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LP Relaxation and Rounding

There are two fundamental approximation algorithm design techniques based on linear programming:
(a) LP-relaxation and rounding, and (b) the primal-dual method. In this lecture note, we will discuss the
former.

The basic idea of LP-relaxation and rounding is quite simple. We first formulate an optimization
problem as arnnteger program(IP), which is a linear program (LP) with integer variables. Then, we
relax the integral constraints to turn the IP to an LP. Next, we solve the LP for an optimal solution, say
x*, from which we construct a feasible solutiari to the IP. This construction step is often done by
roundingthe coordinates af* to integers so that* is feasible. Rounding can be done deterministically
or probabilistically. In the latter approach is taken, we have the so-catatbmized roundingnethod.

In many problems, we might need to look at the structure of an optimal solution to the LP, in order to
obtain sufficient information to make rounding decision.

Let costx*) and costx*) denote the objective values =f' andx*, respectively. LebpT(/P) and
oPT(LP) denote the optimal values of the the IP and the LP, respectively. (Noteotw@f.P) =
cos{x*).) Suppose we are working on a minimization problem, then the performance ratio of this
algorithm can be obtained by observing that

cos{x? costx4
< x7) X OPT(LP) < (x7)

06 < Ger(Lp) = costx)

X OPT(IP).

(XA) . . . . . . .
Consequently, any upper bound of the ra@%é(x—*) is an approximation ratio for this algorithm. If this
approach is taken “as is,” the best approximation we can hopefgj(ig@), whose supremum is referred
to as thentegrality gap We will have more to talk about this gap later. It is possible, in many cases, to
devise algorithms whose approximation ratios are better than the integrality gap by delving deeper into
the structure of the problem at hand.

1 Linear programs and linear integer programs

A linear integer programis similar to a linear program with an additional requirement that variables
are integers. TheNTEGER PROGRAMMING problem is the problem of determining if a given integer
program has a feasible solution. This problem is known tNlehard. Hence, we cannot hope to solve
general integer programs efficiently. However, integer programs can often be used to formulate a lot of
discrete optimization problems. One of the most well-known NP-hard problems is the following:

VERTEX COVER
Given a graphG = (V, E), |V| = n, |E| = m, find a minimum vertex cover, namely a
minimume-size subset’ C V' such that every edge ¢t has at least one end .

Let us see how we can formulateE¥TEX COVER as an integer program. Suppose we are given a
graphG = (V, E) with n vertices anch edges. Foreache V = {1,...,n}, letz; € {0,1} be a



variable which isl if ¢ belongs to the vertex cover, afdbtherwise; then, the problem is equivalent to
solving the following (linearjnteger program

min Tl + T2+ @y
subjectto z; +z; > 1, VijeE, D)
z; €{0,1}, VieV.

The objective function basically counts the number of vertices in the vertex cover. Each inequality
x; + x; > 1 requires the corresponding edge to have at least one of its end points in the vertex cover.
Actually, the formulation above is somewhat too strict. Suppose we relax it a little bit:

min i +xo+---+x)y
subjectto x; +x; > 1, VijeE,
r; >0z, €Z VieV.

Then, this would still be equivalent to solving the vertex cover problem, since in an optimal solution to
the integer program above, none of thecan be more thah.
The next problem is a generalized version of theRVEX COVER problem.

WEIGHTED VERTEX COVER
Given agraptG = (V, E), |V| = n, |E| = m, aweight functionv : V' — R. Find a vertex
coverC C V for which ", w(i) is minimized.

An equivalent linear integer program can be written as

min wW1T1 + wakg + -+ - + Wy,
subjectto z; +z; > 1, Vij € E,
x; € {0,1}, Vi e V.

Note that if the weights were all non-negative, then we only have to require the variables to be non-
negative integers, just like in the case of normal vertex cover. An IP as above is also referred to as a
01-integer program.

The next two problems are more general versions of tarTeX COVER and the WEIGHTED VER-
TEX COVER problems. Recall that we use| to denote the setl,...,n}, for all positive intege;
naturally[0] denoted).

SET COVER

Given a collectiorS = {51, ..., S, } of subsets ofm| = {1,...,m}. Find a sub-collection
C ={S; | j € J} with as few members as possible such thiat ; S; = [m].

WEIGHTED SET COVER

Given a collectiorS = {51, ...,S,} of subsets ofm] = {1,...,m}, and a weight function
w: S — R. Find a covel = {; | j € J} with minimum total weight.

Similar to VERTEX COVER, we use &1-variablex; to indicate the inclusion of; in the cover. The
corresponding IP is thus

min w11 + -+ wpTy
subjectto »  a;>1, Vi€ [m],
j:S;521

zj € {0,1}, Vj € [n].

