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LP Relaxation, Rounding, and Randomized Rounding

1 Cut Problems

1.1 Max-flow min-cut

A flow networkis a directed graphD = (V,E) with two distinguished verticess andt called thesource
and thesink, respectively. Moreover, each arc(u, v) ∈ E has a certaincapacityc(u, v) ≥ 0 assigned to
it.

Let X be a proper non-empty subset ofV . Let X̄ := V −X, then the pair(X, X̄) forms a partition
of V , called acut of D. The set of arcs ofD going fromX to X̄ is called anedge cutof G, denoted by
[X, X̄].

A source/sink cutof a networkD is a cut(S, T ) with s ∈ S andt ∈ T . (Note that, implicitlyT = S̄.)
Given a source/sink cut(S, T ), thecapacityof the cut, denoted by cap(S, T ) is the total capacity of edges
leavingS:

cap(S, T ) :=
∑

u∈S,v∈T,
(u,v)∈E

c(u, v).

A cut with minimum capacity is called aminimum cut.
A flow for a networkD = (V,E) is a functionf : E → R which assigns a real number to each edge

(u, v). A flow f is called afeasible flowif it satisfies the following conditions:

(i) 0 ≤ f(u, v) ≤ c(u, v),∀(u, v) ∈ E. These are thecapacity constraints.

(ii) For all v ∈ V − {s, t}, the total flow intov is the same as the total flow out ofv:∑
u:(u,v)∈E

f(u, v) =
∑

w:(v,w)∈E

f(v, w). (1)

These are called theflow conservation law.

Thevalueof a flowf for D, denoted by val(f), is the net flow out of the source:

val(f) :=
∑

u:(s,u)∈E

f(s, u)−
∑

v:(v,s)∈E

f(v, s).

The evasivemax-flow min-cuttheorem states that the value of a maximum flow is equal to the capac-
ity of a minimums, t-cut. This theorem can be shown using linear programming duality as follows. Let
P be the set of all paths froms to t. Let fP denote the flow value sent along pathP . It is easy to see that
the following linear program is equivalent to the maximum flow problem:

max
∑
P∈P

fP

subject to
∑

P :e∈P

fP ≤ ce, ∀e ∈ E,

fP ≥ 0, ∀P ∈ P.

(2)
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The dual of this program is
min

∑
e∈E

ceye

subject to
∑
e∈P

ye ≥ 1, ∀P ∈ P,

ye ≥ 0, ∀e ∈ E.

(3)

Note that, each01-solution to (3) corresponds to a set of edges whose removal disconnects from t and
vice versa. In particular, eachs, t-cut corresponds to a01-solution of (3). Thus, to prove the max-flow
min-cut theorem, we only need to show that there is an optimal integral solution to (3). (An optimal
integral solution must be a01-solution.)

Exercise 1.Show that the linear program (3) can be solved in polynomial time with the ellipsoid method.

We will use randomized rounding to obtain such an integral solution. Lety∗ be an optimal solution
to (3). Interprety∗e as the length of edgee. For each vertexv, let d(s, v) be the distance froms to v,
i.e. the length of a shortest path froms to v according to the distance functiony∗. Then, for each arc
e = (u, v) we haved(s, v) ≤ d(s, u) + y∗e . For each radiusr ≥ 0, let B(r) be the set of vertices of
distance at mostr from s. Note thatt /∈ B(r) if r < 1.

Now, chooser uniformly at random from[0, 1). Consider the cutC = [B(r), B(r)] and an arbitrary
arce = (u, v). The arce belongs toC iff d(s, u) ≤ r < d(s, v). Thus,

Prob[e ∈ C] =
d(s, v)− d(s, u)

1− 0
≤ y∗e .

Thus,
E[cap(C)] =

∑
e∈E

ce Prob[e ∈ C] ≤
∑
e∈E

cey
∗
e = cost(y∗).

Thus, there must be at least one (integral) cutC with capacity at most cost(y∗). That is the cut that we
are looking for.

