What have we done?

- Probabilistic thinking!
- Balls and Bins
- Probabilistic Method
- Foundations of DTMC
- Random Walks on Graphs and Expanders

Next

• Approximate Counting and Sampling

Problem

Given G connected, count the number of spanning trees.

- A: adjacency matrix of G
- D: diagonal matrix of vertex degrees
- L = D A: Laplacian of G
- L_{ij} : submatrix of L obtained by removing column i, row j
- $(-1)^{i+j} \det(L_{ij})$: *ij*-cofactor of L
- $0 = \mu_0 < \mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$ the Laplacian spectrum

Theorem (Matrix-Tree, also Kirchhoff's Theorem)

Number of spanning trees of G is $(-1)^{i+j} \det(L_{ij})$ for all i, j, which is equal to $\frac{1}{n}\mu_1 \cdots \mu_n$.

"Dimer Covers"

Given a graph G, count the number of perfect matchings.

- A Pfaffian orientation of G is an orientation \overrightarrow{G} such that: for any two perfect matchings M_1 and M_2 of G, every cycle of $M_1 \cup M_2$ has an odd number of same-direction edges.
- In particular, if \vec{G} is an orientation in which every even cycle is *oddly oriented*, then \vec{G} is a Pfaffian orientation.
- Skew adjacency matrix $A_s(\overrightarrow{G}) = (a_{uv})$:

$$a_{uv} = \begin{cases} +1 & (u,v) \in E(\overrightarrow{G}) \\ -1 & (v,u) \in E(\overrightarrow{G}) \\ 0 & \text{otherwise} \end{cases}$$

Theorem (Kasteleyn)

For any Pfaffian orientation \overrightarrow{G} of G,

number of perfect matchings = $\sqrt{\det(A_s(\vec{G}))}$

Theorem

Every planar graph has a Pfaffian orientation which can be found in polynomial time. In particular, Dimer Covers is solvable for planar graphs!

Open Question

Complexity of deciding if a graph G has a Pfaffian orientation. (Known to be in \mathbf{P} if G is bipartite.)

- G: ad hoc network of mobile users
- \bullet For every $(u,v)\in E,\ p_{uv}$ is the probability that u and v are "in contact"
- For simplicity, say $p_{uv} = 1/2$
- Want: send a message from s to d
- If routed through a length- $k\ s,t\mbox{-path},$ delivery probability is $(1/2)^k$
- To increase delivery probability, send messages along edges of a subgraph $H \subseteq G$ such that Prob[s and t connected in H] is maximized
- If H = G, we are just broadcasting \Rightarrow broadcast storm problem
- If H is a path, delivery prob. is too low

Routing on a Probabilistic Graph

Given G (and p_{uv}), and a parameter k, find a subgraph $H \subseteq G$ with at most k edges so that Prob[s and t connected in H] is maximized

- Given *H*, how to compute Prob[*s* and *t* connected in *H*]? (let alone finding an optimal *H*)
- (Ghosh, Ngo, Yoon, Qiao INFOCOM'07) The optimization problem is #P-Hard, if solvable then P = NP
- Subtle: $\mathbf{P} = \mathbf{NP}$ does not necessarily imply problem solvable

Network Reliability Problem

```
Given H (and p_{uv}), compute \mathbf{P} = \mathbf{NP} and t connected in H].
```

• Suppose H has m edges. Then, Prob[s and t connected in H] is

 $\frac{1}{2^m}$ (#subgraphs of H which contains an s, t-paths)

Network Reliability, Counting Version

Given ${\cal H},$ find the number of subgraphs of ${\cal H}$ in which there is a path from s to t

Example 2: #CNF, #DNF, 01-PERM, #BIPARTITE-PM

#CNF

Given a CNF formula φ , count number of satisfying assignments

#DNF

Given a DNF formula φ , count number of satisfying assignments

#BIPARTITE-PM

Given a bipartite graph G, count number of perfect matchings

01-perm

Given a 01-square matrix A, compute per A, defined by

$$\operatorname{per} A = \sum_{\pi \in S_n} \prod_{i=1}^n a_{i\pi(i)}$$

"Easy" Counting Problems

- # Subsets of a Set
- # Spanning trees of G
- # Perfect matchings in planar graphs
- "Hard" Counting Problems (At least, no solution is known)
 - Network reliability
 - #CNF
 - #DNF
 - 01-perm, #bipartite-PM
 - #CYCLES, #HAMILTONIAN CYCLES, #CLIQUES, #k-CLIQUES, etc.

