
Agenda

What have we done?

Probabilistic thinking!

Balls and Bins

Probabilistic Method

Foundations of DTMC

Random Walks on Graphs and Expanders

Next

Approximate Counting and Sampling
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Example 1: Number of Spanning Trees

Problem

Given G connected, count the number of spanning trees.

A: adjacency matrix of G

D: diagonal matrix of vertex degrees

L = D −A: Laplacian of G

Lij : submatrix of L obtained by removing column i, row j

(−1)i+j det(Lij): ij-cofactor of L

0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µn the Laplacian spectrum

Theorem (Matrix-Tree, also Kirchhoff’s Theorem)

Number of spanning trees of G is (−1)i+j det(Lij) for all i, j, which is
equal to 1

nµ1 · · ·µn.
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Example 2: Number of Perfect Matchings

“Dimer Covers”

Given a graph G, count the number of perfect matchings.

A Pfaffian orientation of G is an orientation
−→
G such that: for any two

perfect matchings M1 and M2 of G, every cycle of M1 ∪M2 has an
odd number of same-direction edges.

In particular, if
−→
G is an orientation in which every even cycle is oddly

oriented, then
−→
G is a Pfaffian orientation.

Skew adjacency matrix As(
−→
G) = (auv):

auv =


+1 (u, v) ∈ E(

−→
G)

−1 (v, u) ∈ E(
−→
G)

0 otherwise
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Kasteleyn’s Theorem

Theorem (Kasteleyn)

For any Pfaffian orientation
−→
G of G,

number of perfect matchings =
√

det(As(
−→
G)

Theorem

Every planar graph has a Pfaffian orientation which can be found in
polynomial time. In particular, Dimer Covers is solvable for planar graphs!

Open Question

Complexity of deciding if a graph G has a Pfaffian orientation. (Known to
be in P if G is bipartite.)
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Example 1: Routing in Intermittently Connected Networks

G: ad hoc network of mobile users

For every (u, v) ∈ E, puv is the probability that u and v are “in
contact”

For simplicity, say puv = 1/2
Want: send a message from s to d

If routed through a length-k s, t-path, delivery probability is (1/2)k

To increase delivery probability, send messages along edges of a
subgraph H ⊆ G such that Prob[s and t connected in H] is
maximized

If H = G, we are just broadcasting ⇒ broadcast storm problem

If H is a path, delivery prob. is too low
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The Problem is Hard

Routing on a Probabilistic Graph

Given G (and puv), and a parameter k, find a subgraph H ⊆ G with at
most k edges so that Prob[s and t connected in H] is maximized

Given H, how to compute Prob[s and t connected in H]? (let alone
finding an optimal H)

(Ghosh, Ngo, Yoon, Qiao – INFOCOM’07) The optimization problem
is #P-Hard, if solvable then P = NP

Subtle: P = NP does not necessarily imply problem solvable
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Probability Estimation ≈ Counting

Network Reliability Problem

Given H (and puv), compute P = NP and t connected in H].

Suppose H has m edges. Then, Prob[s and t connected in H] is

1
2m

(#subgraphs of H which contains an s, t-paths)

Network Reliability, Counting Version

Given H, find the number of subgraphs of H in which there is a path from
s to t
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Example 2: #cnf, #dnf, 01-perm, #bipartite-PM

#cnf

Given a CNF formula ϕ, count number of satisfying assignments

#dnf

Given a DNF formula ϕ, count number of satisfying assignments

#bipartite-PM

Given a bipartite graph G, count number of perfect matchings

01-perm

Given a 01-square matrix A, compute per A, defined by

perA =
∑
π∈Sn

n∏
i=1

aiπ(i)
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Rough Classification of Counting Problems

“Easy” Counting Problems

# Subsets of a Set

# Spanning trees of G

# Perfect matchings in planar graphs

“Hard” Counting Problems (At least, no solution is known)

Network reliability

#cnf

#dnf

01-perm, #bipartite-PM

#cycles, #Hamiltonian cycles, #cliques, #k-cliques, etc.
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How to Show a Counting Problem is Hard?

Suppose we want to prove any problem Π is “hard” to solve

Try This First

Prove that if Π can be solved in polynomial time, then some
NP-complete problem can be solved in polynomial time.

Typically Done with Optimization Problem.

#cnf, #Ham-cycles, ... are certainly NP-hard

We’ll show #dnf and #cycles are NP-hard to illustrate.

Try This Next

Define a new complexity class C for Π, and show Π is complete in that
class. Provide evidence that C is not complete as a whole.