I personally found this result to be rather surprising (and obviously elegant). The argument isvery
typical of the probabilistic method. Let us delve a little more technically into this argument.

• Let C be the set of alls, t-cuts of the form[B(r), B(r)], for r ∈ [0, 1). Even though number of
possible values ofr is infinite, there are only finitely many such cuts. By choosingr at random,
each cutC ∈ C has a probability Prob[C] of being chosen. (This is a slight abuse of notation, since
Prob[C] is often used to denote the probability that eventC holds.) Then, cap(C) is a random
variable defined on this finite sample space. We have, by definition of expectation,

µ = E[cap(C)] =
∑
C∈C

cap(C) Prob[C].

Thus, there must be a cutC with capacity at mostµ. (Recall the basic probabilistic method
discussed at the beginning of this note.)

• Secondly, I’d like to explain the relation

E[cap(C)] =
∑
e∈E

ce Prob[e ∈ C]

that we used earlier. This fact does not come directly from the definition of expectation. For any
C ∈ C, let Ie be the01-random variable indicating ife is in C or not, namely

Ie =

{
1 e ∈ C

0 o.w.
.
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Then, Prob[Ie = 1] = Prob[e ∈ C]. Moreover,

cap(C) =
∑
e∈C

ce =
∑
e∈E

ceIe.

By linearity of expectation,

E[cap(C)] = E[
∑
e∈E

ceIe] =
∑
e∈E

ceE[Ie] =
∑
e∈E

ce Prob[e ∈ C].

This is a very typical argument of the probabilistic method! The nice thing about the linearity of
expectation is that it holds whether or not the variablesIe are independent.

• The above two bullets are not surprising. What is surprising is the following relation:∑
C∈C

cap(C) Prob[C] = cost(y∗).

The characteristic vectoryC of anys, t-cutC is a feasible solution to the linear program. Thus,

cost(y∗) ≤ cost(yC) = cap(C).

Hence, ∑
C∈C

cap(C) Prob[C] ≥
∑
C∈C

cost(y∗) Prob[C] = cost(y∗).

Equality holds iff cap(C) = cost(y∗) whenever Prob[C] 6= 0. In other words, all cuts inC are
minimum cuts!That I found surprising! Can we prove this fact some other way? The following
exercise aims to explain this.

Exercise 2. Let y∗ be an optimal solution to (3). Letr be any number in[0, 1). Show that the cut
[B(r), B(r)] has capacity cost(y∗) without using probabilistic arguments. From this exercise, it is clear
that we can find a minimum cut in polynomial time. Just take the cut corresponding tor = 0, for
example. (Hint: complementary slackness.)

Exercise 3. This exercise shows a stronger result than that of the previous one. Lety be any vertex of
the polyhedron corresponding to (3). Show that

1. ye = d(s, v)− d(s, u) for any edgee = (u, v) of the graph,

2. and thaty is a convex combination of characteristic vectors of members ofC. Conclude thaty
must be a characteristic vector of a cut inC.

Exercise 4. There is another common way to formulate the min-cut problem. Letxv indicates ifv ∈ S
of thes, t-cut (S, T ), andyuv indicates if edge(u, v) belongs to the cut. We need a constraint to ensure
thatxu = 1, xv = 0 impliesyuv = 1. As usual, this constraint can be written asyuv ≤ xu − xv. The
ILP is then

min
∑
e∈E

cuvyuv

subject to yuv ≥ xu − xv, ∀uv ∈ E,
xs = 1, xt = 0,
xv, yuv ∈ {0, 1}, ∀uv ∈ E,∀v ∈ V.

(4)
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Relaxation gives the following LP:

min
∑
e∈E

cuvyuv

subject to yuv ≥ xu − xv, ∀uv ∈ E,
xs = 1, xt = 0,

xv, yuv ≥ 0, ∀uv ∈ E,∀v ∈ V.

(5)

Show that (5) has an optimal integral solution using the randomized rounding method. (Hint: pick
r ∈ (0, 1] at random. SetS = {v | xv ≥ r}.)