TRAVELING SALESMAN (TSP)



A salesman must visit cities each exactly once and return to the originating city. Given the
time to go from cityi to city j is t;;, find a tour which takes the shortest time.

This problem is slightly more difficult to formulate then the ones we have seen;; Lle¢ the01-variable
indicating if the salesman does go from cityo city j. Obviously, we want the salesman to go irto

exactly once and to go out gfexactly once for each city, j. This condition alone, however, does not
ensure the connectedness as we might form a few disjoint cycles. We also need constraints to ensure the
connectivity of our tour. This could be done by checking for each non-empty sein| if there was at

least one edge leaving In summary, we have the following equivalent linear integer program:

min > iz tijij
subjectto Y. =1, Vi€ n,
Dy Tij = 1, vj € [n),
ZieS,j%Sxij >1, VS C [n],S #@
Tij € {O, 1}, Vi,j € [’I’L],’L 7& J-

Exercise 1 ASSIGNMENTPROBLEM). Formulate the following problem as an IP problem:

There aren processors and tasks. Each processor might be more suitable to perform a
particular kind of task. Hence, there is a cas}f associated if processomwas to do task.
Find a one-to-one assignment of processors to tasks which minimizes the total cost.

Exercise 2 KNAPSACK). Formulate the following problem as an IP problem:

Givenn items with values, ..., v,, and weightsw;, ..., w,, correspondingly. Find a
subsetS of items with total weight at most a givai, such that the total value &f is as
large as possible.

Exercise 3 (NDEPENDENTSET). Formulate the following problem as an IP problem:

Given a graphG = (V, E), a weight functionw : V' — R, find an independent set of
maximum total weight; namely, a subgetC V of vertices such that no pair of vertices in
P are adjacent and the sum, . » w(7) is maximized.

Exercise 4. Given anm x n matrix A whose entries are eithéror 1, andw € Z", ¢ > 0. As usual, we
use0 to denote the all} vector, whose dimension is implicit in the (in)equality involved, arid denote
the all-1 vector. The (weighted) r CoVER problem has the form

min {me | Az > 1,z € {0, 1}”} , 2
while the INDEPENDENTSET problem in the previous exercise has the form
max{wa | Az < 1,2z € {0, 1}"}, (3)

(That is, if you do it correctly.)
In this problem, we shall see that the converse is also true:

(i) Given an integer program of the form (2), whetds any 01-matrix, formulate a (weighted)es
CoveR instance which is equivalent to the program.

(i) Given an integer program of the form (3), wheddas any 01-matrix, formulate anNDEPENDENT
SET instance which is equivalent to the program.



In both questions, show the “equivalence.” For example(ijnyou must show that the minimum
weighted set cover of the constructed set family corresponds to an optimal solution of the integer program
and vice versa.

Exercise 5 BIN PACKING). Formulate the following problem as an IP problem:

Given a set ofs items{1, ..., n}, and their “size”s(i) € (0, 1]. Find a way to partition the
set of items in to a minimum numbes of “bins” By, ..., B,,, such that

Z s(i) <1, Vje€[m].

iEBj

2 Covering Problems

The LP corresponding to the IP (1) off®TEX COVER s

min x1+z2+ -+,
subjectto z; +x; > 1, Vij € FE, (4)
0<z; <1, VieV.

Exercise 6. Show that, given any gragh, any vertexx of the polyhedron defined by (4) mlf-integral
l.e. x; is either0,1/2, or 1.

Obviously if the LP is infeasible, then the IP is also infeasible. This is the first good reason to
do relaxation. Now, suppose* is an optimal solution to the LP. We know that can be found in
polynomial time. We can construct a feasible solutighto the IP as follows. Let

o {1 if 27 > 1/2

0 ifar<1/2.

You should check thak“ is definitely feasible for the IP. This technique of constructing a feasible
solution for the IP from the LP is calle@unding We have just seen the second advantage of doing
relaxation. The third is that an optimal value for the LP provides a lower bound for the optimal value of
the IP. Following the principle described in the beginning, an upper bound dfc9gtcostx*) is an
approximation ratio for this algorithm. It is straightforward that

cos{x™) =i +---+x), > %x‘f‘ +--+ %xf = %Cost(mA).
We thus have a@-approximation algorithm to solve theB®TEX COVER problem. Since it is impossible,
unless P= NP, to have an exact polynomial time algorithm to solveRYEX COVER, an algorithm
giving a feasible solution within twice the optimal is nice to have. The exact same technique works for
the WEIGHTED VERTEX COVER problem, when the weights are non-negative. Thus, we also have a
2-approximation algorithm for the WIGHTED VERTEX COVER problem.

