
CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2006 Last update: October 12, 2006

LP Relaxation and Rounding

There are two fundamental approximation algorithm design techniques based on linear programming:
(a) LP-relaxation and rounding, and (b) the primal-dual method. In this lecture note, we will discuss the
former.

The basic idea of LP-relaxation and rounding is quite simple. We first formulate an optimization
problem as aninteger program(IP), which is a linear program (LP) with integer variables. Then, we
relax the integral constraints to turn the IP to an LP. Next, we solve the LP for an optimal solution, say
x∗, from which we construct a feasible solutionxA to the IP. This construction step is often done by
roundingthe coordinates ofx∗ to integers so thatxA is feasible. Rounding can be done deterministically
or probabilistically. In the latter approach is taken, we have the so-calledrandomized roundingmethod.
In many problems, we might need to look at the structure of an optimal solution to the LP, in order to
obtain sufficient information to make rounding decision.

Let cost(xA) and cost(x∗) denote the objective values ofxA andx∗, respectively. LetOPT(IP) and
OPT(LP) denote the optimal values of the the IP and the LP, respectively. (Note thatOPT(LP) =
cost(x∗).) Suppose we are working on a minimization problem, then the performance ratio of this
algorithm can be obtained by observing that

cost(xA) ≤ cost(xA)
OPT(LP)

× OPT(LP) ≤ cost(xA)
cost(x∗)

× OPT(IP).

Consequently, any upper bound of the ratiocost(xA)
cost(x∗) is an approximation ratio for this algorithm. If this

approach is taken “as is,” the best approximation we can hope for iscost(IP)
cost(LP) , whose supremum is referred

to as theintegrality gap. We will have more to talk about this gap later. It is possible, in many cases, to
devise algorithms whose approximation ratios are better than the integrality gap by delving deeper into
the structure of the problem at hand.

1 Linear programs and linear integer programs

A linear integer programis similar to a linear program with an additional requirement that variables
are integers. The INTEGER PROGRAMMING problem is the problem of determining if a given integer
program has a feasible solution. This problem is known to beNP-hard. Hence, we cannot hope to solve
general integer programs efficiently. However, integer programs can often be used to formulate a lot of
discrete optimization problems. One of the most well-known NP-hard problems is the following:

VERTEX COVER

Given a graphG = (V,E), |V | = n, |E| = m, find a minimum vertex cover, namely a
minimum-size subsetC ⊆ V such that every edge ofG has at least one end inC.

Let us see how we can formulate VERTEX COVER as an integer program. Suppose we are given a
graphG = (V,E) with n vertices andn edges. For eachi ∈ V = {1, . . . , n}, let xi ∈ {0, 1} be a

1

variable which is1 if i belongs to the vertex cover, and0 otherwise; then, the problem is equivalent to
solving the following (linear)integer program:

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.

(1)

The objective function basically counts the number of vertices in the vertex cover. Each inequality
xi + xj ≥ 1 requires the corresponding edge to have at least one of its end points in the vertex cover.
Actually, the formulation above is somewhat too strict. Suppose we relax it a little bit:

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ≥ 0, xi ∈ Z ∀i ∈ V.

Then, this would still be equivalent to solving the vertex cover problem, since in an optimal solution to
the integer program above, none of thexi can be more than1.

The next problem is a generalized version of the VERTEX COVER problem.

WEIGHTED VERTEX COVER

Given a graphG = (V,E), |V | = n, |E| = m, a weight functionw : V → R. Find a vertex
coverC ⊆ V for which

∑
i∈C w(i) is minimized.

An equivalent linear integer program can be written as

min w1x1 + w2x2 + · · ·+ wnxn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.

Note that if the weights were all non-negative, then we only have to require the variables to be non-
negative integers, just like in the case of normal vertex cover. An IP as above is also referred to as a
01-integer program.

The next two problems are more general versions of the VERTEX COVER and the WEIGHTED VER-
TEX COVER problems. Recall that we use[n] to denote the set{1, . . . , n}, for all positive integern;
naturally[0] denotes∅.

SET COVER

Given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m}. Find a sub-collection
C = {Sj | j ∈ J} with as few members as possible such that

⋃
j∈J Sj = [m].

WEIGHTED SET COVER

Given a collectionS = {S1, . . . , Sn} of subsets of[m] = {1, . . . ,m}, and a weight function
w : S → R. Find a coverC = {Sj | j ∈ J} with minimum total weight.

Similar to VERTEX COVER, we use a01-variablexj to indicate the inclusion ofSj in the cover. The
corresponding IP is thus

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

TRAVELING SALESMAN (TSP)

2

A salesman must visitn cities each exactly once and return to the originating city. Given the
time to go from cityi to city j is tij , find a tour which takes the shortest time.

This problem is slightly more difficult to formulate then the ones we have seen. Letxij be the01-variable
indicating if the salesman does go from cityi to city j. Obviously, we want the salesman to go intoi
exactly once and to go out ofj exactly once for each cityi, j. This condition alone, however, does not
ensure the connectedness as we might form a few disjoint cycles. We also need constraints to ensure the
connectivity of our tour. This could be done by checking for each non-empty setS ⊂ [n] if there was at
least one edge leavingS. In summary, we have the following equivalent linear integer program:

min
∑

i6=j tijxij

subject to
∑

j:j 6=i xij = 1, ∀i ∈ [n],∑
i:i6=j xij = 1, ∀j ∈ [n],∑
i∈S,j /∈S xij ≥ 1, ∀S ⊂ [n], S 6= ∅

xij ∈ {0, 1}, ∀i, j ∈ [n], i 6= j.