Exercise 5.Explain how to use the min-cut procedure for directed graphs (which we have developed) to
find a minimums, t-cut in an undirected graph.

Exercise 6 (Multiway cut). The MULTIWAY CUT problem is a natural generalization of the min-cut
problem. Given an undirected graphG with positive edge capacities. There arek ≥ 2 terminalst1, . . . , tk
and we would like to find a minimum capacity subset of edges whose removal disconnects the terminals
from each other. Formulate an ILP for this problem in a similar fashion to (3).

(a) Write down the LP relaxation of the ILP.

(b) Show that the LP has the half-integrality property, i.e. each vertex of the corresponding polyhedron
is half-integral.

(c) Use the randomized rounding method to show that, given any feasible solutiony to the LP, there
is an integral solution with capacity at most2 cost(y).

(Hint : pick r ∈ [0, 1/2] at random. Consider the ballsBti(r) of radiusr around each terminalti.
Choose the cutC =

⋃
i[Bti , Bti ]. Show that the expected capacity ofC is at most2 cost(y).)

(d) Derandomize the above procedure and give a modification to yield a deterministic(2 − 2/k)-
approximation algorithm for the MULTIWAY CUT problem.

1.2 Multiway cut (TBD)

2 Satisfiability Problems

A conjunctive normal form(CNF) formula is a boolean formula onn variablesX = {x1, . . . , xn}
consisting ofm clausesC1, . . . , Cm. Each clause is a subset ofliterals, which are variables and negations
of variables. A clause can be viewed as the sum (or theOR) of the literals. A clause is satisfied by a truth
assignmenta : X → {TRUE, FALSE} if one of the literals in the clause isTRUE.

For integersk ≥ 2, ak-CNF formulais a CNF formula in which each clause is of size at mostk, an
Ek-CNF formulais a CNF formula in which each clause is of size exactlyk.

Given a CNF formulaϕ, the MAX -SAT problem is to find a truth assignment satisfying the maximum
number of clauses inϕ. If ϕ is of the form X-CNF, for X∈ {k, Ek}, then we get the corresponding
MAX -XSAT problems.

Exercise 7.Show that the problem of deciding if a2-CNF formula is satisfiable is in P, but MAX -2SAT
is NP-Hard (i.e. its decision version isNP-complete).

Exercise 8. State the decision version of MAX -E3SAT and show that it isNP-complete.
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2.1 Max-E3SAT

Theorem 2.1. There is an8/7-approximation algorithm forMAX -E3SAT.

Proof. Letϕ be an E3-CNF formula withm clausesC1, . . . , Cm. LetSϕ be the random variable counting
the number of satisfied clauses ofϕ by randomly settingxi independently to beTRUE with probability
1/2. Since the probability that a clauseCj is satisfied is7/8, by linearity of expectation E[Sϕ] = 7m/8.
This number clearly is within a factor7/8 of the optimal value. Hence, this simple randomized algorithm
achieves (expected) approximation ratio8/7. We can derandomize this algorithm by a method known as
conditional expectation. The basic idea is as follows.

Consider a fixedk ∈ [n]. Leta1, . . . , ak ∈ {TRUE, FALSE} bek boolean values. Letϕ′ be a formula
obtained by settingxi = ai, i ≤ j, and discarding allc clauses that are already satisfied. Then, it is easy
to see that

E[Sϕ | xi = ai, 1 ≤ i ≤ k] = E[Sϕ′ ] + c.

Hence, givena1, . . . , ak we can easily compute E[Sϕ | xi = ai, 1 ≤ i ≤ k] in polynomial time.
Now, for k ≥ 1, notice that

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1]

=
1
2

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1, xk = TRUE] +
1
2

E[Sϕ | xi = ai, 1 ≤ i ≤ k − 1, xk = FALSE]

The larger of the two expectations on the right hand side is at least E[Sϕ | xi = ai, 1 ≤ i ≤ k−1]. Hence,
we can setxi to beTRUE or FALSE one by one, following the path that leads to the larger expectation, to
eventually get a truth assignment which satisfies as many clauses as E[Sϕ] = 7m/8.

