
CSE 431/531 Homework Assignment 2

Due in class on Thursday, Feb 15.

January 31, 2007

There are totally7 problems,10 points each. You should do them all. We will grade only5 problems
chosen at my discretion. If it so happens that you don’t do one of the problems we don’t grade, then no
points will be deducted.

To “disprove” a statement, you must find a counter example to show that the statement is wrong. In
general, your answers should be short but concise. (This will come with experience.)

Example 1 (Sample Problem).We want to make change forn cents using the least number of coins.
The coins are of denominations1 = c0, c1 . . . , ck, for some integersc > 1, andk ≥ 0.

Devise an efficient algorithm to solve this problem.

Sample Solution.When you are asked to devise an algorithm, please conform to the following for-
mat: (a) describe the idea, (b) write the pseudo code, (c) prove its correctness, (d) analyze its running
time.

(a) Idea: our algorithm is a greedy one. We start by taking as many coins of denominationck as
possible, then as many ofck−1 as possible, and so on. Since there’s a coin of denomination1 (coin
c0), this process is guaranteed to finish.

(b) Pseudo code: every solutionS to this problem is of the form

S = (f0, f1, . . . , fk)

where thefi are all natural numbers,fi is the number of coins of denominationci we took, and

f0c
0 + f1c

1 + . . . fkc
k = n.

COIN-CHANGING(n, c, k)
1: for j ← k downto 1 do
2: fk ← bn/ckc
3: n← n− fkc

k

4: end for

(c) Proof of correctness: We will use the “first type” of induction. Basically, our greedy choice is to
setfk = bn/ckc, and then solve the subproblem with coins of denominationsc0, . . . , ck−1, and
the new number of centsn′ = n − fkc

k. The cost of a solutionS is g(S) = f0 + · · ·+ fk. We’d
like to find anS minimizingg(S).

Lemma 1. There exists an optimal solutionO = (f0, f1, . . . , fk) for whichfk = bn/ckc.

Proof. If n < ck, fk = 0 = bn/ckc for any feasible solution. Thus, we can assumen ≥ ck.

1

Let O′ = (f ′0, f
′
1, . . . , f

′
k) be any optimal solution. Iff ′k = bn/ckc, then we are done. Suppose

f ′k ≤ bn/ckc − 1. We have

f ′0c
0 + f ′1c

1 + · · ·+ f ′k−1c
k−1 = n− f ′kc

k ≥ n−
(
bn/ckc − 1

)
ck ≥ ck. (1)

Now, if f ′j ≤ c− 1, ∀j = 0, . . . , k − 1, then

f ′0c
0 + f ′1c

1 + · · ·+ f ′k−1c
k−1 ≤ (c− 1)(c0 + · · ·+ ck−1) = (c− 1)

ck − 1
c− 1

= ck − 1,

contradicting (1).

Hence, there must be somej ∈ {0, . . . , k − 1} for which f ′j ≥ c. However, if we reducef ′j by c,
and increasef ′j+1 by 1, then we get another feasible solution where the total number of coins is
(c− 1) less, contradicting the fact thatO′ is optimal.

Lemma 2. Let O = (f0, . . . , fk) be an optimal solution for whichfk = bn/ckc, thenO′ =
(f0, . . . , fk−1) is an optimal solution to the problem with the number of centsn′ = n− ckbn/ckc
and coin denominationsc0, . . . , ck−1.

Proof. If there is a better solutionO′′ = (f ′′0 , . . . , f ′′k−1) for the subproblem, i.e.

f ′′0 + · · ·+ f ′′k−1 < f0 + · · ·+ fk−1

f ′′0 c0 + . . . f ′′k−1c
k−1 = n′.

Then, obviously(f ′′0 , f ′′1 , . . . , f ′′k−1, fk) is a better solution for the original problem thanO, con-
tradiction!

Theorem 1. AlgorithmCOIN-CHANGING returns an optimal solutionS.

Proof. We show by induction onk thatg(S) = g(O), whereO is an optimal solution.

The base case whenk = 0 is trivial.

Considerk > 0. LetS = (f0, . . . , fk), andO be any optimal solutionO = (f ′0, . . . , f
′
k) for which

f ′k = fk = bn/ckc. Such an optimal solution exists due to Lemma 1.

By induction hypothesis,(f0, . . . , fk−1) is an optimal solution to the sub-problem. By Lemma 2,
(f ′0, . . . , f

′
k−1) is an optimal solution to the sub-problem also. Thus,

f ′0 + · · ·+ f ′k−1 = f0 + · · ·+ fk−1,

which impliesg(S) = g(O) as desired.

(d) Running Time: There is a loop ofk iterations. The time in each iteration is dominated by com-
puting bn/ckc. We do not discuss numerical algorithms in this course, hence I will not analyze
precisely the running time of this algorithm. (Refer to Knuth’s TACP for numerical computation
algorithms.) Let’s just sayf(n, k) is the time it takes to computebn/ckc, then our algorithm runs
in timeΘ(kf(n, k)).