Theorem 2.1. There is an approximation algorithm to solve téEIGHTED VERTEX COVER problem
with approximation ratic2.

Exercise 7. Show that the integrality gap for theBRTEX COVER problem is at least(1 — 1/n), where
n is the number of vertices.

Exercise 8. Given a graphG and and propek-coloring of G (i.e. a coloring using: colors such that
two adjacent vertices have different colors). We want to solve tiEeGANTED VERTEX COVER ONG.
Devise a polynomial timé2 — 2/k)-approximation algorithm to solve this problem.



To this end, let us attempt to use the relaxation and rounding idea to find approximation algorithms
for the WEIGHTED SET COVER problem. In fact, we shall deal with the following much more general
problem called the GNERAL COVER problem:

min cixr + ... 4+ cpxp
subjectto a;1z1 + ... + apr, > by, Q€ [m} (5)
Tj € {Ovl}a VJ € [n]a

wherea;;, b;, c; are all non-negative integers. Since we can remove an inequalify=i 0, we can

assume thab > 0. Moreover, ifc; = 0 then we can set; = 1 and remove colump. Thus, we can

also assume that > 0. Lastly, assqu:j a;j > b;, for alli € [m]; otherwise, the system is infeasible.
The relaxed LP version for (5) is

min cixy + ... 4+ cprp
SUbjeCt to ajpzr + ... + apxTn > by, 1€ [m} (6)
0<z; <1, VjG[n],

Let x* be an optimal solution to the LP version. How would we rourido getx” as in the \ERTEX
COVER case? Firstly, the rounding must ensure thétis feasible, namely they must satisfy each of
the inequalitiesi;1 21 + - - - + ainxyn > b;. Secondly, we do not want to “over-round,” such as assigning
everything tol, which would give a feasible solution but it does not give a very good approximation.
Consider an inequality such as

3] + 4ah + x5 + 225 > 4, @)

which x* satisfies. If we were to round some of th¢ up to 1, and the rest down t0, we must

pick the ones whose coefficients sum upitor more. For instance, we could round up to1 and

the rest ta0, or 7 andxj to 1 and the rest t@. The difficulty with this idea is that there might be an
exponential number of ways to do this, and we also have to do this consistently throughout all inequalities
air1 + -+ - + ainry, > b;. We cannot round] to 0 in one inequality, and ta in another. Fortunately,

some information about whictt: to round is contained in the actual values of #jeConsider inequality

(7) again. The sum of all coefficients of th¢ is 10. If all z7 were at mosti /10, then the left hand side

is at mostl. Hence, there must be somgwhich are at least/10. If 235 > 1/10, and we round it up to

1, then we’d be fine. However, if; andz; are the only ones which are 1/10, then rounding them up

to 1 is not sufficient. Fortunately, that cannot happen, becausg if; < 1/10 andx3, 2 > 1/10, then

3 4
Thdri 4ol 422l < —+—+14+2<4.
3371"‘ x2+x3+ .’E4<10+10+ + <
Thus,the sum of the coefficients of th? which are at least /(a;1 + - - - + a;,,) has to be at least;.
This is an informal proof. We will give a rigorous one later.
The analysis above leads to the following rounding strategy. Let

n

f = max Zaij ,

i€[m]

7j=1
and set
* 1
0 if $j <?,

then we have an approximation ratio fof

Theorem 2.2. The rounding strategy above gives an approximation algorithm foGbeERAL COVER
problem with approximation ratio at mogt



Proof. We first show thak“ is indeed feasible for IP-GC (the integer program for tHENGRAL COVER
problem). Suppose“ is not feasible, then there is some rofor which

Z aijgbi—l.

jati>1/f

But then .
Sogi= 3 wpst ¥ oag< Y oagrish
j=1 jai>1/f jai<i/f jixi>1/f

which is a contradiction. For the performance ratio, notice that

n

cos(x?) = chxf < Zc](fx;) = f - OPT(LP).
j=1

j=1
O

Exercise 9. Describe the ratigf for the WEIGHTED SET COVER problem in terms ofn, n and the set
collectionS.

Exercise 10. Suppose we apply the rounding strategy above to tle3NTED SET COVER problem.
However, instead of rounding the > 1/f up to1, we round all positiver’ up tol. Show that we
would still have anf-approximation algorithm. Hint: consider the primal complementary slackness
condition.)

3 Minimum complete matching in bipartite graphs

In this problem, we are given a bipartite graph= (A U B, E), where|A| < |B|, along with a weight
functionw : E — Z+ which assigns a non-negative weight to each edge.ofhe problem is to find a
minimum weight perfect matching fros into B. The corresponding integer program can be formulated

as follows.
min Z Wyv Tuw

subject to Z Tup =1 Vu € A,
viuveEFR (8)

Z Ty <1 YveB,
wuveElR
Tup € {0,1} Yuv € FE.