2.2 Max-SAT

2.2.1 The straightforward randomized algorithm

Consider the WEIGHTED MAX -SAT problem in which a formulaφ consists ofm clausesC1, . . . , Cm

weightedw1, . . . , wm ∈ Z+. Let x1, . . . , xn be the variables andlj denote the length of clauseCj .
Suppose we follow the previous section and set each variable to beTRUE with probability 1/2, and
derandomized this algorithm. Then, what is the approximation ratio?

Let Ij denote the random variable indicating the event{Cj is satisfied}, i.e.

Ij :=

{
1 if Cj is satisfied

0 otherwise.

Let Sφ be the cost (weight) of a random assignment andOPT(φ) be the cost of an optimal assignment,
thenSφ =

∑
j wjIj . We have

E[Sφ] =
m∑

j=1

wj Prob[Ij = 1] =
m∑

j=1

wj(1− (1/2)lj ) ≥ 1
2

m∑
j=1

wj ≥
1
2

OPT(φ).

In other words, with derandomization using the method of conditional expectation, we can get a deter-
ministic approximation algorithm for MAX -SAT with approximation ratio2.

Exercise 9. Consider the following algorithm for MAX -SAT: let τ be any truth assignment andτ ′ be
its complement, i.e.τ ′(xi) is the negation ofτ(xi). Compute the cost of bothτ andτ ′, then output the
better assignment. Show that this is a2-approximation algorithm.
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Exercise 10. Let F2 = {0, 1}. Arithmetics overF2 is done modulo2. Consider a system ofm lin-
ear equations onn variables overF2. The LINEAR EQUATIONS OVER F2 problem is the problem of
finding an assignment to variables that satisfies as many equations as possible. Give a randomized algo-
rithm for this problem with approximation ratio2, then derandomize it using the method of conditional
expectation.

2.2.2 A randomized algorithm with a biased coin

The approximation ratio2 as done above is not nearly as good as8/7 we had for MAX -3SAT. Perhaps
this is due to the fact that MAX -SAT is not as symmetrical as MAX -3SAT. Thus, our “rounding proba-
bility” should not be1/2. This observation suggest us to set each variable toTRUE with some probability
q to be determined. Due to symmetry (of a variable and its negation), we only need to considerq ≥ 1/2
(thusq ≥ 1− q).

Let nj andpj be the number of negated variables and non-negated variables in clauseCj , then

E[Sφ] =
m∑

j=1

wj(1− qnj (1− q)pj ).

To get a good approximation ratio, we want all theqnj (1− q)pj to be as small as possible. This product
is large for small clauses, especially the clauses with only one single literal. Let us consider them first.

• If singleton clauses contain no negations of variables, then it is easy to see thatqnj (1 − q)pj ≤
max{1 − q, q2}, for all j. To minimize themax, we pickq such that1 − q = q2, i.e. q ≈ 0.618.
In this case, we have

E[Sφ] ≥ 1
q

OPT(φ).

(Note that this is slightly better than the ratio2.)

• If there is noi such that both{xi} and{x̄i} are clauses, then by swapping labels of somexi and
x̄i, we can obtain the same bound.

• The situation comes down to the case when there arexi such that both{xi} and{x̄i} are clauses.
Firstly, note that two clauses of the form{xi} (or of the form{x̄i}) can be combined into one
(whose weight is the total weight). Consequently, we can assume thatxi (andx̄i) does not appear
in two singleton clauses. Secondly, if{xi} and{x̄i} are both clauses, we can assume that the
weight of thexi-clause is at least the weight of thex̄i-clause, otherwise we swapxi andx̄i. Thirdly,
assume the rest of the singleton clauses contain only non-negated variables. Define

N = {j | Cj = {x̄i}, for somei}.

Then,

OPT(φ) ≤
m∑

j=1

wj −
∑
j∈N

wj .

