Given an undirected graghwith positive edge capacities. There &re 2terminalsty, .. ., i

and we would like to find a minimum capacity subset of edges whose removal disconnects the terminals
from each other. Formulate an ILP for this problem in a similar fashion to (3).

(&) Write down the LP relaxation of the ILP.

(b) Show that the LP has the half-integrality property, i.e. each vertex of the corresponding polyhedron
is half-integral.

(c) Use the randomized rounding method to show that, given any feasible sgjutiothe LP, there
is an integral solution with capacity at mastos{y).

(Hint: pick r € [0,1/2] at random. Consider the ball, () of radiusr around each termina).
Choose the cuf’ = | J,[B:,, By,]. Show that the expected capacity®@fs at most cos(y).)

(d) Derandomize the above procedure and give a modification to yield a determiglistiQ/k)-
approximation algorithm for the MLTIWAY CUT problem.

1.2 Multiway cut (TBD)
2 Satisfiability Problems

A conjunctive normal forn{(CNF) formula is a boolean formula om variablesX = {z1,...,z,}
consisting ofn clauses”y, . . ., C,,. Each clause is a subsetlivérals, which are variables and negations
of variables. A clause can be viewed as the sum (optR)eof the literals. A clause is satisfied by a truth
assignment : X — {TRUE, FALSE} if one of the literals in the clause TRUE.

For integerst > 2, ak-CNF formulais a CNF formula in which each clause is of size at nigstn
Ek-CNF formulais a CNF formula in which each clause is of size exaktly

Given a CNF formula, the Max -SAT problem is to find a truth assignment satisfying the maximum
number of clauses ip. If ¢ is of the form X-CNF, for Xe {k, Ek}, then we get the corresponding
MAX-XSAT problems.

Exercise 7. Show that the problem of deciding i2aCNF formula is satisfiable is in P, but Ak -2SAT
is NP-Hard (i.e. its decision versionI§P-complete).

Exercise 8. State the decision version of M -E3SAT and show that it iNNP-complete.



2.1 Max-E3SAT
Theorem 2.1. There is ar8/7-approximation algorithm foMAX-E3SAT.

Proof. Lety be an B-CNF formula withm clause<”, . . ., C,. LetS,, be the random variable counting
the number of satisfied clauses@by randomly setting:; independently to b&RUE with probability
1/2. Since the probability that a clauég is satisfied is7/8, by linearity of expectation 5, = 7m/8.
This number clearly is within a fact@y/8 of the optimal value. Hence, this simple randomized algorithm
achieves (expected) approximation ratjy. We can derandomize this algorithm by a method known as
conditional expectationThe basic idea is as follows.

Consider a fixed € [n]. Letay,...,a; € {TRUE, FALSE} bek boolean values. Let’ be a formula
obtained by setting; = a;, i < j, and discarding alt clauses that are already satisfied. Then, it is easy
to see that

E[Scp | Tr; = Qq, 1 < ) < ,IC] = E[S@/] +c.

Hence, givenuy, ..., a; we can easily compute[E, | z; = a;, 1 < i < k| in polynomial time.
Now, for k£ > 1, notice that

E[Sw\x,:az,lgzgk—l]

1 1
= §E[S¢|xi:ai,1§i§k‘—1, xk:TRUE]—I-iE[S@]xi:ai,lSigk—l, x, = FALSE]

The larger of the two expectations on the right hand side is at le&st|&; = a;, 1 < ¢ < k—1]. Hence,
we can setr; to beTRUE or FALSE one by one, following the path that leads to the larger expectation, to
eventually get a truth assignment which satisfies as many claus¢S g@s-E7m/8. O

2.2 Max-SAT
2.2.1 The straightforward randomized algorithm

Consider the VBIGHTED MAX-SAT problem in which a formul& consists ofm clause<, ..., C,,
weightedwy, ..., w, € Z*. Letz,...,z, be the variables ant} denote the length of claugg;.
Suppose we follow the previous section and set each variable twbe with probability 1/2, and
derandomized this algorithm. Then, what is the approximation ratio?
Let I; denote the random variable indicating the evigtif is satisfied, i.e.