Exercise 1 (ASSIGNMENTPROBLEM). Formulate the following problem as an IP problem:

There aren processors andn tasks. Each processor might be more suitable to perform a
particular kind of task. Hence, there is a costwij associated if processori was to do taskj.
Find a one-to-one assignment of processors to tasks which minimizes the total cost.

Exercise 2 (KNAPSACK). Formulate the following problem as an IP problem:

Given n items with valuesv1, . . . , vn, and weightsw1, . . . , wn, correspondingly. Find a
subsetS of items with total weight at most a givenW , such that the total value ofS is as
large as possible.

Exercise 3 (INDEPENDENTSET). Formulate the following problem as an IP problem:

Given a graphG = (V,E), a weight functionw : V → R+, find an independent set of
maximum total weight; namely, a subsetP ⊆ V of vertices such that no pair of vertices in
P are adjacent and the sum

∑
i∈P w(i) is maximized.

Exercise 4. Given anm× n matrixA whose entries are either0 or 1, andw ∈ Zn, c ≥ ~0. As usual, we
use~0 to denote the all-0 vector, whose dimension is implicit in the (in)equality involved, and~1 to denote
the all-1 vector. The (weighted) SET COVER problem has the form

min
{

wT x | Ax ≥ ~1, x ∈ {0, 1}n
}

, (2)

while the INDEPENDENTSET problem in the previous exercise has the form

max
{

wT x | Ax ≤ ~1, x ∈ {0, 1}n
}

, (3)

(That is, if you do it correctly.)
In this problem, we shall see that the converse is also true:

(i) Given an integer program of the form (2), whereA is any 01-matrix, formulate a (weighted) SET

COVER instance which is equivalent to the program.

(ii) Given an integer program of the form (3), whereA is any 01-matrix, formulate an INDEPENDENT

SET instance which is equivalent to the program.

3

In both questions, show the “equivalence.” For example, in(i) you must show that the minimum
weighted set cover of the constructed set family corresponds to an optimal solution of the integer program
and vice versa.

Exercise 5 (BIN PACKING). Formulate the following problem as an IP problem:

Given a set ofn items{1, . . . , n}, and their “size”s(i) ∈ (0, 1]. Find a way to partition the
set of items in to a minimum numberm of “bins” B1, . . . , Bm, such that∑

i∈Bj

s(i) ≤ 1, ∀j ∈ [m].

2 Covering Problems

The LP corresponding to the IP (1) of VERTEX COVER is

min x1 + x2 + · · ·+ xn

subject to xi + xj ≥ 1, ∀ij ∈ E,
0 ≤ xi ≤ 1, ∀i ∈ V.

(4)

Exercise 6.Show that, given any graphG, any vertexx of the polyhedron defined by (4) ishalf-integral,
i.e. xi is either0, 1/2, or 1.

Obviously if the LP is infeasible, then the IP is also infeasible. This is the first good reason to
do relaxation. Now, supposex∗ is an optimal solution to the LP. We know thatx∗ can be found in
polynomial time. We can construct a feasible solutionxA to the IP as follows. Let

xA
i =

{
1 if x∗i ≥ 1/2
0 if x∗i < 1/2.

You should check thatxA is definitely feasible for the IP. This technique of constructing a feasible
solution for the IP from the LP is calledrounding. We have just seen the second advantage of doing
relaxation. The third is that an optimal value for the LP provides a lower bound for the optimal value of
the IP. Following the principle described in the beginning, an upper bound of cost(xA)/ cost(x∗) is an
approximation ratio for this algorithm. It is straightforward that

cost(x∗) = x∗1 + · · ·+ x∗n ≥
1
2
xA

1 + · · ·+ 1
2
xA

n =
1
2
Cost(xA).

We thus have a2-approximation algorithm to solve the VERTEX COVER problem. Since it is impossible,
unless P= NP, to have an exact polynomial time algorithm to solve VERTEX COVER, an algorithm
giving a feasible solution within twice the optimal is nice to have. The exact same technique works for
the WEIGHTED VERTEX COVER problem, when the weights are non-negative. Thus, we also have a
2-approximation algorithm for the WEIGHTED VERTEX COVER problem.

Theorem 2.1. There is an approximation algorithm to solve theWEIGHTED VERTEX COVER problem
with approximation ratio2.

Exercise 7.Show that the integrality gap for the VERTEX COVER problem is at least2(1− 1/n), where
n is the number of vertices.

Exercise 8. Given a graphG and and properk-coloring ofG (i.e. a coloring usingk colors such that
two adjacent vertices have different colors). We want to solve the WEIGHTED VERTEX COVER on G.
Devise a polynomial time(2− 2/k)-approximation algorithm to solve this problem.

4

To this end, let us attempt to use the relaxation and rounding idea to find approximation algorithms
for the WEIGHTED SET COVER problem. In fact, we shall deal with the following much more general
problem called the GENERAL COVER problem:

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, i ∈ [m].
xj ∈ {0, 1}, ∀j ∈ [n],

(5)

whereaij , bi, cj are all non-negative integers. Since we can remove an inequality ifbi = 0, we can
assume thatb > 0. Moreover, ifcj = 0 then we can setxj = 1 and remove columnj. Thus, we can
also assume thatc > 0. Lastly, assume

∑
j aij ≥ bi, for all i ∈ [m]; otherwise, the system is infeasible.