In the corresponding LP, the integral condition is relaxed,tp > 0:

min g Wap Lyv

wek
subject to Z Tuw =1 Yu€ A,
viuveE (9)
Z Ty <1 Yv € B,
wuveEE

Typ > 0 Yuv € E.

Lemma 3.1. Every vertex of the polyhedron defined(Byis integral.



Proof. Letx be any vertex of the polyhedron. Consider the subgfdi GG induced by taking all edges
uv wherezx,,, € (0,1).
If G’ has a cycleC, then the cycle must be of even length. Suppose the cycle consists of edges

U Ug, U3, .. . Ugk—1Uak, Ugkt1. Then, for anye with sufficiently small absolute value, the vecidf)
defined by
yq(fv) = Tuw wv ¢ C
y'l(Lel)UZ = Tyqug + €
y1(L€1)U2 = Luguz — €
yi(fz)kﬂu% = Tugy_qug, T€
yuezzcm = Lugpuy — €

is feasible. But thenx = (y(© + y(=9))/2, which is a contradiction.
If G’ has no cycle, consider a maximal pathus . .. u;. Because each vertex ihof G’ has degree
at leas2, u; anduy belongs toB. The same trick applies. O

Corollary 3.2. To solve the minimum complete matching problem on bipartite graphs, we can just solve
for the optimal vertex of the corresponding LP, which will also be an optimal solution to the IP.

Exercise 11.Let G = (V, E) be a simple graph. Theatching polytopel/ (G) associated witl is
defined by
Z Tww < 1 weV

v uweR (10)
Tyw > 0 wv € K.

Suppose is bipartite. Show that the vertices 8f (G) are exactly the characteristic vectors of (not
necessarily complete nor perfect) matchings-of

The maximum matching probleasks us to find a matching of maximum size in a given gr@ph
The previous exercise shows that, we can solve the maximum matching problem by solving the linear
programmax{), - Tus | X € M(G)} for an optimal vertex. The dual of this program can be written

as follows.
min Z Yo

veV
subjectto y, +y, > 1 wekE (11)

Y = 0 veV.

A 01-solution to this program corresponds to a vertex cover of

Exercise 12. Supposd= is bipartite. Show that the vertices of the polyhedron defined in (11) are pre-
cisely characteristic vectors ofinimalvertex cover of.

Exercise 13 (Konig's Minimax Theorem). Let G by a bipartite graph. Show that the size of a maximum
matching ofG is equal to the size of a minimum vertex cover.

Exercise 14 (Konig's Edge Coloring Theorem). Formulate the edge coloring problem for bipartite
graphs as an integer linear programming problem. Use the formulation to show that the chromatic index
of every bipartite graph is equal to its maximum degree.

Exercise 15 (Birkhoff-von Neumann Theorem).A non-negative square matriX is doubly stochastic
if each row and each column sums uplto Show that every stochastic matri can be written as a
convex combination of permutation matrices.



4 Scheduling on unrelated parallel machines

Consider a set of jobs Jy, ..., J,, which are to be processed am machinesMq, ..., M,,. In an
unrelated parallel machine environment, jpbhas a processing time pf; € Z* on machinel/;. Each
machine can only process one job at a time. The objective is to devise a schedule so that the maximum
completion timeCl,.x IS minimized.

Before discussing an LP-relaxation and rouding solution to this problem, we have a few words on
notations describing scheduling problems. Using the standard notations [4,5,9], each scheduling problem
is described with three fields:

e The firstis the machine environment. For exampl@dicates aingle machingP meansdentical
parallel machinesR meanaunrelated parallel machinggtc.

e The second specifies special constraints or conditions on the problem. For examplemeans
unit processing timeprec indicatesprecedence constrain{ge. some job has to be processed
completely before another job can start), etc.

e The third is the objective function. For examplg&,,.«x is the maximum completion time, com-
monly referred to as theakesparof a schedulep indicates the total processing timés,C; is
the total completion timeq,,,,... is the maximum lateness, etc.

This section is concerned with tiR|Chax problem, which was defined earlier. More specifically, our
problem does not alloywreemtioni.e. once a job starts on a machine, it cannot be interrupted.

Let z;; be a variable indicating if joly is to be processed on machine The following integer
program is equivalent to our problem.

min t
subjectto Y ' zy; 0= 1 j€[m]
Yoy pigry <t i €[n) (12)

zi; € {0,1}, Vi€ [n],Vj € [m].