And,

E[Sφ] =
∑
j /∈N

wj(1− qnj (1− q)pj ) +
∑
j∈N

wj(1− q) ≥ q
m∑

j=1

wj − q
∑
j∈N

wj ≥ q · OPT(φ).
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2.2.3 A randomized algorithm with different biased coins based on linear programming

The above randomized algorithms do not deal well with small-size clauses. In this section, we make
use of a linear programming formulation of the problem to determine the rounding probability of each
variable.

An integer program for MAX -SAT can be obtained by considering the following01-variables: (a)
yi = 1 iff xi = TRUE; and (b)zj = 1 iff Cj is satisfied. We then have the following integer program

max w1z1 + · · ·+ wmzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

yi, zj ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]

and its relaxed LP version

max w1z1 + · · ·+ wnzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

0 ≤ yi ≤ 1 ∀i ∈ [n],
0 ≤ zj ≤ 1 ∀j ∈ [m].

Obtain an optimal solution(y∗, z∗) for the linear program, and roundxi = TRUE with probabilityy∗i .
Basically, the valuesy∗i tells us how muchxi leans towardTRUE of FALSE. Then,

E[Sφ] =
m∑

j=1

wj

1−
∏

i:xi∈Cj

(1− y∗i )
∏

i:x̄i∈Cj

y∗i



≥
m∑

j=1

wj

1−


∑

i:xi∈Cj

(1− y∗i ) +
∑

i:x̄i∈Cj

y∗i

lj


lj


=
m∑

j=1

wj


1−


lj −

 ∑
i:xi∈Cj

y∗i +
∑

i:x̄i∈Cj

(1− y∗i )


lj



lj


≥
m∑

j=1

wj

(
1−

[
1−

z∗j
lj

]lj
)

≥
m∑

j=1

wj

(
1−

[
1− 1

lj

]lj
)

z∗j

≥ min
j

(
1−

[
1− 1

lj

]lj
)

m∑
j=1

wjz
∗
j

≥
(

1− 1
e

)
OPT(φ).

(We have used the fact that the functionf(x) = (1− (1− x/lj)lj is concave whenx ∈ [0, 1], thus it lies
above the segment through the end points.) We have just proved
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Theorem 2.2. The LP-based randomized rounding algorithm above has approximation ratioe/(e− 1).

Note thate/(e−1) ≈ 1.58, while1/q ≈ 1/0.618 ≈ 1.62. Thus, this new algorithm is slightly better
than the one with a biased coin.

Exercise 11.Describe how to use the method of conditional expectation to derandomize the algorithm
above.

Exercise 12. Let g(y) be any function such that1 − 4−y ≤ g(y) ≤ 4y−1,∀y ∈ [0, 1]. Suppose we
set eachxi = TRUE with probabilityg(y∗i ), where(y∗, z∗) is an optimal solution to the linear program.
Show that this strategy gives a4/3-approximation algorithm for MAX -SAT.

2.2.4 The “best-of-two” algorithm

Note that the rounding algorithm in the previous section works fairly well if clauses are of small sizes.
For instance, iflj ≤ 2 for all j, then the approximation ratio would have been1/(1− (1−1/2)2) = 4/3.
On the other hand, the straightforward randomized algorithm works better when clauses are large. It just
makes sense to now combine the two: run both algorithms and report the better assignment. LetS1

φ and
S2

φ (which are random variables) denote the corresponding costs. Then, it is easy to see the following

E[max{S1
φ, S2

φ}] ≥ E[(S1
φ + S2

φ)/2]

≥
m∑

j=1

wj

(
1
2

(
1− 1

2lj

)
+

1
2

(
1−

[
1− 1

lj

]lj
)

z∗j

)

≥ 3
4

m∑
j=1

wjz
∗
j

≥ 3
4

OPT(φ).

Thus, the BEST-OF-TWO algorithm has performance ratio4/3.