This was what Valiant did in 1978 for 01-perm and network
reliability. The new class C is #P
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#dnf is NP-hard

Theorem

If we can count the number of satisfying assignments of a DNF formula,
then we can decide if a CNF formula is satisfiable.

Given ϕ in CNF:

ϕ = (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x̄4)

ϕ is satisfiable iff ϕ has < 2n satisfying assignments.

ϕ = (x̄1 ∧ x2 ∧ x̄3) ∨ (x̄2 ∧ x̄3 ∧ x4)
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#cycles is NP-hard

Theorem

If we can count the number of cycles of a given graph in polynomial time,
then we can decide if a graph has a Hamiltonian cycle in polynomial time.

To decide if G has a Hamiltonian cycle, construct G′ as shown

vu u v

1 2 m = n log n + 1

Edge of G Replaced by a “gadget” in G′

Each length-l cycle in G becomes (2m)l cycles in G′

If G has a Hamiltonian cycle, G′ has at least (2m)n > nn2
cycles

If all cycles of G have lengths ≤ n− 1, there can be at most nn−1

cycles in G, implying ≤ (2m)n−1nn−1 < nn2
cycles in G′
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P, NP, FP, #P Intuitively

Sample Problems (each have a #-version)

1 spanning tree: does G have a spanning tree?

2 bipartite-PM: does bipartite G have a perfect matching?

3 cnf: does ϕ in CNF have a satisfying assignment?

4 dnf: does ϕ in DNF have a satisfying assignment?

P: problems whose solutions can be found efficiently: spanning
tree, dnf, bipartite-PM

NP: problems whose solutions can be verified efficiently: all four

FP: problems whose solutions can be counted efficiently:
#spanning tree

#P: problems of counting efficiently verifiable solutions: all four.
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#P-Complete, Intuitively

A counting problem #Π is #P-complete iff it is in #P and, if #Π can be
solved efficiently, then we can solve all #P problems efficiently.

Lemma

#cnf is #P-complete (for the same reason sat is NP-complete)

This implies #dnf is #P-complete. (Why?)

Theorem

If any #P-complete problem can be solved in poly-time, then P = NP.

The converse is not known to hold (open problem!)

Theorem (Valiant)

#bipartite-PM and 01-perm are #P-complete
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Approximate Counting: What and Why

Suppose we want to estimate some function f on input x

x = G, f(G) = number of perfect matchings
x = ϕ in DNF, f(ϕ) = number of satisfying assignments

For many problems, computing f(x) efficiently is (extremely likely to
be) difficult

The next best hope is: given ε, δ, efficiently compute f̃(x) such that

Prob[|f̃(x)− f(x)| > εf(x)] < δ

Definition (FPRAS)

A randomized algorithm producing such f̃ is called a fully polynomial time
randomized approximation scheme (FPRAS) if its running time is
polynomial in |x|, 1/ε, log(1/δ)
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An Alternative Definition of FPRAS

Definition (FPRAS)

A fully polynomial time randomized approximation scheme (FPRAS) for
computing f is a randomized algorithm satisfying the following:

on inputs x and ε

A outputs f̃(x), such that

Prob[|f̃(x)− f(x)| > εf(x)] < 1/4

A’s running time is polynomial in |x| and 1/ε

The median trick shows the equivalence between the two definitions.
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The Essence of the Monte Carlo Method

Basic idea: to estimate µ

Design an efficient process to generate t i.i.d. variables X1, . . . , Xt

such that E[Xi] = µ, Var [Xi] = σ2, for all i
(Xi is called an unbiased estimator for µ)

Output the sample mean µ̃ = 1
t

∑t
i=1 Xi

Chebyshev gives the following theorem

Theorem (Unbiased Estimator Theorem)

If t ≥ 4σ2

ε2µ2 , then

Prob[|µ̃− µ| > εµ] < 1/4.

In particular, if Xi are all indicators, then σ2 = µ(1− µ) ≤ µ; we only
need t ≥ 4

ε2µ
.
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Potential Bottlenecks of the Monte Carlo Method

Each single sample value Xi must be generated efficiently

The number of samples t needs to be a polynomial in |x| (and 1/ε)

So, if µ is really small then we’re in trouble!
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#dnf with Naive Monte Carlo Algorithm

Line of thought

f = f(ϕ) is the number of satisfying assignments

Probability that a random truth assignment satisfies ϕ is µ = f/2n

Let Xi indicates if the ith truth assignment satisfies ϕ

Prob[Xi = 1] = E[Xi] = µ

After taking t samples, output

f̃ = 2nµ̃ = 2n · 1
t

t∑
i=1

Xi

Then, by the unbiased estimator theorem, when t ≥ 4
ε2µ

we have

Prob[|f̃ − f | > εf ] = Prob[|µ̃− µ| > εµ] < 1/4

If f � 2n, say f = n2, then µ = n2/2n and t = Ω(2n/n2)
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What is the Main Problem with the Naive Method?