The relaxed LP version for (5) is

min c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≥ bi, i ∈ [m].
0 ≤ xj ≤ 1, ∀j ∈ [n],

(6)

Let x∗ be an optimal solution to the LP version. How would we roundx∗ to getxA as in the VERTEX

COVER case? Firstly, the rounding must ensure thatxA is feasible, namely they must satisfy each of
the inequalitiesai1x1 + · · ·+ ainxn ≥ bi. Secondly, we do not want to “over-round,” such as assigning
everything to1, which would give a feasible solution but it does not give a very good approximation.
Consider an inequality such as

3x∗1 + 4x∗2 + x∗3 + 2x∗4 ≥ 4, (7)

which x∗ satisfies. If we were to round some of thex∗i up to 1, and the rest down to0, we must
pick the ones whose coefficients sum up to4 or more. For instance, we could roundx∗2 up to 1 and
the rest to0, or x∗1 andx∗3 to 1 and the rest to0. The difficulty with this idea is that there might be an
exponential number of ways to do this, and we also have to do this consistently throughout all inequalities
ai1x1 + · · · + ainxn ≥ bi. We cannot roundx∗1 to 0 in one inequality, and to1 in another. Fortunately,
some information about whichx∗j to round is contained in the actual values of thex∗j . Consider inequality
(7) again. The sum of all coefficients of thex∗j is 10. If all x∗j were at most1/10, then the left hand side
is at most1. Hence, there must be somex∗j which are at least1/10. If x∗2 ≥ 1/10, and we round it up to
1, then we’d be fine. However, ifx∗3 andx∗4 are the only ones which are≥ 1/10, then rounding them up
to 1 is not sufficient. Fortunately, that cannot happen, because ifx∗1, x

∗
2 < 1/10 andx∗3, x

∗
4 ≥ 1/10, then

3x∗1 + 4x∗2 + x∗3 + 2x∗4 <
3
10

+
4
10

+ 1 + 2 < 4.

Thus,the sum of the coefficients of thex∗j which are at least1/(ai1 + · · · + ain) has to be at leastbi.
This is an informal proof. We will give a rigorous one later.

The analysis above leads to the following rounding strategy. Let

f = max
i∈[m]

 n∑
j=1

aij

 ,

and set

xA
j =

{
1 if x∗j ≥ 1

f

0 if x∗j < 1
f ,

then we have an approximation ratio off .

Theorem 2.2.The rounding strategy above gives an approximation algorithm for theGENERAL COVER

problem with approximation ratio at mostf .

5

Proof. We first show thatxA is indeed feasible for IP-GC (the integer program for the GENERAL COVER

problem). SupposexA is not feasible, then there is some rowi for which∑
j:x∗j≥1/f

aij ≤ bi − 1.

But then
n∑

j=1

aijx
∗
j =

∑
j:x∗j≥1/f

aijx
∗
j +

∑
j:x∗j <1/f

aijx
∗
j <

∑
j:x∗j≥1/f

aij + 1 ≤ bi,

which is a contradiction. For the performance ratio, notice that

cost(xA) =
n∑

j=1

cjx
A
j ≤

n∑
j=1

cj(fx∗j) = f · OPT(LP).

Exercise 9. Describe the ratiof for the WEIGHTED SET COVER problem in terms ofm, n and the set
collectionS.

Exercise 10.Suppose we apply the rounding strategy above to the WEIGHTED SET COVER problem.
However, instead of rounding thex∗j ≥ 1/f up to 1, we round all positivex∗j up to 1. Show that we
would still have anf -approximation algorithm. (Hint : consider the primal complementary slackness
condition.)

3 Minimum complete matching in bipartite graphs

In this problem, we are given a bipartite graphG = (A ∪ B,E), where|A| ≤ |B|, along with a weight
functionw : E → Z+ which assigns a non-negative weight to each edge ofG. The problem is to find a
minimum weight perfect matching fromA into B. The corresponding integer program can be formulated
as follows.

min
∑

uv∈E

wuvxuv

subject to
∑

v:uv∈E

xuv = 1 ∀u ∈ A,

∑
u:uv∈E

xuv ≤ 1 ∀v ∈ B,

xuv ∈ {0, 1} ∀uv ∈ E.

(8)

In the corresponding LP, the integral condition is relaxed toxuv ≥ 0:

min
∑

uv∈E

wuvxuv

subject to
∑

v:uv∈E

xuv = 1 ∀u ∈ A,

∑
u:uv∈E

xuv ≤ 1 ∀v ∈ B,

xuv ≥ 0 ∀uv ∈ E.

(9)

Lemma 3.1. Every vertex of the polyhedron defined by(9) is integral.

6

Proof. Letx be any vertex of the polyhedron. Consider the subgraphH of G induced by taking all edges
uv wherexuv ∈ (0, 1).

If G′ has a cycleC, then the cycle must be of even length. Suppose the cycle consists of edges
u1u2, u2u3, . . . ,u2k−1u2k, u2ku1. Then, for anyε with sufficiently small absolute value, the vectory(ε)

defined by
y

(ε)
uv = xuv uv /∈ C

y
(ε)
u1u2 = xu1u2 + ε

y
(ε)
u1u2 = xu2u3 − ε
. . .

y
(ε)
u2k−1u2k = xu2k−1u2k

+ ε

y
(ε)
u2ku1 = xu2ku1 − ε

is feasible. But then,x = (y(ε) + y(−ε))/2, which is a contradiction.
If G′ has no cycle, consider a maximal pathu1u2 . . . uk. Because each vertex inA of G′ has degree

at least2, u1 anduk belongs toB. The same trick applies.

Corollary 3.2. To solve the minimum complete matching problem on bipartite graphs, we can just solve
for the optimal vertex of the corresponding LP, which will also be an optimal solution to the IP.