I - 1 if C; is satisfied

7710 otherwise.
Let S, be the cost (weight) of a random assignment ard(¢) be the cost of an optimal assignment,
thenSy = >, w;I;. We have

m

E[Sg] = > w; Profl; = 1] = "w;(1—(1/2)%) > %ij > %OPT(@-
j=1

J=1 J=1

In other words, with derandomization using the method of conditional expectation, we can get a deter-
ministic approximation algorithm for Mx -SAT with approximation rati@.

Exercise 9. Consider the following algorithm for Mx-SAT: let r be any truth assignment and be
its complement, i.e7’(z;) is the negation of (z;). Compute the cost of bothandr’, then output the
better assignment. Show that this i8-approximation algorithm.



Exercise 10.Let[F; = {0,1}. Arithmetics overF; is done modul®. Consider a system of: lin-

ear equations om variables ovel,. The LINEAR EQUATIONS OVER Fy problem is the problem of

finding an assignment to variables that satisfies as many equations as possible. Give a randomized algo-
rithm for this problem with approximation ratizy then derandomize it using the method of conditional
expectation.

2.2.2 Arandomized algorithm with a biased coin

The approximation rati@ as done above is not nearly as goo&As we had for Max-3SAT. Perhaps
this is due to the fact that Mx-SAT is not as symmetrical as Ak-3SAT. Thus, our “rounding proba-
bility” should not bel /2. This observation suggest us to set each variabl&tE with some probability
q to be determined. Due to symmetry (of a variable and its negation), we only need to cgnsid¢p
(thusg > 1 — q).

Letn; andp; be the number of negated variables and non-negated variables in €lauben

E[Sy] = > w;(1—q"(1—q)").
j=1

To get a good approximation ratio, we want all fffe(1 — ¢)?7 to be as small as possible. This product
is large for small clauses, especially the clauses with only one single literal. Let us consider them first.

e If singleton clauses contain no negations of variables, then it is easy to se@tfat- ¢)7 <
max{1 — ¢, ¢*}, for all j. To minimize themax, we pickq such thatl — ¢ = ¢?, i.e. ¢ ~ 0.618.
In this case, we have

1
E[Sy] > &OPT(@-
(Note that this is slightly better than the rafig

e If there is noi such that botH z;} and{z;} are clauses, then by swapping labels of samand
Z;, we can obtain the same bound.

e The situation comes down to the case when there:aseich that bot{ z;} and{z;} are clauses.
Firstly, note that two clauses of the forfm;} (or of the form{z;}) can be combined into one
(whose weight is the total weight). Consequently, we can assume tfedz;) does not appear
in two singleton clauses. Secondly,{if;} and{z;} are both clauses, we can assume that the
weight of thex;-clause is at least the weight of thgclause, otherwise we swapandz;. Thirdly,
assume the rest of the singleton clauses contain only non-negated variables. Define

N ={j | C; ={z;}, for somei}.

Then,
OPT(¢) < ij — Z wj
Jj=1 JEN
And,
E[Spl = > wi(1—q¥(1—qP)+ Y wi(l—q)>q) w;j—q» wj;>q-OPT(¢)
JEN JjEN j=1 JEN



2.2.3 Arandomized algorithm with different biased coins based on linear programming

The above randomized algorithms do not deal well with small-size clauses. In this section, we make
use of a linear programming formulation of the problem to determine the rounding probability of each
variable.

An integer program for Mx-SAT can be obtained by considering the followibityvariables: (a)
y; = 11iff x; = TRUE; and (b)z; = 1iff C} is satisfied. We then have the following integer program

max W1zl + W Zn
subjectto > yi+ > (1—w) >z,  Vje[m]
iz €C5 1:2;,€C;

yi,z; € {0,1}, Vi€ [n],j € [m]

and its relaxed LP version

max W12l + -+ WpZp
subjectto > i+ > (1-w) >z, Vje[m],
i:x;€C; :2;€C;

Ofylgl VZ'G[TL},
0<z <1 Vjeml.