How to Show a Counting Problem is Hard?

Suppose we want to prove any problem Π is "hard" to solve

Try This First

Prove that if Π can be solved in polynomial time, then some NP-complete problem can be solved in polynomial time.

- Typically Done with Optimization Problem.
- #CNF, #HAM-CYCLES, ... are certainly NP-hard
- \bullet We'll show $\# {\tt DNF}$ and $\# {\tt CYCLES}$ are ${\bf NP}{\mbox{-hard}}$ to illustrate.

Try This Next

Define a new complexity class C for Π , and show Π is complete in that class. Provide evidence that C is not complete as a whole.

This was what Valiant did in 1978 for <code>01-PERM</code> and <code>NETWORK</code> RELIABILITY. The new class C is #P

©Hung Q. Ngo (SUNY at Buffalo)

Theorem

If we can count the number of satisfying assignments of a DNF formula, then we can decide if a CNF formula is satisfiable.

Given φ in CNF:

$$\varphi = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor x_3 \lor \bar{x}_4)$$

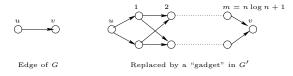
 φ is satisfiable iff $\overline{\varphi}$ has $<2^n$ satisfying assignments.

$$\overline{\varphi} = (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3) \vee (\bar{x}_2 \wedge \bar{x}_3 \wedge x_4)$$

Theorem

If we can count the number of cycles of a given graph in polynomial time, then we can decide if a graph has a Hamiltonian cycle in polynomial time.

• To decide if G has a Hamiltonian cycle, construct G' as shown



- Each length-l cycle in G becomes $(2^m)^l$ cycles in G'
- If G has a Hamiltonian cycle, G' has at least $(2^m)^n > n^{n^2}$ cycles
- If all cycles of G have lengths $\leq n-1$, there can be at most n^{n-1} cycles in G, implying $\leq (2^m)^{n-1}n^{n-1} < n^{n^2}$ cycles in G'

Sample Problems (each have a #-version)

- **1** SPANNING TREE: does *G* have a spanning tree?
- **2** BIPARTITE-PM: does bipartite G have a perfect matching?
- § CNF: does φ in CNF have a satisfying assignment?
- **3** DNF: does φ in DNF have a satisfying assignment?
 - P: problems whose solutions can be found efficiently: SPANNING TREE, DNF, BIPARTITE-PM
 - NP: problems whose solutions can be verified efficiently: all four
 - **FP**: problems whose solutions can be **counted efficiently**: #SPANNING TREE
 - #P: problems of counting efficiently verifiable solutions: all four.

#P-Complete, Intuitively

A counting problem $\#\Pi$ is #P-complete iff it is in #P and, if $\#\Pi$ can be solved efficiently, then we can solve all #P problems efficiently.

Lemma

#CNF is #**P**-complete (for the same reason SAT is **NP**-complete)

This implies #DNF is #**P**-complete. (Why?)

Theorem

If any #P-complete problem can be solved in poly-time, then P = NP.

The converse is not known to hold (open problem!)

Theorem (Valiant)

#BIPARTITE-PM and 01-PERM are #P-complete

Approximate Counting: What and Why

- Suppose we want to estimate some function f on input x
 - x = G, f(G) = number of perfect matchings
 - $x = \varphi$ in DNF, $f(\varphi) =$ number of satisfying assignments
- For many problems, computing f(x) efficiently is (extremely likely to be) difficult
- The next best hope is: given ϵ, δ , efficiently compute $\tilde{f}(x)$ such that

$$\mathsf{Prob}[|\tilde{f}(x) - f(x)| > \epsilon f(x)] < \delta$$

Definition (FPRAS)

A randomized algorithm producing such \tilde{f} is called a fully polynomial time randomized approximation scheme (FPRAS) if its running time is polynomial in $|x|, 1/\epsilon, \log(1/\delta)$

Definition (FPRAS)

A fully polynomial time randomized approximation scheme (**FPRAS**) for computing f is a randomized algorithm satisfying the following:

- \bullet on inputs x and ϵ
- A outputs $\tilde{f}(x)$, such that

$$\mathsf{Prob}[|\tilde{f}(x) - f(x)| > \epsilon f(x)] < 1/4$$

• A's running time is polynomial in |x| and $1/\epsilon$

The *median trick* shows the equivalence between the two definitions.