In the corresponding LP, we relax the integer constraints to; pe 0.
Exercise 16.Give an example showing that the integrality gap for (12) is at least

Exercise 17.Show that a non-empty polyhedréh= {x | A;x = b;, Asx < by, x > 0} always has a
vertex. Moreover, suppogeis the total number of rows oA, and A,. Show that a vertex* of P has
at mostm positive components.

Exercise 17 shows that the polyhedron defined by

Yimmy = 1 j € [m]
Y ity <t i € [n]
xzy; > 0 Vie([n],Vje[m]

always has a vertex. (Recall; € Z".) In particular, a vertexx*,¢*) has at mosin + n positive
variables. This means that the number of fractional (i.e. non-integrja\i)s at mostm +n — 1. We
intepret the value of;; to mean “a fractionz;; of job j is assigned to maching’ An easy counting
argument implies that the number of jobs fractionally assigned is at mostl. This suggests the
following algorithm.

APPROXSCHEDULING-1



1. Use integral variables;; of the optimal verteXx*, ¢*) to assign jobs to machines. After this step,
there is a sel/ of at mostm — 1 jobs not yet scheduled.
2: Schedule optimally the jobs i by looking at allO(m™) possibilities.
Let OPT(Chax) be the optimal makespan. Thetf, < OPT(Chax). This means that the makespan
of the integrally assigned jobs (in step 1) is at mosti(Chax). Since the jobs irU are optimally
scheduled, their makespan is at mostr(C,.x) also. Thus, algorithm APROXSCHEDULING-1 has
approximation rati@. Unfortunately, the running time is exponential if the number of machines is not a
constant.
Fortunately, the previous algorithm suggests the following idea. Suppose we can find a schedule in
which the integral schedule’s makespan is at Migsand the fractional variables;; all correspond to
pi; < T, which we can some how match to machines in a one-to-one manner, then the final schedule’s
makespan is at mo8f".
For each positive integdr, let S = {ij | p;; < T'}, and consider the following polyhedron called
P(T):
D ijesp iy = 1 J€ [m]
Y ijesp Pty < T i€ n]
Tij =2 0 Vije Sp.

Let o = max; min; p;;, and 3 be the makespan of ttgreedy schedulgvhich assigns each job to a
machine with minimum processing time. For @Ry [«, 5]:

e if P(T) is empty, then there is no (integral) schedule of makespan at ostote that, the
converse is not true: iP(7") is not empty, then it is not necessary that the is an integral schedule
of makespan at mo§t. However, we will show that if?(7") is not empty, then there is an integral
schedule of makespan at mast.

e if P(T) is not empty, ther?(T") is not empty for alll” > T.

LetT* be the smallest (integral) value fin the interval«, 5] for which P(T') is not empty. Clearly
we can findl™ with a simple binary search in the range 3]. Moreover, T* < oPT(Cyax) because at
T = oPT(Cax) €ven the corresponding IP is feasible.
Exercise 17 tells us thdt(7™) is pointed, and every vertex has at most:+n positive coordinates.
This implies that the number of fractionally assigned jobs (according}ds at mostm. Let G =
(A, B; F) be a bipartite graph defined as follow4:is the set of fractionally assigned jolb,is the set
of machines to which some fractional jobs were assigned;ardE iff z7; is fractional. We will show
that there is a complete matching fradninto B. The final schedule assign integrally set jobs according
to z7;, then assign each job i to its matched machine if.
The complete algorithm can be summarized as follows.

APPROX SCHEDULING-2
1: Use binary search to find the least vallie € [«, 5] for which P(T™*) is not empty.
2: Find a vertexx* of P(T™).
3: Construct the bipartite grapghl = (A, B; E) as described above. Find a complete matching from
into B.

4: Assign integrally set jobs to corresponding machines
5. For fractionally set jobs (inl), assign them according to the complete matching just found.

Theorem 4.1. Algorithm APPROX SCHEDULING-2 has approximation rati@.

Proof. It remains to show that there is a complete matching fténto B in the bipartite graphG.
Consider any subset of fractionally assigned j6ldS A, we only need to check Hall’s maching condition



that|I'(S)| > |S|, wherel'(S) is the set of neighbors &f. Let H = (S,I'(S); E(H)) be the subgraph
of G induced byS andTI'(S). Consider the polyhedroff which is defined in the same way &7*)
restricting to variables corresponding to edge&if/). Lety* bex* restricted toH. Then,y* must
be a vertex ofP, otherwisex™ is not a vertex ofP(7*). Thus, the number of positive components
of y* is at most|S| + |T'(S)| (Exercise 17). But, the number positive components s exactly
|E(H)|. Moreover, each fractionally assigned job must be assigned to a2leasthines. Consequently,
2/S| < |E(H)| < |S| + |T(S)]. m

Exercise 18.A graph withn vertices is called &-treeif it has at most. edges. Show that each connected
component of the bipartite grafgh = (A, B; E') above is al-tree, whose leaf nodes are allih Using
this fact, construct a complete matching frehinto B in G.

