
Agenda

What have we done?

Probabilistic thinking!

Mild introduction to

Probability theory
The probabilistic method
Randomized algorithms

with quite a few examples.

Next

The Balls into Bins Model
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Balls into Bins

Throw m balls into n bins, compute

1 the distribution of # balls thrown until bin 1 is not empty

2 the distribution of # balls thrown until no bin is empty

3 the distribution of the numbers of balls in bins?

4 Prob[some bin has ≥ 2 balls] (birthday paradox, hash collision)
5 Prob[bin i has c balls], E[# balls in bin i]

when c = 0, think of the number of empty hash buckets

6 the distribution of the maximum load
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3. The Exact Distribution

Let Xi = # balls in bin i, i ∈ [n]
For any k1, . . . , kn with

∑
ki = m,

Prob [(X1, . . . , Xn) = (k1, . . . , kn)] =
(

m

k1, . . . , kn

)(
1
n

)m

(Just a multinomial distribution with pi = 1/n,∀i.)
It’s often hard/messy/impossible to compute things with this formula

Try: probability that some bin has ≥ 2 balls

= 1−
∑

k1+···+kn=m
ki≤1,∀i

(
m

k1, . . . , kn

)(
1
n

)m

Depending on the question, two typical strategies:
A more “local” look (see next two examples)
A good approximation (examples after that)
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4. Probability that some bin has ≥ 2 balls

m: number of passwords, n: hash domain size

= hash collision probability (huge assumption on uniformity)

Want to know

How small should m be s.t. Prob[collision] ≤ ε (hash collision)
How large should m be s.t. Prob[collision] ≥ 1/2 (birthday paradox)

Looking at non-empty bins one by one,

Prob[no collision] =
(

1− 1
n

)(
1− 2

n

)
. . .

(
1− m− 1

n

)
Applying e−x−x2 ≤ 1− x ≤ e−x,

exp

{
−

m−1∑
i=1

(i/n + i2/n2)

}
≤ Prob[no collision] ≤ exp

{
−

m−1∑
i=1

i/n

}
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Hash Collision Probability

There are constants c1, c2, c3 such that

exp
{
−(c1m

2/n + c2m
3/n)

}
≤ Prob[no collision] ≤ exp

{
−c3m

2/n
}

For Prob[collision] ≤ ε, only need

exp
{
−(c1m

2/n + c2m
3/n)

}
≥ 1− ε

m = O(
√

n) is sufficient

For Prob[collision] ≥ 1/2, only need

exp
{
−c3m

2/n
}
≤ 1/2

and m = Ω(
√

n) is sufficient
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5. Distribution of the number of balls in a given bin

For any k, the probability that bin i has k balls is

Prob[Xi = k] =
(

m

k

)(
1
n

)k (
1− 1

n

)m−k

– i.e. Xi ∈ Binomial(m, 1/n)
Question: what’s the expected number of bins with k balls?

Note: (
m

k

)(
1
n

)k (
1− 1

n

)m−k

=
1
k!
· m(m− 1) · · · (m− k + 1)

nk
·
(

1− 1
n

)m−k

≈ e−m/n(m/n)k

k!
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PTCF: Poisson Distribution, Approximating the Binomial

X has a Poisson distribution with mean λ iff

Prob[X = k] =
e−λλk

k!
, k = 0, 1, 2, . . .

E[X] = λ

Var [X] = λ

X ∈ Poisson(λ), Y ∈ Poisson(µ), then X + Y ∈ Poisson(λ + µ)

Theorem (Poisson Approximation to the Binomial)

Let Yn ∈ Binomial(n, p), where lim
n→∞

np = λ. Then,

lim
n→∞

Prob[Yn = k] =
e−λλk

k!
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PTCF: A Chernoff Bound for Poisson Variable

Let X ∈ Poisson(λ),
If k > λ, then

Prob[X > k] ≤ e−λ

(
eλ

k

)k

If k < λ, then

Prob[X < k] ≤ e−λ

(
eλ

k

)k
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The Poisson Approximation for Balls into Bins

Recall Xi = # balls in bin i, and Xi ∈ Binomial(m, 1/n)
Each Xi is approximately Poisson(m/n)
For i = 1, . . . , n, let Yi be independent Poisson(m/n) variables

Theorem

For any k1 + · · ·+ kn = m,

Prob [(X1, . . . , Xn) = (k1, . . . , kn)] =

Prob

[
(Y1, . . . , Yn) = (k1, . . . , kn) |

n∑
i=1

Yi = m

]
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The Poisson Approximation for Balls into Bins

Theorem

Let f(x1, . . . , xn) be any non-negative function,

E[f(X1, . . . , Xn)] ≤ e
√

mE[f(Y1, . . . , Ym)]

E[f(Y1, . . . , Ym)] ≥ E[f(Y1, . . . , Ym) |
∑

Yi = m]Prob[
∑

Yi = m]

= E[f(X1, . . . , Xm)]
e−mmm

m!
> E[f(X1, . . . , Xm)]/(e

√
m)

Corollary

An event taking place with probability p in the Poisson takes place with
probability ≤ e

√
mp in the exact case.
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6. The Maximum Load

Throw m = n balls into n boxes

What’s the typical order of the maximum load? Intuitively,

Prob[max load is too large] is small
Prob[max load is too small] is small

Ideally, there’s some f(n) s.t.