Basic idea: to estimate μ

- Design an efficient process to generate t i.i.d. variables X₁,..., X_t such that E[X_i] = μ, Var [X_i] = σ², for all i
 (X_i is called an unbiased estimator for μ)
- Output the sample mean $\tilde{\mu} = \frac{1}{t} \sum_{i=1}^{t} X_i$
- Chebyshev gives the following theorem

Theorem (Unbiased Estimator Theorem) If $t \ge \frac{4\sigma^2}{\epsilon^2\mu^2}$, then $Prob[|\tilde{\mu} - \mu| > \epsilon\mu] < 1/4$. In particular, if X_i are all indicators, then $\sigma^2 = \mu(1 - \mu) \le \mu$; we only need $t \ge \frac{4}{\epsilon^2\mu}$.

- Each single sample value X_i must be generated efficiently
- The number of samples t needs to be a polynomial in |x| (and $1/\epsilon$)
- So, if μ is really small then we're in trouble!

$\#_{DNF}$ with Naive Monte Carlo Algorithm

Line of thought

- $f=f(\varphi)$ is the number of satisfying assignments
- $\bullet\,$ Probability that a random truth assignment satisfies φ is $\mu=f/2^n$
- Let X_i indicates if the *i*th truth assignment satisfies φ

•
$$\mathsf{Prob}[X_i = 1] = \mathsf{E}[X_i] = \mu$$

• After taking t samples, output

$$\tilde{f} = 2^n \tilde{\mu} = 2^n \cdot \frac{1}{t} \sum_{i=1}^t X_i$$

• Then, by the unbiased estimator theorem, when $t \geq \frac{4}{\epsilon^2 \mu}$ we have

$$\mathsf{Prob}[|\tilde{f} - f| > \epsilon f] = \mathsf{Prob}[|\tilde{\mu} - \mu| > \epsilon \mu] < 1/4$$

• If
$$f\ll 2^n,$$
 say $f=n^2,$ then $\mu=n^2/2^n$ and $t=\Omega(2^n/n^2)$

- To find a few needles in a haystack, we need many samples
- More concretely, the sample space is too large, while the "good set" is too small.
- Karp-Luby (STOC 1973) designed a much smaller sample space from which we can still sample efficiently

The Karp-Luby Algorithm for #DNF

• Suppose φ has m terms

$$\varphi = T_1 \lor T_2 \lor \cdots \lor T_m = (\bar{x}_1 \land x_2 \land \bar{x}_3) \lor (\bar{x}_2 \land x_4) \lor \cdots$$

• Let S_j be the set of assignments satisfying T_j which has v_j variables • Then, $|S_j| = 2^{n-v_j}$; and we want $f = \left|\bigcup_{j=1}^n S_j\right|$ • The haystack

$$\Omega = \{(a,j) \mid a \in S_j\}$$
$$|\Omega| = \sum_{j=1}^m 2^{n-v_j} \le m 2^n$$

• The needles (represent each satisfying a by the minimum j for which $a \in S_j$)

$$N = \left\{ (a,j) \mid j = \min(j', (a,j') \in \Omega) \right\}, \implies f = |N|$$

The Karp-Luby Algorithm for #DNF

The Algorithm

$$\begin{split} & \text{for } i = 1 \text{ to } t \text{ do} \\ & \text{Choose } (a,j) \text{ uniformly from } \Omega \\ & X_i = \begin{cases} 1 & (a,j) \in N \\ 0 & \text{otherwise} \end{cases} \\ & \text{end for} \\ & \text{Output } |\Omega| \cdot \frac{1}{t} \sum_{i=1}^t X_i \end{split}$$

The Analysis

•
$$\mathsf{Prob}[X_i = 1] = \mathsf{E}[X_i] = \frac{|N|}{|\Omega|}$$

- To chose (a, j) uniformly from Ω , pick j with probability $\frac{|S_j|}{\sum |S_j|}$, then choose $a \in S_j$ uniformly
- Checking if $(a, j) \in N$ is the same as checking if a satisfies $T_{j'}$ for some j' < j.

The algorithm can be used to estimate

$$\left|\bigcup_{j=1}^{m} S_j\right|$$

for any collection of sets ${\cal S}_j$ for which similar operations can be done efficiently.