Exercise 19.Suppose;; = p;, Vi (i.e. the machines are identical). Does algorithArPROX SCHEDULING-
2 have approximation ratio better thaa

Exercise 20. SupposeP(T') is not empty. Show that it has a vertex whose corresponding “fractional
bipartite graph’G is a forest.

Exercise 21.Give a PTAS for the problem of minimizing makespan on uniform parallel machines. In
this problem, there is a speggassociated with each maching. The processing time for jopis p; /s;.

5 Filtering and rounding

In this section, we illustrate the technique fafering and roundingby presenting an approximation
algorithm for the metric uncapacitated facility location problem. Filtering and rounding typically goes
as follows:

e Formulate the optimization problem as an IP.
e Formulate the corresponding LP.

e Use an optimal solution to the LP to construct a “filtered” version of the optimization problem; this
steps often involves setting some integer variables to be zero in the IP, in effect creating a restricted
version of the IP. The filtered problem has optimal (integral) cost within aflotte) of the LP.

e Finally, a rounding step produces a good integral solution to the filtered problem.

FACILITY LOCATION is a fundamental optimization problem appearing in various contexts. In the
metric uncapacitated version of the problem, we are given A sétfacilities,” and a setC of “clients.”
The cost of opening facility € F' is f;, and the cost of assigning cliepto facility 7 is d;;. The costs
d;; satisfy the triangle inequality. (You can think of the facilities and clients as points on a plane, for
instance. The cosl;; is the “distance” between facilityand clientj.) The Metric uncapacitated facility
location problem is to find a subsét C F' of facilities to be open and an assignment ¢ — O
assigning every client to some facilitya(;) to minimize the objective function

Do it dagyy

i€0 jec

The first part of the objective function is the cost of opening the facilifleghe second part is the
“service assignment cost.”

10



Designate a variable; indicating if facility ¢ is open andy;; indicating if client; is assigned to
facility 7, we get the following integer program:

min Zfia?i + Z dijyij

icF icFjeC
subjectto » yi; = 1 jec, (13)
ik

v < x; i€F, jedl,
xi,yijE{O,l}, iEF,jEC.

Relaxing this integer program gives the following linear program

min Zfia?i + Z dijYij

icF icFjeC
subjectto » “yi; = 1 jec, (14)
ik

v < x; i€F, jedl,
xi,yijE{O,l}, iEF,jEC.

The objective function of the LP has two parts: the open facility gait) = > ;. fiz;, and the
assignment par(y) = Zz’,j dijyi;. Let(x*, y*) be an optimal solution to the LP. As usual, we interpret
afractionalz; as a partially open facility, and a fractiongl as a partial assignment of cliepto facility

1.

The filtering step. The candidate facilities to assign cligito are the facilitieg with y;; > 0. However,
the corresponding assignment cagtsmight be too large. Fix a parameter- 0 to be determined later.
We first try to filter out, for each client, the facilities that are more thdm + ¢) of the optimal cost. Let
the current optimal (fractional) assignment cost for cligbe

i€l
Define the “good candidate facility set” fgrby
Cj={ily;; >0, dij < (1+€)AJ}.

Note thatC; # (). We next construct (using filtering) a feasible soluties), y’) to the LP so that two
conditions hold: (a) the cost ¢k’, y’) is not too far from the cost ofx*, y*), and (b)y;; > 0 implies
dij < (1 +€)A; (in other words, sey;; = 0 wheneverd;; > (1 + ¢)Aj). Because we have to keep
>.;Yi; = 1, we must change the positiyg; for which d;; < (14 e)A;. A simple rescaling works.

Define

y;j
Ziecj yfj
0 o0.W.

;o iECj
Yij =

Note that
A5 > S iy > (4043 Yy = (14045 | 1= Y
’iﬁéCj Z¢C i€Cj
In other words,
1 < 1+e

* (15)
Ziecj Yij €

11



This tells us thay;; is not more than a factor @i + ¢)/e from y;;. Thus, define
2} = min{L,2}(1 + ¢) e},

and we have the “filtered” solutiofx’, y’) for the LP. Moreover,
P(x) =) firy <Y fil+1/e)af = (1+1/e)F(x")
AY) =D diyl; <> L+ 0AY uf < (1+eA(yY)
i j i

The rounding step. Now that we have a good LP solution, we will use it to devise a greedy rounding
procedure. Choose a clieptvith smallest assignment codt;. Then, open the facility(j) in C; with
the least opening cost. Note that

D i = fagy Do w2 fat) D Ui = Jat)-

iGCj iEC]' iECj

Hence, the cost of opening facility(;) is at most the fractional cost of facilities coverinpgWe will not
open any other facility ir’; to keep the facility opening cost low. For apfywith C;; N C; # (), assign
j' to facility a(4) also, then repeat the process.