Exercise 11.Let G = (V,E) be a simple graph. Thematching polytopeM(G) associated withG is
defined by ∑

v : uv∈E

xuv ≤ 1 v ∈ V

xuv ≥ 0 uv ∈ E.
(10)

SupposeG is bipartite. Show that the vertices ofM(G) are exactly the characteristic vectors of (not
necessarily complete nor perfect) matchings ofG.

The maximum matching problemasks us to find a matching of maximum size in a given graphG.
The previous exercise shows that, we can solve the maximum matching problem by solving the linear
programmax{

∑
uv∈E xuv | x ∈ M(G)} for an optimal vertex. The dual of this program can be written

as follows.
min

∑
v∈V

yv

subject to yu + yv ≥ 1 uv ∈ E
yv ≥ 0 v ∈ V.

(11)

A 01-solution to this program corresponds to a vertex cover ofG.

Exercise 12.SupposeG is bipartite. Show that the vertices of the polyhedron defined in (11) are pre-
cisely characteristic vectors ofminimalvertex cover ofG.

Exercise 13 (K̈onig’s Minimax Theorem). LetG by a bipartite graph. Show that the size of a maximum
matching ofG is equal to the size of a minimum vertex cover.

Exercise 14 (K̈onig’s Edge Coloring Theorem). Formulate the edge coloring problem for bipartite
graphs as an integer linear programming problem. Use the formulation to show that the chromatic index
of every bipartite graph is equal to its maximum degree.

Exercise 15 (Birkhoff-von Neumann Theorem).A non-negative square matrixA is doubly stochastic
if each row and each column sums up to1. Show that every stochastic matrixA can be written as a
convex combination of permutation matrices.

7

4 Scheduling on unrelated parallel machines

Consider a set ofn jobs J1, . . . , Jn, which are to be processed onm machinesM1, . . . ,Mm. In an
unrelated parallel machine environment, jobJj has a processing time ofpij ∈ Z+ on machineMi. Each
machine can only process one job at a time. The objective is to devise a schedule so that the maximum
completion timeCmax is minimized.

Before discussing an LP-relaxation and rouding solution to this problem, we have a few words on
notations describing scheduling problems. Using the standard notations [4,5,9], each scheduling problem
is described with three fields:

• The first is the machine environment. For example,1 indicates asingle machine,P meansidentical
parallel machines, R meansunrelated parallel machines, etc.

• The second specifies special constraints or conditions on the problem. For example,pj = 1 means
unit processing time, prec indicatesprecedence constraints(i.e. some job has to be processed
completely before another job can start), etc.

• The third is the objective function. For example,Cmax is the maximum completion time, com-
monly referred to as themakespanof a schedule,P indicates the total processing times,

∑
Cj is

the total completion times,Lmax is the maximum lateness, etc.

This section is concerned with theP||Cmax problem, which was defined earlier. More specifically, our
problem does not allowpreemtion, i.e. once a job starts on a machine, it cannot be interrupted.

Let xij be a variable indicating if jobj is to be processed on machinei. The following integer
program is equivalent to our problem.

min t
subject to

∑n
i=1 xij = 1 j ∈ [m]∑m

j=1 pijxij ≤ t i ∈ [n]

xij ∈ {0, 1}, ∀i ∈ [n],∀j ∈ [m].

(12)

In the corresponding LP, we relax the integer constraints to bexij ≥ 0.

Exercise 16.Give an example showing that the integrality gap for (12) is at leastm.

Exercise 17.Show that a non-empty polyhedronP = {x |A1x = b1,A2x ≤ b2,x ≥ 0} always has a
vertex. Moreover, supposek is the total number of rows ofA1 andA2. Show that a vertexx∗ of P has
at mostm positive components.

Exercise 17 shows that the polyhedron defined by∑n
i=1 xij = 1 j ∈ [m]∑m

j=1 pijxij ≤ t i ∈ [n]
xij ≥ 0 ∀i ∈ [n],∀j ∈ [m]

always has a vertex. (Recallpij ∈ Z+.) In particular, a vertex(x∗, t∗) has at mostm + n positive
variables. This means that the number of fractional (i.e. non-integral)x∗ij is at mostm + n − 1. We
intepret the value ofx∗ij to mean “a fractionx∗ij of job j is assigned to machinei.” An easy counting
argument implies that the number of jobs fractionally assigned is at mostm − 1. This suggests the
following algorithm.

APPROX-SCHEDULING-1

8

1: Use integral variablesx∗ij of the optimal vertex(x∗, t∗) to assign jobs to machines. After this step,
there is a setU of at mostm− 1 jobs not yet scheduled.

2: Schedule optimally the jobs inU by looking at allO(mn) possibilities.

Let OPT(Cmax) be the optimal makespan. Then,t∗ ≤ OPT(Cmax). This means that the makespan
of the integrally assigned jobs (in step 1) is at mostOPT(Cmax). Since the jobs inU are optimally
scheduled, their makespan is at mostOPT(Cmax) also. Thus, algorithm APPROX-SCHEDULING-1 has
approximation ratio2. Unfortunately, the running time is exponential if the number of machines is not a
constant.

Fortunately, the previous algorithm suggests the following idea. Suppose we can find a schedule in
which the integral schedule’s makespan is at mostT , and the fractional variablesxij all correspond to
pij ≤ T , which we can some how match to machines in a one-to-one manner, then the final schedule’s
makespan is at most2T .