Obtain an optimal solutiolty*, z*) for the linear program, and roung = TRUE with probability .
Basically, the values; tells us how muchr; leans toward'RUE of FALSE. Then,

E[Ss) = Y wi|1—= ] =) ] v
j=1

i:wiECj i'iiEC‘
B L
. S e Y
;€05 :2;€C;
> w; | 1—
- Z ’ lj

v
lizgE
E
N
=
\
\

v

Y

m )
min <1— 1—} );wjz]*

> (1 - i) OPT(¢).

(We have used the fact that the functipfx) = (1 — (1 — z/1;) is concave when € [0, 1], thus it lies
above the segment through the end points.) We have just proved




Theorem 2.2. The LP-based randomized rounding algorithm above has approximationergi@o— 1).

Note thate /(e — 1) ~ 1.58, while1/¢q ~ 1/0.618 ~ 1.62. Thus, this new algorithm is slightly better
than the one with a biased coin.

Exercise 11.Describe how to use the method of conditional expectation to derandomize the algorithm
above.

Exercise 12.Let g(y) be any function such that— 47Y < g(y) < 4¥=1 vy € [0,1]. Suppose we
set eachr; = TRUE with probability g(y;), where(y*, z*) is an optimal solution to the linear program.
Show that this strategy givesid3-approximation algorithm for Mx-SAT.

2.2.4 The “best-of-two” algorithm

Note that the rounding algorithm in the previous section works fairly well if clauses are of small sizes.
For instance, it; < 2 for all 5, then the approximation ratio would have bagiil — (1 —1/2)?) = 4/3.

On the other hand, the straightforward randomized algorithm works better when clauses are large. It just
makes sense to now combine the two: run both algorithms and report the better assignn@barmat

Sq% (which are random variables) denote the corresponding costs. Then, it is easy to see the following

E[maX{Sdl), 535}]

v

E[(Sdl, + S;)/Q]

v
<
i:
—_

S

<
VY
DN | —
N

—

|
2|~
N———

+

N =
Y

—_

|
| —

—_

|
S| =
—_
S~
k)N*
~

> = w;z;

> —OPT(¢).

Thus, the BEST-OF-TWO algorithm has performance ratig3.

3 Covering Problems

In the WSC problem, we are given a collectiSn= {Si,...,S,} of subsets ofm] = {1,...,m},
whereS; is of weightw; € Z*. The objective is to find a sub-collectigh= {S; | i € J} with least
total weight such thdt), ; S; = [m]. The corresponding integer program is

min w1T1 + -+ WpTy
subjectto »  a;>1, Vi€ [m],
j:S;21

zj € {0,1}, Vj€[n].

And, relaxation gives the following linear program:

min wW1T1 + -+ WpTy
subjectto > ;> 1, Vi€ [m],
j:SjBi

0<z; <1 Vje[nl.

Suppose we have an optimal solutiohof the LP. To obtainc”, a sensible rounding strategy is to round
7 to 1 with probabilityz7, namely

PI‘OqQU}4 =1] = 7j.



It follows that .
Elcos(x™)] = wja} = oPT(LP).
7=1
What we really want is to find the probability that' is feasible and cog”?) < p - oPT. If this
probability at least some positive constant, theis an approximation ratio of this algorithm. (If the

probability is small, we can run the algorithm independently a few times.) We can estimate the desired
probability as follows.

Prol x* is feasible and cost) < p - oPT]
= 1 — ProH x* is not feasibleor cos{x”) > p - oPT|
> 1 — Proldx* is not feasible— Prodcost(x*) > p - opT].