3 Covering Problems

In the WSC problem, we are given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m},
whereSj is of weightwj ∈ Z+. The objective is to find a sub-collectionC = {Si | i ∈ J} with least
total weight such that

⋃
i∈J Si = [m]. The corresponding integer program is

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

And, relaxation gives the following linear program:

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

0 ≤ xj ≤ 1 ∀j ∈ [n].

Suppose we have an optimal solutionx∗ of the LP. To obtainxA, a sensible rounding strategy is to round
x∗j to 1 with probabilityx∗j , namely

Prob[xA
j = 1] = x∗j .
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It follows that

E[cost(xA)] =
n∑

j=1

wjx
∗
j = OPT(LP ).

What we really want is to find the probability thatxA is feasible and cost(xA) ≤ ρ · OPT. If this
probability at least some positive constant, thenρ is an approximation ratio of this algorithm. (If the
probability is small, we can run the algorithm independently a few times.) We can estimate the desired
probability as follows.

Prob[ xA is feasible and cost(xA) ≤ ρ · OPT]
= 1− Prob[ xA is not feasibleor cost(xA) > ρ · OPT]
≥ 1− Prob[xA is not feasible]− Prob[cost(xA) > ρ · OPT].

Let us first estimate the probability thatxA is not feasible. Consider any elementi ∈ [m], and
suppose the inequality constraint corresponding toi is

xj1 + · · ·+ xjk
≥ 1.

We will refer to this as theith constraint. Then, the probability that this constraint is not satisfied byxA

is

(1− x∗j1) . . . (1− x∗jk
) ≤

(
k − (x∗j1 + · · ·+ x∗jk

)
k

)k

≤
(

1− 1
k

)k

≤ 1
e
.

Thus, Prob[xA is not feasible] ≤ m/e. This is a very bad bound sincem is large. We can get a better
bound by settingxA

j to be0 with lower probability. Lett be a number to be determined, and setxA
j = 0

probability (1 − x∗j )
t. (This is equivalent to running the previous strategy independentlyt rounds, and

setxA
j = 0 only whenxA

j = 0 in all rounds.) In this case,

Prob[xA does not satisfy constrainti] ≤ (1/e)t.

Thus, the probability thatxA is not a feasible solution is at mostm(1/e)t. Whent is (logarithmically)
large,m(1/e)t < 1.

Secondly, we estimate the probability that cost(xA) > ρ · OPT. In one round, we have shown that
E[cost(xA)] = OPT(LP ) ≤ OPT. Hence, witht rounds we have E[cost(xA)] ≤ t · OPT. Markov
inequality gives

Prob[cost(xA) > ρ · OPT] <
E[cost(xA)]

ρ · OPT
≤ t · OPT

ρ · OPT
=

t

ρ
.

Remark 3.1. Let X be a random variable inR+, anda be a positive number, Markov inequality says
that Prob[X ≥ a] ≤ E[X]

a .

Consequently,

Prob[xA is feasible and cost(xA) ≤ ρ · OPT(IP )] ≥ 1−m(1/e)t − t

ρ
.

We can pickt = θ(lg m) andρ = 4t so that1 − m(1/e)t − t
ρ ≥ 1

2 . In other words, this algorithm
gives a solution with approximation ratioΘ(lg m) with probability at least1/2. We can then run the
algorithm a few times until the solution is feasible. The expected number of runs is2, and the expected
approximation ratio isΘ(lg m).

Exercise 13.Suppose we run the above randomized rounding algorithm with only one round (instead of
t rounds). Prove that, with positive probability the resultingxA satisfies at least half of the constraints at
cost at mostO(OPT(IP )).

Exercise 14.Give a randomized rounding algorithm for the GENERAL COVER problem with approxi-
mation ratioO(lg m).
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Appendix

3.1 Probability theory

Lemma 3.2 (Linearity of Expectation). If X1, . . . , Xn aren random variables, then for anyn constants
a1, . . . , an,

E
[
a1X1 + · · ·+ anXn

]
= a1E[X1] + · · ·+ anE[Xn].

Many deviation bounds are useful in designing randomized algorithms.