For each positive integerT , let ST = {ij | pij ≤ T}, and consider the following polyhedron called
P (T): ∑

i : ij∈ST
xij = 1 j ∈ [m]∑

j : ij∈ST
pijxij ≤ T i ∈ [n]

xij ≥ 0 ∀ij ∈ ST .

Let α = maxj mini pij , andβ be the makespan of thegreedy schedulewhich assigns each job to a
machine with minimum processing time. For anyT ∈ [α, β]:

• if P (T) is empty, then there is no (integral) schedule of makespan at mostT . Note that, the
converse is not true: ifP (T) is not empty, then it is not necessary that the is an integral schedule
of makespan at mostT . However, we will show that ifP (T) is not empty, then there is an integral
schedule of makespan at most2T .

• if P (T) is not empty, thenP (T ′) is not empty for allT ′ ≥ T .

LetT ∗ be the smallest (integral) value ofT in the interval[α, β] for whichP (T) is not empty. Clearly
we can findT ∗ with a simple binary search in the range[α, β]. Moreover,T ∗ ≤ OPT(Cmax) because at
T = OPT(Cmax) even the corresponding IP is feasible.

Exercise 17 tells us thatP (T ∗) is pointed, and every vertexx∗ has at mostm+n positive coordinates.
This implies that the number of fractionally assigned jobs (according tox∗) is at mostm. Let G =
(A,B;E) be a bipartite graph defined as follows:A is the set of fractionally assigned jobs,B is the set
of machines to which some fractional jobs were assigned, andij ∈ E iff x∗ij is fractional. We will show
that there is a complete matching fromA into B. The final schedule assign integrally set jobs according
to x∗ij , then assign each job inA to its matched machine inB.

The complete algorithm can be summarized as follows.

APPROX-SCHEDULING-2
1: Use binary search to find the least valueT ∗ ∈ [α, β] for whichP (T ∗) is not empty.
2: Find a vertexx∗ of P (T ∗).
3: Construct the bipartite graphG = (A,B;E) as described above. Find a complete matching fromA

into B.
4: Assign integrally set jobs to corresponding machines
5: For fractionally set jobs (inA), assign them according to the complete matching just found.

Theorem 4.1. AlgorithmAPPROX-SCHEDULING-2 has approximation ratio2.

Proof. It remains to show that there is a complete matching fromA to B in the bipartite graphG.
Consider any subset of fractionally assigned jobsS ⊆ A, we only need to check Hall’s maching condition

9

that |Γ(S)| ≥ |S|, whereΓ(S) is the set of neighbors ofS. Let H = (S, Γ(S);E(H)) be the subgraph
of G induced byS andΓ(S). Consider the polyhedronP which is defined in the same way asP (T ∗)
restricting to variables corresponding to edges inE(H). Let y∗ bex∗ restricted toH. Then,y∗ must
be a vertex ofP , otherwisex∗ is not a vertex ofP (T ∗). Thus, the number of positive components
of y∗ is at most|S| + |Γ(S)| (Exercise 17). But, the number positive components ofy∗ is exactly
|E(H)|. Moreover, each fractionally assigned job must be assigned to at least2 machines. Consequently,
2|S| ≤ |E(H)| ≤ |S|+ |Γ(S)|.

Exercise 18.A graph withn vertices is called a1-treeif it has at mostn edges. Show that each connected
component of the bipartite graphG = (A,B;E) above is a1-tree, whose leaf nodes are all inB. Using
this fact, construct a complete matching fromA into B in G.

Exercise 19.Supposepij = pj ,∀i (i.e. the machines are identical). Does algorithm APPROX-SCHEDULING-
2 have approximation ratio better than2?

Exercise 20. SupposeP (T) is not empty. Show that it has a vertex whose corresponding “fractional
bipartite graph”G is a forest.

Exercise 21.Give a PTAS for the problem of minimizing makespan on uniform parallel machines. In
this problem, there is a speedsi associated with each machineMi. The processing time for jobj is pj/si.

5 Filtering and rounding

In this section, we illustrate the technique offiltering and roundingby presenting an approximation
algorithm for the metric uncapacitated facility location problem. Filtering and rounding typically goes
as follows:

• Formulate the optimization problem as an IP.

• Formulate the corresponding LP.

• Use an optimal solution to the LP to construct a “filtered” version of the optimization problem; this
steps often involves setting some integer variables to be zero in the IP, in effect creating a restricted
version of the IP. The filtered problem has optimal (integral) cost within about(1 + ε) of the LP.

• Finally, a rounding step produces a good integral solution to the filtered problem.

FACILITY LOCATION is a fundamental optimization problem appearing in various contexts. In the
metric uncapacitated version of the problem, we are given a setF of “facilities,” and a setC of “clients.”
The cost of opening facilityi ∈ F is fi, and the cost of assigning clientj to facility i is dij . The costs
dij satisfy the triangle inequality. (You can think of the facilities and clients as points on a plane, for
instance. The costdij is the “distance” between facilityi and clientj.) The Metric uncapacitated facility
location problem is to find a subsetO ⊆ F of facilities to be open and an assignmenta : C → O
assigning every clientj to some facilitya(j) to minimize the objective function∑

i∈O

fi +
∑
j∈C

da(j),j .

The first part of the objective function is the cost of opening the facilitiesO; the second part is the
“service assignment cost.”

10

Designate a variablexi indicating if facility i is open andyij indicating if client j is assigned to
facility i, we get the following integer program:

min
∑
i∈F

fixi +
∑

i∈F,j∈C

dijyij

subject to
∑
i∈F

yij = 1 j ∈ C,

yij ≤ xi i ∈ F, j ∈ C,
xi, yij ∈ {0, 1}, i ∈ F, j ∈ C.