Let us first estimate the probability that! is not feasible. Consider any element [m], and
suppose the inequality constraint correspondingiso

T+ Fxy > 1
We will refer to this as théth constraint. Then, the probability that this constraint is not satisfiecby

IS
k—(x% 4+t )\" NN 1
* * J J

Thus, Profx# is not feasiblg < m/e. This is a very bad bound sinee is large. We can get a better
bound by setting;;4 to be0 with lower probability. Lett be a number to be determined, andﬁjfét: 0
probability (1 — x;f)t. (This is equivalent to running the previous strategy independémtdynds, and
setz4' = 0 only whenz#' = 0 in all rounds.) In this case,

Proldx“ does not satisfy constraiiit< (1/e)".

Thus, the probability that is not a feasible solution is at most(1/e)t. Whent is (logarithmically)
large,m(1/e)t < 1.

Secondly, we estimate the probability that ¢ast) > p - OPT. In one round, we have shown that
E[cos(x?)] = oPT(LP) < oPT. Hence, witht rounds we have [Eos{x*)] < t - oPT. Markov
inequality gives

E[cos(x4 t-oPT t
Probcos(x?) > p-opPT < [costx")] < = -
p - OPT p-OPT p
Remark 3.1. Let X be a random variable iR*, anda be a positive number, Markov inequality says
that ProlhX > a] < @

Consequently,

Prot{xA is feasible and co@t"‘) < p-0OPTIP)] >1—m(1/e)' — E.

We can pickt = 6(Igm) andp = 4t so thatl — m(1/e)t — % > 3. In other words, this algorithm
gives a solution with approximation rati®(lgm) with probability at leasti/2. We can then run the
algorithm a few times until the solution is feasible. The expected humber of r@naisl the expected
approximation ratio i®©(lg m).

Exercise 13.Suppose we run the above randomized rounding algorithm with only one round (instead of
t rounds). Prove that, with positive probability the resultiitysatisfies at least half of the constraints at
cost at mosO(oOPT(IP)).

Exercise 14.Give a randomized rounding algorithm for th&@ERAL COVER problem with approxi-
mation ratioO(lg m).



Appendix

3.1 Probability theory

Lemma 3.2 (Linearity of Expectation). If X1, ..., X,, aren random variables, then for anyconstants
A1y ...y Qp,
Elar X1+ + anXp] = a1E[X1] + -+ - + anE[X,].

Many deviation bounds are useful in designing randomized algorithms.

Theorem 3.3 (Markov’s Inequality). If X is a random variable taking only non-negative values, then

foranya > 0
E[X
ProfX >a] < [a | (6)

A slightly more intuitive form of (6) is

1

ProdX > au] < —.
a

()

Markov's inequality is possibly the only possible estimate when there’s no further information about the
random variable. If we do now its variance, for instance, we can show stronger bound.

Theorem 3.4 (Chebyshev’s Inequality).If X is a random variable with meam and variances2, then
foranya > 0,

[\

Probf| X — | > a] < %2 8)

Again, there is a more intuitive way of writing (8):
1
Prob[|X — u| > ac] < ol 9

A twice-differentiable functionf is convexif f”(x) > 0 for all «, andconcavewhen f”(x) > 0 for
all z. A linear function is both convex and concave. Thus, the following theorem implies linearity of
expectation.

Theorem 3.5 (Jensen’s inequality) Let f(z) be a convex function, then

E[f(X)] = f(E[X]). (10)
If fis concave, the inequality is reversed. The same result holds for multiple random variables.
The most useful deviation bounds are variations of Chernoff bounds.

Theorem 3.6 (Chernoff Bound (Lower Talil)). Let X4, ..., X, be a set of mutually independent Bernulli
random variables, wher@rodX; = 1] = p;, andProdX; = 0] = 1 — p;, for 0 < p; < 1. Let
Sp=X1+--+ X,,andp = E[S,] =p1 + -+ + pn. Then, forany < e < 1,

e ¢ ’ 2
— He/2 11
) < ()
Theorem 3.7 (Chernoff Bound (Upper Tail)). Let X, . . ., X, be a set of mutually independent Bernulli
random variables, wher@roX; = 1] = p;, andProjX; = 0] = 1 — p;, for0 < p; < 1. Let
Sp,=X1+---+X,,andp = E[S,] = p1 + -+ + pn. Then,