Thus, the facility opening cost is not increased, but we have increased the assignment cg'stdrom
a(j). Fortunately, the triangle inequality ensures that this increase is not by muchbéetny facility
in C;» N C; (facility < could be the same as;), which does not matter). We have

da(j)j’ < dij’ + dij + da(j)j < (1 + G)A;/ =+ (1 + E)A; + (1 + G)A;k < 3(1 + E)A;/.

Consequently, the facility opening cost is at mas#- 1/¢) F'(x*), and the assignment cost is at most

B(1+€)> A5 =3(1+e)A(y").
J

In total, the final cost is at most
(14+1/e)F(x*) +3(1+¢)A(y") < max{3(1+¢€),(1+1/¢)}OPT.

Thus, the approximation ratio of this algorithmisix{3(1+¢), (1+1/¢)}. To minimize this maximum,
we choose = 1/3, which yields an approximation ratio df

Exercise 22 g-MEDIAN using filtering and rounding). The k-MEDIAN problem can be defined as
follows. Given a set” of facilities and a se€’ of clients. As in the facility location problem, there is a
service costl;; if client j is assigned to facility. We are also given an integey wherek < |F'|. There
is no facility opening cost. We want to open a suli@eif at mostk facilities, then assign each client to
the “nearest” facility inO, so as to minimize the total assignment cost. Formally, the objective function
is

min dzj

€0
jec

(i) Formulate this problem as a linear integer program. Call the optimal cost for this praggrhP).

(i) Recall the &1 CovER problem, which has a corresponding IP and a corresponding LP. Each
feasible solution to the LP is calledfiactional set coverSuppose we have an efficient algorithm
which, given a fractional set cover, returns a set cover with cost at fhostes the cost of the
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fractional set cover. A rounding procedure applied to the fractional set cover is an example of such
algorithm. (Note thatf is actually a function of the input size, but this fact is not that important
for our problem.)

Suppose that thé;; may not satisfy the triangle inequality. For any> 0, use the filtering
and rounding method to devise an approximation algorithm foktheedian problem, where the
number of open facilities is at most+¢)k f, and the assignment cost is at m@st-1/¢)oPT(I P).

(iif) Now, assume thel;; satisfy the triangle inequality. For amy> 0, use the filtering and rounding
method to devise an approximation algorithm for #henedian problem, where the number of
open facilities is at mogtl + 1/¢)k, and the assignment cost is at m8gt + €)OPT(IP).

6 Multiway node cuts

In the MULTIWAY NODE CUT problem, we are given a vertex-weight graph= (V, E) with weight
functionw : V — Z*, and an independent setteiminalsT C G. The objective is to find a subset of
V — T whose removal disconnect the terminals from each otherPlsd the set of all paths connecting
the terminals, then an equivalent ILP is

min E WLy
veV-T

subjectto > x, >1, VPeEP (16)
veP\T

x, € {0,1} Yo e V.

min E WLy

veV-T
subjectto > m, >1, VPeP 17)

The corresponding LP is

T, >0 YvelV.

A separation oracle for this program can be described as follows. To chedk fieasible, construct a
directed graptD by turning each edgev of G into two edgegu, v) and(v, u) of D. Assign a weight
of x, to edge(u, v) and a weight ofc,, to edge(v, u). (For convenience, we set = 0 if v € T'.) Then,
find all shortest paths among all pairs of terminaldinIf one such shortest path has lengthl, then
we have found a separating hyperplane. Otherwise the solution is feasible.

Consequently, we can find an optimal solution to the LP efficiently. d*ebe an optimal solution
to the LP. If we round all positive:}; up to 1, certainly we get a feasible solution to the ILP, but the
approximation ratio may be too large. For instance, if the minimum positjvis 1/p, then our ratio
is p. (It seems difficult to prove a ratio less thann this case.) On the other hand, if we round some
positivez;, down to0, the integral solution might not be feasible. Thus, before rounding we will attempt
to construct another optimal solutiari from x* where the positive;; are not too small. To do so, we
will try to explore the structure at* using the notion of duality. The dual of the LP reads

max Z yp

PeP

subject to Z yp <cy, YWeV =T (18)
PveP

yp>0 VPeP.
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Lety* be an optimal solution to the dual LP. The dual program can be interpreted as routing commaodities
between all pairs of terminals, subject to the vertex capacity constraints.