Theorem 3.3 (Markov’s Inequality). If X is a random variable taking only non-negative values, then
for anya > 0

Prob[X ≥ a] ≤ E[X]
a

. (6)

A slightly more intuitive form of (6) is

Prob[X ≥ aµ] ≤ 1
a
. (7)

Markov’s inequality is possibly the only possible estimate when there’s no further information about the
random variable. If we do now its variance, for instance, we can show stronger bound.

Theorem 3.4 (Chebyshev’s Inequality).If X is a random variable with meanµ and varianceσ2, then
for anya > 0,

Prob
[
|X − µ| ≥ a

]
≤ σ2

a2
. (8)

Again, there is a more intuitive way of writing (8):

Prob
[
|X − µ| ≥ aσ

]
≤ 1

a2
. (9)

A twice-differentiable functionf is convexif f ′′(x) ≥ 0 for all x, andconcavewhenf ′′(x) ≥ 0 for
all x. A linear function is both convex and concave. Thus, the following theorem implies linearity of
expectation.

Theorem 3.5 (Jensen’s inequality).Letf(x) be a convex function, then

E[f(X)] ≥ f(E[X]). (10)

If f is concave, the inequality is reversed. The same result holds for multiple random variables.

The most useful deviation bounds are variations of Chernoff bounds.

Theorem 3.6 (Chernoff Bound (Lower Tail)). LetX1, . . . , Xn be a set of mutually independent Bernulli
random variables, whereProb[Xi = 1] = pi, and Prob[Xi = 0] = 1 − pi, for 0 < pi < 1. Let
Sn = X1 + · · ·+ Xn, andµ = E[Sn] = p1 + · · ·+ pn. Then, for any0 < ε < 1,

Prob[S < (1− ε)µ] <

(
e−ε

(1− ε)1−ε

)µ

< e−µε2/2 (11)

Theorem 3.7 (Chernoff Bound (Upper Tail)). LetX1, . . . , Xn be a set of mutually independent Bernulli
random variables, whereProb[Xi = 1] = pi, and Prob[Xi = 0] = 1 − pi, for 0 < pi < 1. Let
Sn = X1 + · · ·+ Xn, andµ = E[Sn] = p1 + · · ·+ pn. Then,
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1. for anyε > 0,

Prob[S > (1 + ε)µ] <

(
e+ε

(1 + ε)1+ε

)µ

. (12)

2. for ε > 2e− 1,
Prob[S > (1 + ε)µ] < 2−εµ, (13)

3. for 0 < ε < 2e− 1,
Prob[S > (1 + ε)µ] < e−µε2/4, (14)

4. and lastly, for0 < ε < 1,
Prob[S > (1 + ε)µ] < e−µε2/3. (15)

3.2 The Probabilistic Method

The basic idea of the probabilistic method is the following: to show that some object with a certain
property exists, under suitable settings we can just show that it exists with positive probability. The
classic reference [1] is now a “must-read” for Computer Science students.

To make this idea a little more precise, consider a finite probability spaceΩ. To show that there is a
memberω of Ω having some propertyP , we only have to show that Prob[ω has propertyP ] > 0.

To illustrate this idea, consider a tennis tournamentT where there aren players, each player plays

every other player, and the matches’ results are already recorded. Thus, there are totally2(n
2) possible

tournaments. TournamentT is said to have propertyPk if for every set ofk players there is another
player who beats them all. We will prove that, if

(
n
k

)
(1− 2−k)n−k < 1, then there is a tournament onn

players having propertySk.

Let Ω be the set of all2(n
2) tournaments, where we choose a random tournament by letting player

i beat playerj with probability1/2. Consider a randomly chosen tournamentT from Ω. We want to
estimate the probability thatT has propertySk. For any subsetK of k players, letAK be the event that
no other player beats all members ofK. TournamentT has propertySk iff AK does not hold, for every
K. The probability that a particular player (not inK) does not beat all members ofK is (1 − 2−k).
Hence, Prob[AK ] = (1− 2−k)n−k. Consequently,

Prob

[⋃
K

AK

]
≤
∑
K

Prob[AK ] =
(

n

k

)
(1− 2−k)n−k < 1.