(13)

Relaxing this integer program gives the following linear program

min
∑
i∈F

fixi +
∑

i∈F,j∈C

dijyij

subject to
∑
i∈F

yij = 1 j ∈ C,

yij ≤ xi i ∈ F, j ∈ C,
xi, yij ∈ {0, 1}, i ∈ F, j ∈ C.

(14)

The objective function of the LP has two parts: the open facility partF (x) =
∑

i∈F fixi, and the
assignment partA(y) =

∑
i,j dijyij . Let (x∗,y∗) be an optimal solution to the LP. As usual, we interpret

a fractionalx∗i as a partially open facility, and a fractionaly∗ij as a partial assignment of clientj to facility
i.
The filtering step. The candidate facilities to assign clientj to are the facilitiesi with yij > 0. However,
the corresponding assignment costsdij might be too large. Fix a parameterε > 0 to be determined later.
We first try to filter out, for each clientj, the facilities that are more than(1 + ε) of the optimal cost. Let
the current optimal (fractional) assignment cost for clientj be

A∗
j =

∑
i∈F

dijy
∗
ij .

Define the “good candidate facility set” forj by

Cj = {i | y∗ij > 0, dij ≤ (1 + ε)A∗
j}.

Note thatCj 6= ∅. We next construct (using filtering) a feasible solution(x′,y′) to the LP so that two
conditions hold: (a) the cost of(x′,y′) is not too far from the cost of(x∗,y∗), and (b)y′ij > 0 implies
dij ≤ (1 + ε)A∗

j (in other words, sety′ij = 0 wheneverdij > (1 + ε)A∗
j). Because we have to keep∑

i yij = 1, we must change the positivey∗ij for which dij ≤ (1 + ε)A∗
j . A simple rescaling works.

Define

y′ij =


y∗ijP

i∈Cj
y∗ij

i ∈ Cj

0 o.w.

Note that

A∗
j >

∑
i/∈Cj

dijy
∗
ij > (1 + ε)A∗

j

∑
i/∈Cj

y∗ij = (1 + ε)A∗
j

1−
∑
i∈Cj

y∗ij

 .

In other words,
1∑

i∈Cj
y∗ij

<
1 + ε

ε
. (15)

11

This tells us thaty′ij is not more than a factor of(1 + ε)/ε from y∗ij . Thus, define

x′i = min{1, x∗i (1 + ε)/ε},

and we have the “filtered” solution(x′,y′) for the LP. Moreover,

F (x′) =
∑

i

fix
′
i ≤

∑
i

fi(1 + 1/ε)x∗i = (1 + 1/ε)F (x∗)

A(y′) =
∑

j

∑
i

dijy
′
ij ≤

∑
j

(1 + ε)A∗
j

∑
i

y′ij ≤ (1 + ε)A(y∗)

The rounding step. Now that we have a good LP solution, we will use it to devise a greedy rounding
procedure. Choose a clientj with smallest assignment costA∗

j . Then, open the facilitya(j) in Cj with
the least opening cost. Note that∑

i∈Cj

fix
′
i ≥ fa(j)

∑
i∈Cj

x′i ≥ fa(j)

∑
i∈Cj

y′ij = fa(j).

Hence, the cost of opening facilitya(j) is at most the fractional cost of facilities coveringj. We will not
open any other facility inCj to keep the facility opening cost low. For anyj′ with Cj′ ∩ Cj 6= ∅, assign
j′ to facility a(j) also, then repeat the process.

Thus, the facility opening cost is not increased, but we have increased the assignment cost fromj′ to
a(j). Fortunately, the triangle inequality ensures that this increase is not by much. Leti be any facility
in Cj′ ∩ Cj (facility i could be the same asa(j), which does not matter). We have

da(j)j′ ≤ dij′ + dij + da(j)j ≤ (1 + ε)A∗
j′ + (1 + ε)A∗

j + (1 + ε)A∗
j ≤ 3(1 + ε)A∗

j′ .

Consequently, the facility opening cost is at most(1 + 1/ε)F (x∗), and the assignment cost is at most

3(1 + ε)
∑

j

A∗
j = 3(1 + ε)A(y∗).

In total, the final cost is at most

(1 + 1/ε)F (x∗) + 3(1 + ε)A(y∗) ≤ max{3(1 + ε), (1 + 1/ε)}OPT.

Thus, the approximation ratio of this algorithm ismax{3(1+ε), (1+1/ε)}. To minimize this maximum,
we chooseε = 1/3, which yields an approximation ratio of4.

Exercise 22 (k-MEDIAN using filtering and rounding). The k-MEDIAN problem can be defined as
follows. Given a setF of facilities and a setC of clients. As in the facility location problem, there is a
service costdij if client j is assigned to facilityi. We are also given an integerk, wherek ≤ |F |. There
is no facility opening cost. We want to open a subsetO of at mostk facilities, then assign each client to
the “nearest” facility inO, so as to minimize the total assignment cost. Formally, the objective function
is ∑

j∈C

min
i∈O

dij .

(i) Formulate this problem as a linear integer program. Call the optimal cost for this programOPT(IP).

(ii) Recall the SET COVER problem, which has a corresponding IP and a corresponding LP. Each
feasible solution to the LP is called afractional set cover. Suppose we have an efficient algorithm
which, given a fractional set cover, returns a set cover with cost at mostf times the cost of the

12

fractional set cover. A rounding procedure applied to the fractional set cover is an example of such
algorithm. (Note that,f is actually a function of the input size, but this fact is not that important
for our problem.)