The primal complementary slackness conditionreads: for eachv € V — T, if 7 > 0 then
> pwep Yp = Cu- Thus, this condition is saying that vertexs saturatedvheneverr;, > 0.

Thedual complementary slackness conditiomeadsfor eachP” € P, if y, > 0theny_  p\p 23 =
1. We will interpretheP\T xy as the “length” of the patl. Thus, this condition is saying thatis of
lengthl whenever}, > 0.

Our objective is to construct frox™* a feasible solutioz* whose smallest positive entry is as large
as possible. Preferably has the same cost &s$. In order to do this, we first need to know roughly
which z are positive.

For each terminal;, let.S; be the set of all nodes reachable fromwvithin distance zero. Due to the
constraints of the primal LP, th®; are pair-wise disjoint. Consider a pafthfrom¢; to ¢;. This path will
have to cross the boundary 8fto the outside and then cross the boundar§,ab step intaS;. For each
1, let B; be the set of vertices reachable fr¢inin one edge, other than thoseSn By the definition of
Si, x;, must be positive for alb in B;. We thus have found some set of vertieesith positivex;,.

Another simple observation is thatsife B; N B, for i # j, thenaz} = 1. Let B be the union of all
B;. Then,B is naturally partitioned into two subsek§ U X5, whereX; consists of all vertices which
are in the intersection of two distinét; and ;.

In order forz* to have the same cost ax, we will try to maintain both of the complementary
slackness conditions. The primal condition is easy to mainta{m if z; > 0} C {v | z} > 0}. To
maintain the dual condition, we have to make sure that each/paiith 47, > 0 has length, still. Thus,
we want to know which vertices such a path contain.

Consider a pattP from t; to t;, whereyy, > 0. The two end segments @t will contain vertices
from S; andS;. In the middle, there must be at least one verteXiru X,. If a vertexv of X; belongs
to P, then all other verticea on P must haver;, = 0. In particular, in this cas® will not contain any
vertex in X5. On the other hand, suppogtdoes not contain any vertex fro,, then it must contain
two verticesu € B; andv € B; from X,. Can there be another vertexother andu andv, wherew
belongs to somés;,? Here k could be equal té or ;. Let P; be the part of® from ¢; to w, andP; be the
part of P from w to ¢;. Let P, be a shorest path from to t;, (whose length i ). Now, eitherP; P,
is a valid path, otP; P, is a valid path, both of which have length strictly less thagontradicting the
feasibility of x*.

We have just shown that every pathwith y;, > 0 must either contain exactly one vertex froth
or, exclusively, exactly two vertices frotk,. Now, set

1 v e X
Zzp=141/2 veEXy.
0 0.W.

Then, it is easy to see that is feasible. Moreoverz* satisfies both of the complementary slackness
conditions. Thusz* is a half-integral optimal solution to the LP. Moreovet,can be constructed from

x* in polynomial time. It is interesting to note that we did not have to solve the dual program at all. We
merely used it for analytical purposes. This analysis leads directly to the following theorem.

Theorem 6.1. A 2-approximation algorithm for th&1ULTIWAY NODE CcUT problem can be obtained by
rounding all positivez; up to1. In effect, the seB is our approximated node cut.

Exercise 23.Whenk = 2, the MULTIWAY NODE CUT problem is equivalent to finding a minimum cut,
which can be done in polynomial time. Thus, it would be nice to have an approximation ratio which is a
function of k£, and which is equal td whenk = 2. Devise a2 — 2/k)-approximation algorithm for the
MULTIWAY NODE CUT problem.
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Historical Notes

Recent books on approximation algorithms include [1, 6, 13, 15].

It has been shown that approximatingEW¢HTED VERTEX COVER to within 10y/5 — 21 [2] is
NP-hard. A recent major result using PCP by Dinur and Safra showed that approximating WVC to
within 1.3606 isNP-hard [3]. See also the paper by Khot and Regev [8]. The approximatior2rédro
VERTEX COVER s still the best known to date.

Algorithm APPROXSCHEDULING-2 is from [10]. A PTAS for the uniform parallel machine case
was devised in [7]. See the surveys [4, 5, 9] for more results on scheduling problems.

The filtering and rounding method was developed by Lin and Vitter [11]. Shmoys, Tardos, and
Aardal [14] used this method to give3al 6-approximation algorithm for the metric UFL problem. The
4-approximation we presented was a variance of their idea. For a brief historical discussion on the facility
location problem, see [12]. Their method of dual-fitting is also very interesting, which we will discuss
in a later lecture.
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