To find a few needles in a haystack, we need many samples

More concretely, the sample space is too large, while the “good set”
is too small.

Karp-Luby (STOC 1973) designed a much smaller sample space from
which we can still sample efficiently
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The Karp-Luby Algorithm for #dnf

Suppose ϕ has m terms

ϕ = T1 ∨ T2 ∨ · · · ∨ Tm = (x̄1 ∧ x2 ∧ x̄3) ∨ (x̄2 ∧ x4) ∨ · · ·

Let Sj be the set of assignments satisfying Tj which has vj variables

Then, |Sj | = 2n−vj ; and we want f =
∣∣∣⋃n

j=1 Sj

∣∣∣
The haystack

Ω = {(a, j) | a ∈ Sj}

|Ω| =
m∑

j=1

2n−vj ≤ m2n

The needles (represent each satisfying a by the minimum j for which
a ∈ Sj)

N =
{
(a, j) | j = min(j′, (a, j′) ∈ Ω)

}
, =⇒ f = |N |
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The Karp-Luby Algorithm for #dnf

The Algorithm

for i = 1 to t do
Choose (a, j) uniformly from Ω

Xi =

{
1 (a, j) ∈ N

0 otherwise
end for
Output |Ω| · 1

t

∑t
i=1 Xi

The Analysis

Prob[Xi = 1] = E[Xi] = |N |
|Ω|

To chose (a, j) uniformly from Ω, pick j with probability
|Sj |P
|Sj | , then

choose a ∈ Sj uniformly

Checking if (a, j) ∈ N is the same as checking if a satisfies Tj′ for
some j′ < j.
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Concluding Remarks

The algorithm can be used to estimate∣∣∣∣∣∣
m⋃

j=1

Sj

∣∣∣∣∣∣
for any collection of sets Sj for which similar operations can be done
efficiently.
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Almost Uniform Sampling

Definition (FPAUS)

A fully polynomial time almost uniform sampler is a randomized algorithm
A:

A’s input is an instance x of the problem (like a graph G)

A internally chooses a random string R

A outputs A(x,R) ∈ Ω, Ω is the set of solutions to x

the total variation distance between A’s output distribution and the
uniform distribution is at most ε

max
S⊆Ω

∣∣∣∣Prob
R

[A(x,R) ∈ S]− |S|
|Ω|

∣∣∣∣ ≤ ε

A’s running time is polynomial in |x| and log(1/ε)
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(Approximate) Sampling and Counting

Exact Counting
∗=⇒ Exact Sampling

⇓ ⇓

Approximate Counting
∗⇐⇒ Approximate Sampling

(FPRAS) (FPAUS)

(* means “true for a class of problems,” which is fairly large)
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Approximate Sampling =⇒ Approximate Counting

Counting number of matchings (#matchings): given a graph G

M(G) = set of matchings (not necessarily perfect)

f(G) = |M(G)|
Compute f(G)

Theorem

If there is a FPAUS for #matchings then there is a FPRAS for it too
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Making Use of “Self-Reducibility”

Suppose G = (V, {e1, e2, . . . , em}
Let Gk = (V, {e1, . . . , ek}), 0 ≤ k ≤ m

Key idea:

f(G) = f(Gm)

=
f(Gm)

f(Gm−1)
· f(Gm−1)
f(Gm−2)

· · · f(G1)
f(G0)

· f(G0)

=
1

rm
· 1
rm−1

· · · 1
r1
· 1

We will approximate all the

rk =
f(Gk−1)
f(Gk)

, 1 ≤ k ≤ m

then take the reciprocal of their product as an estimate for f(G)
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How Well Must We Approximate the rk?

Suppose r̃k is an (ε̄, δ̄)-approximation for rk, 1 ≤ k ≤ m

Want: f̃ = 1
r̃1···r̃m

to be an (ε, δ)-approximation for f = 1
r1···rm

:

Prob

[∣∣∣∣ 1
r̃1 · · · r̃m

− 1
r1 · · · rm

∣∣∣∣ < ε
1

r1 · · · rm

]
> 1− δ

which is the same as

Prob

[
1− ε <

r1 · · · rm

r̃1 · · · r̃m
< 1 + ε

]
> 1− δ

What we have is:

Prob [|r̃k − rk| < ε̄rk] > 1− δ̄

which is equivalent to

Prob

[
(1 + ε̄)−1 <

rk

r̃k
< (1− ε̄)−1

]
> 1− δ̄
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How Well Must We Approximate the rk?