Suppose that thedij may not satisfy the triangle inequality. For anyε > 0, use the filtering
and rounding method to devise an approximation algorithm for thek-median problem, where the
number of open facilities is at most(1+ε)kf , and the assignment cost is at most(1+1/ε)OPT(IP).

(iii) Now, assume thedij satisfy the triangle inequality. For anyε > 0, use the filtering and rounding
method to devise an approximation algorithm for thek-median problem, where the number of
open facilities is at most(1 + 1/ε)k, and the assignment cost is at most3(1 + ε)OPT(IP).

6 Multiway node cuts

In the MULTIWAY NODE CUT problem, we are given a vertex-weight graphG = (V,E) with weight
functionw : V → Z+, and an independent set ofterminalsT ⊂ G. The objective is to find a subset of
V − T whose removal disconnect the terminals from each other. LetP be the set of all paths connecting
the terminals, then an equivalent ILP is

min
∑

v∈V−T

wvxv

subject to
∑

v∈P\T

xv ≥ 1, ∀P ∈ P

xv ∈ {0, 1} ∀v ∈ V.

(16)

The corresponding LP is
min

∑
v∈V−T

wvxv

subject to
∑

v∈P\T

xv ≥ 1, ∀P ∈ P

xv ≥ 0 ∀v ∈ V.

(17)

A separation oracle for this program can be described as follows. To check ifx is feasible, construct a
directed graphD by turning each edgeuv of G into two edges(u, v) and(v, u) of D. Assign a weight
of xv to edge(u, v) and a weight ofxv to edge(v, u). (For convenience, we setxv = 0 if v ∈ T .) Then,
find all shortest paths among all pairs of terminals inD. If one such shortest path has length< 1, then
we have found a separating hyperplane. Otherwise the solution is feasible.

Consequently, we can find an optimal solution to the LP efficiently. Letx∗ be an optimal solution
to the LP. If we round all positivex∗v up to 1, certainly we get a feasible solution to the ILP, but the
approximation ratio may be too large. For instance, if the minimum positivex∗v is 1/ρ, then our ratio
is ρ. (It seems difficult to prove a ratio less thanρ in this case.) On the other hand, if we round some
positivex∗v down to0, the integral solution might not be feasible. Thus, before rounding we will attempt
to construct another optimal solutionz∗ from x∗ where the positivez∗v are not too small. To do so, we
will try to explore the structure ofx∗ using the notion of duality. The dual of the LP reads

max
∑
P∈P

yP

subject to
∑

P :v∈P

yP ≤ cv, ∀v ∈ V − T

yP ≥ 0 ∀P ∈ P.

(18)

13

Lety∗ be an optimal solution to the dual LP. The dual program can be interpreted as routing commodities
between all pairs of terminals, subject to the vertex capacity constraints.

The primal complementary slackness conditionreads: for eachv ∈ V − T , if x∗v > 0 then∑
P :v∈P y∗P = cv. Thus, this condition is saying that vertexv is saturatedwheneverx∗v > 0.
Thedual complementary slackness conditionreads:for eachP ∈ P, if y∗P > 0 then

∑
v∈P\T x∗v =

1. We will interpret
∑

v∈P\T x∗v as the “length” of the pathP . Thus, this condition is saying thatP is of
length1 whenevery∗P > 0.

Our objective is to construct fromx∗ a feasible solutionz∗ whose smallest positive entry is as large
as possible. Preferablyz∗ has the same cost asx∗. In order to do this, we first need to know roughly
whichx∗v are positive.

For each terminalti, let Si be the set of all nodes reachable fromti within distance zero. Due to the
constraints of the primal LP, theSi are pair-wise disjoint. Consider a pathP from ti to tj . This path will
have to cross the boundary ofSi to the outside and then cross the boundary ofSj to step intoSj . For each
i, let Bi be the set of vertices reachable fromSi in one edge, other than those inSi. By the definition of
Si, x∗v must be positive for allv in Bi. We thus have found some set of verticesv with positivex∗v.

Another simple observation is that, ifv ∈ Bi ∩Bj for i 6= j, thenx∗v = 1. Let B be the union of all
Bi. Then,B is naturally partitioned into two subsetsX1 ∪X2, whereX1 consists of all verticesv which
are in the intersection of two distinctBi andBj .

In order forz∗ to have the same cost axx∗, we will try to maintain both of the complementary
slackness conditions. The primal condition is easy to maintain if{v | z∗v > 0} ⊆ {v | x∗v > 0}. To
maintain the dual condition, we have to make sure that each pathP with y∗P > 0 has length1, still. Thus,
we want to know which vertices such a path contain.

Consider a pathP from ti to tj , wherey∗P > 0. The two end segments ofP will contain vertices
from Si andSj . In the middle, there must be at least one vertex inX1 ∪X2. If a vertexv of X1 belongs
to P , then all other verticesu on P must havex∗u = 0. In particular, in this caseP will not contain any
vertex inX2. On the other hand, supposeP does not contain any vertex fromX1, then it must contain
two verticesu ∈ Bi andv ∈ Bj from X2. Can there be another vertexw other andu andv, wherew
belongs to someBk? Here,k could be equal toi or j. LetPi be the part ofP from ti to w, andPj be the
part ofP from w to tj . Let Pk be a shorest path fromw to tk (whose length isx∗w). Now, eitherPiPk

is a valid path, orPjPk is a valid path, both of which have length strictly less than1, contradicting the
feasibility ofx∗.