ProbS < (1 —e)u] < <

10



1. foranye > 0,

ete H
2. fore > 2e — 1,
ProlS > (1 +e)u] < 27, (13)
3. for0 <e<2e—1, ,
Prods > (14 e)u] < e #</4, (14)
4, and lastly, forl) < e < 1, ,
ProbS > (14 €)u] < e #</3, (15)

3.2 The Probabilistic Method

The basic idea of the probabilistic method is the following: to show that some object with a certain
property exists, under suitable settings we can just show that it exists with positive probability. The
classic reference [1] is now a “must-read” for Computer Science students.

To make this idea a little more precise, consider a finite probability sjad® show that there is a
memberw of Q2 having some propertf, we only have to show that Prpbbhas property’] > 0.

To illustrate this idea, consider a tennis tournamEnthere there are players, each player plays
every other player, and the matches’ results are already recorded. Thus, there are(t@tajt;ssible
tournaments. Tournamefit is said to have property if for every set ofk players there is another
player who beats them all. We will prove that,(]j)(l — 27k)n=k < 1, then there is a tournament an
players having property.

Let Q2 be the set of al() tournaments, where we choose a random tournament by letting player
i beat playerj with probability 1/2. Consider a randomly chosen tournam@nfrom 2. We want to
estimate the probability that has propertys,. For any subsek’ of k players, letd be the event that
no other player beats all membersiof Tournamenfl” has propertys;, iff Ax does not hold, for every
K. The probability that a particular player (not ki) does not beat all members &f is (1 — 27%).
Hence, Propd ] = (1 — 27%)"~*, Consequently,

UAx
K

In other words, the probability that none of the evesis occurs is positive, concluding our proof.
Another technique that is very commonly used in the probabilistic method is the following idea. Let

X be any real random variable by i.e. X : Q@ — R. Letu = E[X]. Then, there must be anwith

X(w) < u, and similarly there must be an with X (w) > p. Again consider a tournamefit on n

players as defined above.Hamiltonian circuiton this tournament is a permutatiarof players, where

7(i) beatsr (i + 1), for all ¢, circularly. Let$2 be the probability space of all random tournaments. For

eachT’ € Q, let X (T") be the number of Hamiltonian circuits @t For each permutation of n players,

let . be the random variable indicatingrifdefines a Hamiltonian circuit dfi, namely

Prob

_ (" _ o—kyn—k
g;Prot{AK]_<k>(1 27 kynh < 1.

I - 1 if m(i) beatsr (i 4 1), circularly, for alli
" ]10 otherwise.

Then,

1
E[l;] = Prol, = 1] = o

11



Thus, by linearity of expectation,

E[X]=E [Z Iﬂ] = Ell] = %

We can now conclude that there is at least one tournaffievith at leastz Hamiltonian circuits, and
there is at least one tournamdhtvith at most24 Hamiltonian circuits.

3.3 Inequalities

In algorithm analysis, when upper or lower bounding an expression we often need to “turn” a sum into a
product or vice versa. In that case, the following standard inequality is extremely useful.

Theorem 3.8 (Arithmetic-Geometric means inequality). For any non-negative numbets, ..., a,,

we have
ar+---+ay

n
There is also the stronger weighted version. wf. . . , w, be positive real numbers whetg + - - - +
wy, = 1, then

> (al .. an)l/”_ (16)

wiay + - -+ wpap > ay’toapn. a7)

Equality holds iff alla; are equal.

Talking about classic inequalities, one cannot ignore Cauchy-Schwarz and Jensen inequalities.

Theorem 3.9 (Cauchy-Schwarz inequality).Letas, ..., a, andby, ..., b, be non-negative real num-
bers. Then, )
(Z aibi> < (Z a3> (Z b?) . (18)
=1 =1 =1
Theorem 3.10 (Jensen inequality) Let f(x) be a convex function on an interv@l, b). Letzy, ..., z,

be points in(a, b), andw, . .., w, be non-negative weights such that + - - - + w,, = 1. Then,

f <Z wiévz') < szf(xz) (19)
i=1 i=1

If f is strictly convex and if all weights are positive, then equality holds iftalhire equal. Wherf is
concave, the inequality is reversed.