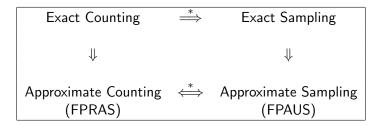
Definition (FPAUS)

A fully polynomial time almost uniform sampler is a randomized algorithm A:

- A's input is an instance x of the problem (like a graph G)
- A internally chooses a random string R
- A outputs $A(x,R) \in \Omega$, Ω is the set of solutions to x
- \bullet the total variation distance between A 's output distribution and the uniform distribution is at most ϵ

$$\max_{S \subseteq \Omega} \left| \mathsf{Prob}_R[A(x, R) \in S] - \frac{|S|}{|\Omega|} \right| \le \epsilon$$

• A's running time is polynomial in |x| and $\log(1/\epsilon)$



(* means "true for a class of problems," which is fairly large)

Counting number of matchings (#MATCHINGS): given a graph ${\it G}$

- $\mathcal{M}(G) = \text{set of matchings (not necessarily perfect)}$
- $f(G) = |\mathcal{M}(G)|$
- Compute f(G)

Theorem

If there is a FPAUS for #MATCHINGS then there is a FPRAS for it too

Making Use of "Self-Reducibility"

• Suppose
$$G = (V, \{e_1, e_2, ..., e_m\}$$

• Let
$$G_k = (V, \{e_1, \dots, e_k\}), \ 0 \le k \le m$$

• Key idea:

$$f(G) = f(G_m) = \frac{f(G_m)}{f(G_{m-1})} \cdot \frac{f(G_{m-1})}{f(G_{m-2})} \cdot \cdot \cdot \frac{f(G_1)}{f(G_0)} \cdot f(G_0) = \frac{1}{r_m} \cdot \frac{1}{r_{m-1}} \cdot \cdot \cdot \frac{1}{r_1} \cdot 1$$

We will approximate all the

$$r_k = \frac{f(G_{k-1})}{f(G_k)}, \quad 1 \le k \le m$$

then take the reciprocal of their product as an estimate for f(G)

How Well Must We Approximate the r_k ?

Suppose *˜*_k is an (*ϵ*, *δ*)-approximation for *r*_k, 1 ≤ k ≤ m
Want: *˜* = ¹/_{*˜*₁···*˜*_m} to be an (*ϵ*, *δ*)-approximation for *f* = ¹/_{*r*₁···*r*_m}:

$$\mathsf{Prob}\left[\left|\frac{1}{\tilde{r}_1\cdots\tilde{r}_m}-\frac{1}{r_1\cdots r_m}\right|<\epsilon\frac{1}{r_1\cdots r_m}\right]>1-\delta$$

which is the same as

$$\mathsf{Prob}\left[1-\epsilon < \frac{r_1 \cdots r_m}{\tilde{r}_1 \cdots \tilde{r}_m} < 1+\epsilon\right] > 1-\delta$$

• What we have is:

$$\mathsf{Prob}\left[|\tilde{r}_k - r_k| < \bar{\epsilon}r_k\right] > 1 - \bar{\delta}$$

which is equivalent to

$$\mathsf{Prob}\left[(1+\bar{\epsilon})^{-1} < \frac{r_k}{\tilde{r}_k} < (1-\bar{\epsilon})^{-1}\right] > 1-\bar{\delta}$$

How Well Must We Approximate the r_k ?

• Choose $\overline{\delta} = \delta/m$, then

$$\operatorname{Prob}\left[(1+\bar{\epsilon})^{-1} < \frac{r_k}{\tilde{r}_k} < (1-\bar{\epsilon})^{-1}, \text{ for all } k\right] > 1-\delta$$

Hence,

$$\mathsf{Prob}\left[(1+\bar{\epsilon})^{-m} < \prod_{k=1}^m \frac{r_k}{\bar{r}_k} < (1-\bar{\epsilon})^{-m}\right] > 1-\delta$$

• Now, setting $\overline{\epsilon} = \frac{\epsilon}{4m}$ we get

$$(1+\bar{\epsilon})^{-m} \geq 1-\epsilon (1-\bar{\epsilon})^{-m} \leq 1+\epsilon$$

We made use of a subset of the following inequalities:

Estimating r_k : Which Needles? In Which Haystack?

To estimate $r_k = \frac{f(G_{k-1})}{f(G_k)}$:

• The haystack: $\Omega_k = \mathcal{M}(G_k)$

• The needles:
$$\Omega_{k-1} = \mathcal{M}(G_{k-1})$$

• Are there enough needles to reduce number of samples? yes!

$$r_k \geq \frac{1}{2}$$

• Thus, if we had an *exact* uniform sampler we only need $t \ge \frac{4}{\bar{\epsilon}^2 r_k}$ samples to get an $(\bar{\epsilon}, 1/4)$ -approximation for r_k

Main Question Now

How many samples does an $(\bar{\epsilon}, 1/4)$ -approximator for r_k need if it only has access to a FPAUS, i.e. it can only sample approximately uniformly from Ω_k ?