2

Problem 1. Our CSE department has one supercomputer and (infinitely) many identical PCs. There
aren distinct jobsJ1, . . . , Jn, which can be performed completely independently of one another. Each
job consists of2 stages: first it needs to bepre-processedon the supercomputer, and then it needs to be
finishedon a PC. JobJi needspi seconds on the computer, followed byfi seconds on a PC. Since there
are many PCs, the finishing of the jobs can be performed fully in parallel. The problem is, however, the
supercomputer can only process one job at a time.

You are asked to design a scheduling of jobs on the supercomputer. Thecompletion timeof a schedule
is the time at which all jobs will have finished processing on the PCs.

Assuming the transition time between the supercomputer and a PC is negligible. Give a polynomial
time algorithm that finds a schedule minimizing the completion time.

Problem 2. There aren jobs J1, . . . , Jn to be processed on a single machine. Only one job can be
processed at a time. The starting time is0. Jobi requiresti seconds to be processed. For any schedule,
the completion timeCi of job i is the time at which the job is completely processed. Each jobi also has
a “weight” wi > 0.

Devise an efficient algorithm to find a schedule (an ordering of jobs) which minimizes the weighted
sum

∑n
i=1 wiCi.

(For example, suppose there are two jobs,t1 = 1, w1 = 10, t2 = 3, w2 = 2. Then, doing job 1 first
would yeild a weighted completion time of10 · 1 + 2 · 4 = 18, while doing the job2 first would give
10 · 4 + 2 · 3 = 46.

Problem 3 (Textbook, Problem 19, Chapter 4).A group of network designers at the communications
company CluNet find themselves facing the following problem. They have a connected undirected graph
G = (V,E), in which the nodes represent sites that want to communicate. Each edgee is a communica-
tion link, with a given available bandwidthbe.

For each pair of nodesu, v ∈ V , they want to select a singleu-v pathP on which this pair will
communicate. Thebottleneck rateb(P) of this pathP is the minimum bandwidth of any edge it contains;
that is, b(P) = mine∈P be. The best achievable bottleneck ratefor the pairu, v in G is simply the
maximum, over allu-v pathsP in G, of the valueb(P).

It’s getting to be very complicated to keep track of a path for each pair of nodes, and so one of the
network designers makes a bold suggestion: May be one can find a spanning treeT of G so that forevery
pair of nodesu, v, the uniqueu-v path in the tree actually attains the best achievable bottleneck rate for
u, v in G. (In other words, even if you could choose anyu-v path in the whole graph, you couldn’t do
better than theu-v path inT .)

This idea is roundly heckled in the offices of CluNet for a few days, and there’s a natural reason for
the skepticism: each pair of nodes might want a very different-looking path to maximize its bottleneck
rate; why should there be a single tree that simultaneously makes everybody happy? But after some
failed attempts to rule out the idea, people begin to suspect it could be possible.

Show that such a tree exists, and give an efficient algorithm to find one. That is, given an algorithm
constructing a spanning treeT in which, for eachu, v ∈ V , the bottleneck rate of theu-v path inT equal
to the best achievable bottleneck rate for the pairu, v in G.

Problem 4. You are givenn closed intervalsI1, . . . , In on the real line, whereIj = [sj , fj], andn real
numberstj , 1 ≤ j ≤ n.

Devise an efficient algorithm to decide if there is a way to assign to each numbert a distinct interval
I such thatt ∈ I. In other words, we want to know if there exists a one-to-one pairing of thetj and the
Ij , so that each number belongs to its corresponding interval. If possible, you should make your running
timeO(n2).

Problem 5. For any graphG and any minimum spanning treeT of G, is there a valid execution of
Kruskal’s algorithm onG that producesT as output? Give a proof or a counter example.

3

Problem 6. Consider the minimum spanning tree problem on an undirected graphG = (V,E) with a
costce ≥ 0 on each edge, where the costs are not necessarily distinct. When the costs are not distinct,
there can in general be many distinct minimum-cost solutions.

Suppose we are given a spanning treeT with the guarantee that for every edgee ∈ T , e belongs to
someminimum-cost spanning tree inG.

Can we conclude thatT itself must be a minimum spanning tree inG? Give a proof or a counterex-
ample with explanation.

Problem 7. Given a connected graphG = (V,E). Let n = |V |. Each edge inG is already colored
with eitherRED or BLUE. Devise an efficient (i.e. polynomial-time) algorithm which, given an integerk,
1 ≤ k ≤ n − 1, either (a) returns a spanning tree withk BLUE edges andn − 1 − k RED edges,or (b)
reports correctly that no such tree exists.

4