Historical Notes

Recent books on approximation algorithms include [2,7,11, 13]. See [1, 12] for randomized algorithms,
derandomization and the probabilistic methods. For inequalities, the classic text [5] is a must-have.

The 8/7-approximation algorithm for Mx-E3SAT follows the line of Yannakakis [14], who gave
the first4/3-approximation for Mix-SAT. A 2-approximation for M\x-SAT was given in the seminal
early work of Johnson [8]. Johnson’s algorithm can also be interpreted as a derandomized algorithm,
mostly the same as the one we presented. The LP-based randomized algorithm and the best-of-two
algorithm for Max-SAT are due to Goemans and Williamson [4]. The algorithm with a biased coin is
due to Lieberherr and Specker [10].

Later, Karloff and Zwick [9] gave aR/7-approximation algorithm for Mx -3SAT based on semidef-
inite programming. This approximation ratio is optimal as shown Bgteld [6]. The conditional expec-
tation method was implicit in Efas and Selfridge [3].

12



References

(1]

(2]

(3]

(4]

5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

N. ALON AND J. H. SPENCER The probabilistic methqdWiley-Interscience Series in Discrete Mathematics and Opti-
mization, Wiley-Interscience [John Wiley & Sons], New York, second ed., 2000. With an appendix on the life and work
of Paul Erds.

G. AUSIELLO, P. ORESCENZ| G. GAMBOSI, V. KANN, A. MARCHETTI-SPACCAMELA, AND M. PROTASI, Complex-
ity and approximationSpringer-Verlag, Berlin, 1999. Combinatorial optimization problems and their approximability
properties, With 1 CD-ROM (Windows and UNIX).

P. ERDOS AND J. L. SELFRIDGE, On a combinatorial gamel. Combinatorial Theory Ser. A, 14 (1973), pp. 298-301.

M. X. GOEMANS AND D. P. WILLIAMSON, New%-approximation algorithms for the maximum satisfiability problem
SIAM J. Discrete Math., 7 (1994), pp. 656—666.

G. H. HARDY, J. E. ULTTLEWOOD, AND G. POLYA, Inequalities Cambridge University Press, Cambridge, 1988. Reprint
of the 1952 edition.

J. HASTAD, Some optimal inapproximability result;n STOC '97 (El Paso, TX), ACM, New York, 1999, pp. 1-10
(electronic).

D. S. HocHBAuUM, ed., Approximation Algorithms for NP Hard ProblemBWS Publishing Company, Boston, MA,
1997.

D. S. JoHNSON Approximation algorithms for combinatorial problends Comput. System Sci., 9 (1974), pp. 256-278.
Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).

H. KARLOFF AND U. ZwICK, A 7/8-approximation algorithm for MAX 3SATia Proceedings of the 38th Annual IEEE
Symposium on Foundations of Computer Science, Miami Beach, FL, USA, IEEE Press, 1997.

K. J. LIEBERHERR ANDE. SPECKER Complexity of partial satisfactigrd. Assoc. Comput. Mach., 28 (1981), pp. 411
421.

E. W. MAYR AND H. J. RROMEL, eds.,Lectures on proof verification and approximation algorithrasl. 1367 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998. Papers from the Workshop on Proof Verification and
Approximation Algorithms held at Schlo3 Dagstuhl, April 21-25, 1997.

R. MOoTwWANI AND P. RAGHAVAN, Randomized algorithm€ambridge University Press, Cambridge, 1995.
V. V. VAZIRANI, Approximation algorithmsSpringer-Verlag, Berlin, 2001.

M. YANNAKAKIS , On the approximation of maximum satisfiabilily Algorithms, 17 (1994), pp. 475-502. Third Annual
ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992).

13