The Algorithm

- Let A be an ϵ' -FPAUS for Ω_k (ϵ' to be determined)
- Take t samples using A, let X_i indicate if the *i*th sample $\in \Omega_{k-1}$
- Output $\tilde{r}_k = \frac{1}{t} \sum_{i=1}^{t} X_i$ as an estimate for r_k

The Analysis

 \bullet Want ${\rm Prob}[|\tilde{r}_k-r_k|>\bar{\epsilon}r_k]<1/4,$ in other words,

$$\mathsf{Prob}[r_k - \epsilon r_k \le \tilde{r}_k \le r_k + \epsilon r_k] \ge 3/4$$

• What do we know?

- From definition of $A, \operatorname{Prob}[X_i=1]$ is near r_k
- Thus, $\mathsf{E}[\tilde{r}_k]$ is near r_k (within ϵ')
- \tilde{r}_k is near $E[\tilde{r}_k]$ with high probability if t is sufficiently large (why?)
- Should be able to get what we want from here

Number of Samples from a FPAUS

The analysis, more precisely:

• By definition of A,

$$r_k - \epsilon' \leq \operatorname{Prob}[X_i = 1] = \mathsf{E}[X_i] \leq r_k + \epsilon'$$

Thus,

$$r_k - \epsilon' \le \mathsf{E}[\tilde{r}_k] \le r_k + \epsilon'$$

• To apply Chebyshev, need

$$\mathsf{Var}\left[ilde{r}_k
ight] = rac{1}{t^2}\sum_{i=1}^t \mathsf{Var}\left[X_i
ight] \leq rac{1}{t}\mathsf{E}[ilde{r}_k]$$

• Thus, by Chebyshev

$$\mathsf{Prob}\left[|\tilde{r}_k - \mathsf{E}[\tilde{r}_k]| > a\mathsf{E}[\tilde{r}_k]\right] < \frac{\mathsf{Var}\left[\tilde{r}_k\right]}{a^2(\mathsf{E}[\tilde{r}_k])^2} \leq \frac{1}{ta^2\mathsf{E}[\tilde{r}_k]}$$

Number of Samples from a FPAUS

• Since
$$\mathsf{E}[\tilde{r}_k] \ge r_k - \epsilon' \ge 1/3$$

 $\mathsf{Prob}\left[(1-a)\mathsf{E}[\tilde{r}_k] \le \tilde{r}_k \le (1+a)\mathsf{E}[\tilde{r}_k]\right] \ge 1 - \frac{1}{ta^2\mathsf{E}[\tilde{r}_k]} \ge 1 - \frac{3}{ta^2} \ge 3/4$

if we take $t \geq \frac{12}{a^2}$ samples.

Putting things together

$$\mathsf{Prob}\left[(1-a)(r_k-\epsilon') \le \tilde{r}_k \le (1+a)(r_k+\epsilon')\right] \ge 3/4$$

• Now, just need to choose a and ϵ' so that

$$(1-a)(r_k - \epsilon') \geq (r_k - \bar{\epsilon}r_k)$$

$$(1+a)(r_k + \epsilon') \leq (r_k + \bar{\epsilon}r_k)$$

•
$$a = \bar{\epsilon}/4$$
 and $\epsilon' = \bar{\epsilon}/8$ work!

To get $(\epsilon,\delta)\text{-approximation}$ for f, need

• $(\bar{\epsilon}, \bar{\delta})$ -approximation for each r_k , where $\bar{\epsilon} = \epsilon/4m$ and $\bar{\delta} = \delta/m$

To get $(\bar{\epsilon}, \bar{\delta})$ -approximation for r_k , need

- $\epsilon'\text{-}\mathsf{FPAUS}$ for $\Omega_k\text{, with }\epsilon'=\bar\epsilon/8=\epsilon/(64m)$
- this many samples:

$$\frac{12}{a^2}O\left(\log(1/\bar{\delta})\right) = \frac{192}{\bar{\epsilon}^2}O\left(\log(m/\delta)\right) = \frac{3072m^2}{\epsilon^2}O\left(\log(m/\delta)\right)$$

In total, we invoke the FPAUS $\frac{3072m^3}{\epsilon^2}O\left(\log(m/\delta)\right)$ times. (Number of invocations can be reduced to $\tilde{O}(m^2)$ with a cleverer application of Chebyshev)