
CSE 431/531 Homework Assignment 1

Due in class on Thursday, Feb 01.

February 1, 2007

There are totally7 problems,10 points each. You should do them all. We will grade only5 problems
chosen at my discretion. If it so happens that you don’t do one of the problems we don’t grade, then no
points will be deducted.

To “disprove” a statement, you must find a counter example to show that the statement is wrong. In
general, your answers should be short but concise. (This will come with experience.)

Problem 1. Prove or disprove each of the following statements. You can assume thatf, g : N+ → R+.

1. f(n) = Θ(f(n/2))

2. 2n = Θ(2n+1)

3. f(n) = O(g(n)) impliesg(n) lg f(n) = O(f(n) lg g(n))

Problem 2. Suppose bothf(n) andg(n) are functions fromN+ to R+, and they tend to∞ asn→∞.
Prove or disprove each of the following statements.

1. lg(f(n)) = O(lg(g(n))) impliesf(n) = O(g(n))

2. f(n) = O(g(n)) implieslg(f(n)) = O(lg(g(n)))

3. lg(f(n)) = Θ(lg(g(n))) impliesf(n) = Θ(g(n))

4. f(n) = o(g(n)) implieslg(f(n)) = o(lg(g(n)))

5. lg(f(n)) = o(lg(g(n))) impliesf(n) = o(g(n))

Problem 3. Arrange the following functions in ascending order of growth rate. That is, iff(n) immedi-
ately followsg(n) in the list, thenf(n) = O(g(n)).

n! 2lg∗ n nlg lg n lg∗(lg n) (lg n)lg(lg n)

ln lnn 2
√

n 22n √
lg n n2

Explain your ordering. (To avoid unnecessary explanation, order the functions first, likea, b, c, d, then
explain whya = O(b), b = O(c), andc = O(d).)

Problem 4. Find a functionf satisfying case 3 of the Master theorem but does not satisfy the regularity
condition. Justify your answer.

Problem 5. Find asymptotic upper and lower bounds forT (n) in each of the following recurrences.
Assume thatT (n) is constant and positive forn ≤ 2. Make your bounds as tight as possible, and justify
your answers.

1. T (n) = 6T (n/3) + n2

1



2. T (n) = T (7n/8) + n

3. T (n) = T (n− 1) + n

4. T (n) = T (
√

n) + 1

5. T (n) = 3T (n/2) + n lg n

6. T (n) = 2T (n/2) + n
lg n

7. T (n) = T (n− 1) + lg n

8. T (n) =
√

nT (
√

n) + n

Note: g(n) is an asymptotic upper bound forT (n) if T (n) = O(g(n)). Additionally, if you found
T (n) = Θ(g(n)), then that’s enough for both upper and lower bounds.

Problem 6. Give an example of functionsf, g : N+ → R+ such that none of the three relations
f(n) = O(g(n)), g(n) = O(f(n)), andf(n) = Θ(g(n)) is valid, althoughf(n) andg(n) both in-
crease monotonically to∞.

Problem 7 (Textbook, Problem 8, Chapter 2).You’re doing some stress-testing on various models of
glass jars to determine the height from which they can be dropped and still not break. The setup for this
experiment, on a particular type of jar, is as follows. You have a ladder withn rungs, and you want to
find the highest rung from which you can drop a copy of the jar and not have it break. We call this the
highest safe rung.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then
recursively try from rungn/4 or 3n/4 depending on the outcome. But this has the drawback that you
could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy.
Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each
time until the jar breaks. In this way, you only need a single jar – at the moment it breaks, you have the
correct answer – but you may have to drop itn times (rather thanlg n as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you’re willing to break more jars. To
understand better how this trade-off works at a quantitative level, let’s consider how to run this experiment
given a fixed “budget” ofk ≥ 1 jars. In other words, you have to determine the correct answer – the
highest safe rung – and can use at mostk jars in doing so.

(a) Suppose you are given a budget ofk = 2 jars. Describe a strategy for finding the highest safe rung
that requires you to drop a jar at mostf(n) times, for some functionf(n) that grows slower than
linearly (i.e. sub-linear).

(b) Now suppose you have a budget ofk > 2 jars, for some givenk. Describe a strategy for finding
the highest safe rung using at mostk jars. Iffk(n) denotes the number of times you need to drop a
jar according to your strategy, then the functionsf1, f2, f3, . . . should have the property that each
grows asymptotically slower than the previous one:limn→∞ fk(n)/fk−1(n) = 0, for eachk.

2