Choose δ̄ = δ/m, then

Prob

[
(1 + ε̄)−1 <

rk

r̃k
< (1− ε̄)−1, for all k

]
> 1− δ

Hence,

Prob

[
(1 + ε̄)−m <

m∏
k=1

rk

r̃k
< (1− ε̄)−m

]
> 1− δ

Now, setting ε̄ = ε
4m we get

(1 + ε̄)−m ≥ 1− ε

(1− ε̄)−m ≤ 1 + ε
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In Case You’re Wondering

We made use of a subset of the following inequalities:

1− x ≤ e−x ∀x ∈ [0, 1]

1− x > e−x−x2 ∀x < 1
1− x > e−x− 1

2
x2− 1

2
x3 ∀x < 1

1 + x ≤ ex ∀x ∈ [−1, 1]

1 + x > ex− 1
2
x2 ∀x > −1

1 + x > ex− 1
2
x2+ 1

4
x3 ∀x > −1
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Estimating rk: Which Needles? In Which Haystack?

To estimate rk = f(Gk−1)
f(Gk) :

The haystack: Ωk = M(Gk)
The needles: Ωk−1 = M(Gk−1)
Are there enough needles to reduce number of samples? yes!

rk ≥
1
2

Thus, if we had an exact uniform sampler we only need t ≥ 4
ε̄2rk

samples to get an (ε̄, 1/4)-approximation for rk

Main Question Now

How many samples does an (ε̄, 1/4)-approximator for rk need if it only has
access to a FPAUS, i.e. it can only sample approximately uniformly from
Ωk?
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Number of Samples from a FPAUS

The Algorithm

Let A be an ε′-FPAUS for Ωk (ε′ to be determined)

Take t samples using A, let Xi indicate if the ith sample ∈ Ωk−1

Output r̃k = 1
t

∑t
i=1 Xi as an estimate for rk

The Analysis

Want Prob[|r̃k − rk| > ε̄rk] < 1/4, in other words,

Prob[rk − εrk ≤ r̃k ≤ rk + εrk] ≥ 3/4

What do we know?
From definition of A, Prob[Xi = 1] is near rk

Thus, E[r̃k] is near rk (within ε′)
r̃k is near E[r̃k] with high probability if t is sufficiently large (why?)
Should be able to get what we want from here
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Number of Samples from a FPAUS

The analysis, more precisely:

By definition of A,

rk − ε′ ≤ Prob[Xi = 1] = E[Xi] ≤ rk + ε′

Thus,
rk − ε′ ≤ E[r̃k] ≤ rk + ε′

To apply Chebyshev, need

Var [r̃k] =
1
t2

t∑
i=1

Var [Xi] ≤
1
t
E[r̃k]

Thus, by Chebyshev

Prob [|r̃k − E[r̃k]| > aE[r̃k]] <
Var [r̃k]

a2(E[r̃k])2
≤ 1

ta2E[r̃k]
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Number of Samples from a FPAUS

Since E[r̃k] ≥ rk − ε′ ≥ 1/3

Prob [(1− a)E[r̃k] ≤ r̃k ≤ (1 + a)E[r̃k]] ≥ 1− 1
ta2E[r̃k]

≥ 1− 3
ta2

≥ 3/4

if we take t ≥ 12
a2 samples.

Putting things together

Prob
[
(1− a)(rk − ε′) ≤ r̃k ≤ (1 + a)(rk + ε′)

]
≥ 3/4

Now, just need to choose a and ε′ so that

(1− a)(rk − ε′) ≥ (rk − ε̄rk)
(1 + a)(rk + ε′) ≤ (rk + ε̄rk)

a = ε̄/4 and ε′ = ε̄/8 work!
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To Summarize

To get (ε, δ)-approximation for f , need

(ε̄, δ̄)-approximation for each rk, where ε̄ = ε/4m and δ̄ = δ/m

To get (ε̄, δ̄)-approximation for rk, need

ε′-FPAUS for Ωk, with ε′ = ε̄/8 = ε/(64m)
this many samples:

12
a2

O
(
log(1/δ̄)

)
=

192
ε̄2

O (log(m/δ)) =
3072m2

ε2
O (log(m/δ))

In total, we invoke the FPAUS 3072m3

ε2
O (log(m/δ)) times.

(Number of invocations can be reduced to Õ(m2) with a cleverer
application of Chebyshev)
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