We have just shown that every pathP with y∗P > 0 must either contain exactly one vertex fromX1

or, exclusively, exactly two vertices fromX2. Now, set

z∗v =


1 v ∈ X1

1/2 v ∈ X2

0 o.w.

.

Then, it is easy to see thatz∗ is feasible. Moreover,z∗ satisfies both of the complementary slackness
conditions. Thus,z∗ is a half-integral optimal solution to the LP. Moreover,z∗ can be constructed from
x∗ in polynomial time. It is interesting to note that we did not have to solve the dual program at all. We
merely used it for analytical purposes. This analysis leads directly to the following theorem.

Theorem 6.1. A 2-approximation algorithm for theMULTIWAY NODE CUT problem can be obtained by
rounding all positivez∗v up to1. In effect, the setB is our approximated node cut.

Exercise 23.Whenk = 2, the MULTIWAY NODE CUT problem is equivalent to finding a minimum cut,
which can be done in polynomial time. Thus, it would be nice to have an approximation ratio which is a
function ofk, and which is equal to1 whenk = 2. Devise a(2− 2/k)-approximation algorithm for the
MULTIWAY NODE CUT problem.

14

Historical Notes

Recent books on approximation algorithms include [1,6,13,15].
It has been shown that approximating WEIGHTED VERTEX COVER to within 10

√
5 − 21 [2] is

NP-hard. A recent major result using PCP by Dinur and Safra showed that approximating WVC to
within 1.3606 isNP-hard [3]. See also the paper by Khot and Regev [8]. The approximation ratio2 for
VERTEX COVER is still the best known to date.

Algorithm APPROX-SCHEDULING-2 is from [10]. A PTAS for the uniform parallel machine case
was devised in [7]. See the surveys [4,5,9] for more results on scheduling problems.

The filtering and rounding method was developed by Lin and Vitter [11]. Shmoys, Tardos, and
Aardal [14] used this method to give a3.16-approximation algorithm for the metric UFL problem. The
4-approximation we presented was a variance of their idea. For a brief historical discussion on the facility
location problem, see [12]. Their method of dual-fitting is also very interesting, which we will discuss
in a later lecture.

References
[1] G. AUSIELLO, P. CRESCENZI, G. GAMBOSI, V. KANN , A. MARCHETTI-SPACCAMELA, AND M. PROTASI, Complex-

ity and approximation, Springer-Verlag, Berlin, 1999. Combinatorial optimization problems and their approximability
properties, With 1 CD-ROM (Windows and UNIX).

[2] I. D INUR AND S. SAFRA, The importance of being biased, in STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, ACM Press, 2002, pp. 33–42.

[3] I. D INUR AND S. SAFRA, On the hardness of approximating minimum vertex cover, Ann. of Math. (2), 162 (2005),
pp. 439–485.

[4] R. L. GRAHAM , E. L. LAWLER, J. K. LENSTRA, AND A. H. G. RINNOOY KAN, Optimization and approximation in
deterministic sequencing and scheduling: a survey, Ann. Discrete Math., 5 (1979), pp. 287–326. Discrete optimization
(Proc. Adv. Res. Inst. Discrete Optimization and Systems Appl., Banff, Alta., 1977), II.

[5] L. H ALL , Approximation algorithms for scheduling, in Approximation Algorithms for NP-Hard Problems, D. Hochbaum,
ed., PWS Publishing Company, 1997, pp. 1–45.

[6] D. S. HOCHBAUM, ed.,Approximation Algorithms for NP Hard Problems, PWS Publishing Company, Boston, MA,
1997.

[7] D. S. HOCHBAUM AND D. B. SHMOYS, A polynomial approximation scheme for scheduling on uniform processors:
using the dual approximation approach, SIAM J. Comput., 17 (1988), pp. 539–551.

[8] S. KHOT AND O. REGEV, Vertex cover might be hard to approximate to within2 − ε, in Proceedings of the 18th IEEE
Annual Conference on Computational Complexity (CCC), 2003, pp. 379–386.

[9] J. K. LENSTRA AND D. SHMOYS, eds.,Networks and matroids; Sequencing and scheduling, North-Holland Publishing
Co., Amsterdam, 1998. Dedicated to the memory of Eugene L. Lawler, Math. Programming82 (1998), no. 1-2, Ser. B.

[10] J. K. LENSTRA, D. B. SHMOYS, AND É. TARDOS, Approximation algorithms for scheduling unrelated parallel ma-
chines, Math. Programming, 46 (1990), pp. 259–271.

[11] J.-H. LIN AND J. S. VITTER, Approximation algorithms for geometric median problems, Inform. Process. Lett., 44
(1992), pp. 245–249.

[12] M. M AHDIAN , E. MARKAKIS , A. SABERI, AND V. VAZIRANI , A greedy facility location algorithm analyzed using
dual fitting, in Approximation, randomization, and combinatorial optimization (Berkeley, CA, 2001), vol. 2129 of Lecture
Notes in Comput. Sci., Springer, Berlin, 2001, pp. 127–137.

[13] E. W. MAYR AND H. J. PRÖMEL, eds.,Lectures on proof verification and approximation algorithms, vol. 1367 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998. Papers from the Workshop on Proof Verification and
Approximation Algorithms held at Schloß Dagstuhl, April 21–25, 1997.

15

[14] D. B. SHMOYS, É. TARDOS, AND K. A ARDAL , Approximation algorithms for facility location problems (extended
abstract), in STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, ACM Press,
1997, pp. 265–274.

[15] V. V. VAZIRANI , Approximation algorithms, Springer-Verlag, Berlin, 2001.

16