In other words, the probability that none of the eventsAK occurs is positive, concluding our proof.
Another technique that is very commonly used in the probabilistic method is the following idea. Let

X be any real random variable onΩ, i.e. X : Ω → R. Let µ = E[X]. Then, there must be anω with
X(ω) ≤ µ, and similarly there must be anω with X(ω) ≥ µ. Again consider a tournamentT on n
players as defined above. AHamiltonian circuiton this tournament is a permutationπ of players, where
π(i) beatsπ(i + 1), for all i, circularly. LetΩ be the probability space of all random tournaments. For
eachT ∈ Ω, let X(T ) be the number of Hamiltonian circuits ofT . For each permutationπ of n players,
let Iπ be the random variable indicating ifπ defines a Hamiltonian circuit onT , namely

Iπ =

{
1 if π(i) beatsπ(i + 1), circularly, for alli

0 otherwise.

Then,

E[Iπ] = Prob[Iπ = 1] =
1
2n

.
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Thus, by linearity of expectation,

E[X] = E

[∑
π

Iπ

]
=
∑
π

E[Iπ] =
n!
2n

.

We can now conclude that there is at least one tournamentT with at leastn!
2n Hamiltonian circuits, and

there is at least one tournamentT with at mostn!
2n Hamiltonian circuits.

3.3 Inequalities

In algorithm analysis, when upper or lower bounding an expression we often need to “turn” a sum into a
product or vice versa. In that case, the following standard inequality is extremely useful.

Theorem 3.8 (Arithmetic-Geometric means inequality).For any non-negative numbersa1, . . . , an,
we have

a1 + · · ·+ an

n
≥ (a1 · · · an)1/n. (16)

There is also the stronger weighted version. Letw1, . . . , wn be positive real numbers wherew1 + · · ·+
wn = 1, then

w1a1 + · · ·+ wnan ≥ aw1
1 · · · awn

n . (17)

Equality holds iff allai are equal.

Talking about classic inequalities, one cannot ignore Cauchy-Schwarz and Jensen inequalities.

Theorem 3.9 (Cauchy-Schwarz inequality).Let a1, . . . , an andb1, . . . , bn be non-negative real num-
bers. Then, (

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
. (18)

Theorem 3.10 (Jensen inequality).Letf(x) be a convex function on an interval(a, b). Letx1, . . . , xn

be points in(a, b), andw1, . . . , wn be non-negative weights such thatw1 + · · ·+ wn = 1. Then,

f

(
n∑

i=1

wixi

)
≤

n∑
i=1

wif(xi). (19)

If f is strictly convex and if all weights are positive, then equality holds iff allxi are equal. Whenf is
concave, the inequality is reversed.

Historical Notes

Recent books on approximation algorithms include [2,7,11,13]. See [1,12] for randomized algorithms,
derandomization and the probabilistic methods. For inequalities, the classic text [5] is a must-have.

The8/7-approximation algorithm for MAX -E3SAT follows the line of Yannakakis [14], who gave
the first4/3-approximation for MAX -SAT. A 2-approximation for MAX -SAT was given in the seminal
early work of Johnson [8]. Johnson’s algorithm can also be interpreted as a derandomized algorithm,
mostly the same as the one we presented. The LP-based randomized algorithm and the best-of-two
algorithm for MAX -SAT are due to Goemans and Williamson [4]. The algorithm with a biased coin is
due to Lieberherr and Specker [10].

Later, Karloff and Zwick [9] gave an8/7-approximation algorithm for MAX -3SAT based on semidef-
inite programming. This approximation ratio is optimal as shown by Håstad [6]. The conditional expec-
tation method was implicit in Erd̋os and Selfridge [3].
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[5] G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA , Inequalities, Cambridge University Press, Cambridge, 1988. Reprint
of the 1952 edition.
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