Prob[max load= Ω(f(n))] = o(1)
Prob[max load= O(f(n))] = o(1)

It’s quite amazing that such “threshold function” f(n) exists

f(n) =
lnn

ln lnn
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Upper Threshold for Maximum Load

First trial

Prob[Xi ≥ c] =
m∑

k=c

(
m

k

)(
1
n

)k (
1− 1

n

)m−k

= ... messy

Second trial: break it down and use union bound!

For any set S of c balls, let AS be the event bin i contains S

One union bound application

Prob[Xi ≥ c] = Prob[AS occurs for some S] ≤
(

n

c

)
(1/n)c

Another union bound application

Prob[Some bin has ≥ c balls] ≤ n

(
n

c

)
(1/n)c

Prob[Some bin has ≥ e lnn/ ln lnn balls] ≤ 1/n, when n large
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Lower Threshold for Maximum Load

Prob[Xi < c,∀i] ≤ e
√

n(Prob[Yi ≤ c− 1])n

= e
√

n

(
c−1∑
k=0

e−1(1)k

k!

)n

< e
√

n

(
1− 1

e · c!

)n

< e
√

ne−
n

e·c!

≤ 1/n

when c = ln n/ ln lnn and n sufficiently large.
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A Real Problem: Distributed Web Caching

Web proxies cache web-pages for fast delivery, network load
reduction, etc.

When a new URL is requested, a proxy needs to know if it or another
proxy has a cached copy

Periodically, proxies exchange list of (thousands of) URLs they have
cached

Reducing periodic traffic requires reducing sizes of these exchanged
lists

Question

How would you solve this problem?
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First Solution: Hash Function

Say, a proxy has m URLs x1, . . . , xm in its cache

Brute-force solution requires hundreds of KB

To reduce space, use a hash function h : {url} → [n]
Assume each URL mapped to i ∈ [n] with probability 1/n (very
strong assumption)

Two ways to transmit

n-bit string, bits h(xi) are set to 1
m log2 n-bit string, log2 n bits for each h(xi)

Main Question

Choose n as small as possible so that, if x is a URL not on the list,

Prob[h(x) = h(xi) for some i] ≤ ε
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Hash Solution – False Positive Probability

Prob[h(x) = h(xi), for some i] ≤ m Prob[h(x) = h(x1)]
= mn Prob[h(x) = h(x1) = 1]

= mn

(
1
n

)2

≤ ε

as long as n ≥ m/ε.

Number of bits used is either n = m/ε or m lg n = m(log m + log(1/ε))
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Second Solution: Bloom Filter

Bloom Filter (Bloom, 1970) has been “blooming” in databases,
networking, etc.

Idea:

choose k random hash functions h1, . . . , hk : {url} → [n]
transmit n-bit string: all bits hj(xi) are set to 1 (j ∈ [k], i ∈ [m])
querying for x: return yes if bits hj(x) are 1 for all j ∈ [k]

Want:
Prob[x is a false positive] ≤ ε

Or,
Prob[all k balls thrown into non-empty bins] ≤ ε
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Bloom Filter: Preliminary Analysis

Let Y = # empty bins

E[Y ] =
n∑

i=1

Prob[Xi = 0] = n

(
1− 1

n

)mk

= np ≈ ne−
mk
n = npa

Probability that all k balls thrown into non-empty bins is(
1− Y

n

)k

≈ (1− p)k ≈ (1− pa)k

First ≈ good if Y is highly concentrated
Second ≈ good for large n

Minimizing (1− pa)k leads to k = n ln 2/m. With this k,

Prob[false positive] = (1− pa)k =
(

1
2

)n ln 2/m

≤ ε

as long as n ≥ m log(1/ε)/ ln 2
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Is Y Highly Concentrated?

Prob

[
Y

n
is δ-close to p

]
= 1− Prob[|Y − np| > δn]

Let Zi indicates if bin i is empty, then Y =
∑

Zi

The event |
∑

Zi − np| > δn is in the exact case, the Zi are not
independent

In the Poisson, Prob[Yi = 0] = e−mk/n(mk/n)0

0! = pa

With Chernoff’s help, we get

Prob[|Y − np| > δn] ≤ e
√

m · 2e−(npa)(δ/pa)2/3 =
√

m

e2δn/3−1

Exponentially small! Thus, Y is highly concentrated.
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An Information Theoretic Lower Bound

What is the least number of bits needed if

No false negative is allowed
False positive probability is at most ε

Say, the universe (of all URLs) has U elements

Each subset of size m is represented by a string of length n

Each string of length n can only represent at most
(
m+ε(U−m)

m

)
subsets (

U

m

)
≤ 2n

(
m + ε(U −m)

m

)
Hence,

n ≥ m log2(1/ε)
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