What have we done?

@ Probabilistic thinking!
@ Mild introduction to

e Probability theory
o The probabilistic method
o Randomized algorithms

with quite a few examples.
Next
@ The Balls into Bins Model

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 1/23

Balls into Bins

Throw m balls into n bins, compute
© the distribution of # balls thrown until bin 1 is not empty
@ the distribution of # balls thrown until no bin is empty
@ the distribution of the numbers of balls in bins?

@ Prob[some bin has > 2 balls] (birthday paradox, hash collision)
@ Problbin i has ¢ balls], E[# balls in bin 7]
e when ¢ = 0, think of the number of empty hash buckets

@ the distribution of the maximum load

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 3/23

3. The Exact Distribution

e Let X; = # ballsin bin 7, i € [n]
e Forany ki,...,k, with > k; =m,

Prob[(X1,...,Xn) = (k1,....kn)] = (k;lmk:n> (:Jm

(Just a multinomial distribution with p; = 1/n,Vi.)
@ It's often hard/messy/impossible to compute things with this formula
@ Try: probability that some bin has > 2 balls

- Y (WG

ki+-+kn=m
ki <1,Vi

@ Depending on the question, two typical strategies:

o A more “local” look (see next two examples)
o A good approximation (examples after that)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 4/23

4. Probability that some bin has > 2 balls

m: number of passwords, n: hash domain size

= hash collision probability (huge assumption on uniformity)
@ Want to know

e How small should m be s.t. Prob[collision] < e (hash collision)
e How large should m be s.t. Prob|collision] > 1/2 (birthday paradox)

Looking at non-empty bins one by one,

Probno collision] = <1 - i) (1 _ i) <1 e 1)

T

Applying e T <1 g <e?,

m—1 m—1
exp {— Z(z/n + i2/n2)} < Prob[no collision] < exp {— Z z/n}

i=1 i=1

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 5/23

Hash Collision Probability

@ There are constants cy, co, c3 such that

exp {—(c1m?/n + com®/n)} < Prob[no collision] < exp {—cym?/n}

@ For Prob[collision] < ¢, only need
exp {—(c1m?/n+com®/n)} >1—¢

m = O(y/n) is sufficient
e For Prob[collision] > 1/2, only need

exp{—03m2/n} <1/2

and m = Q(/n) is sufficient

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 6 /23

5. Distribution of the number of balls in a given bin

@ For any k, the probability that bin ¢ has k balls is

Prob[X; = k] = <n]§) (;)k (1—71L>m_k

—i.e. X; € Binomial(m,1/n)

@ Question: what's the expected number of bins with k balls?

(T

o Note:

_ 1 m(m—1) Ak(m—k—i—l)‘(l_;)m—k
N m/n<m/n>
k!

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 7/23

PTCEF: Poisson Distribution, Approximating the Binomial

@ X has a Poisson distribution with mean X iff

—)\)\k
Prob[X:k]:ek' L k=0,1,2,...
E[X] = A
Var[X] = A

@ X € Poisson()), Y € Poisson(y), then X +Y & Poisson(\ + p)

Theorem (Poisson Approximation to the Binomial)

Let Y,, € Binomial(n,p), where lim np = X. Then,
n—oo

Ak
lim Prob[¥, — k] = 2>

n—oo k'

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 9/23

PTCF: A Chernoff Bound for Poisson Variable

Let X € Poisson(]),
o If k> A, then

Prob[X > k] < e <>k

o If £ < A, then
e\’
Prob[X < k] < e <k)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 10 / 23

The Poisson Approximation for Balls into Bins

@ Recall X; = # balls in bin ¢, and X; € Binomial(m, 1/n)
e Each X; is approximately Poisson(m /n)

@ Fori=1,...,n, let Y; be independent Poisson(m/n) variables

Theorem
Forany k1 +--- + k, = m,

Prob [(X1,...,X,) = (ki,... . kn)] =
n
Prob | (Y1,...,Yn) = (k... kn) | Y Yi=m
i=1

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

11 /23

The Poisson Approximation for Balls into Bins

Theorem
Let f(x1,...,zy,) be any non-negative function,
E[f(X17 e 7X’Vl>] S e\/mE[f(Yla M 7Ym)]
E[f(Yi,...,Y)] > E[f(Yi,....Yn) | ZY m] Prob[> " Y; = m]
> E[f(X1,..., Xm)]/(ev/m)
Corollary

An event taking place with probability p in the Poisson takes place with
probability < e /mp in the exact case.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 12 /23

6. The Maximum Load

Throw m = n balls into n boxes
@ What's the typical order of the maximum load? Intuitively,
o Prob[max load is too large] is small
o Prob[max load is too small] is small
o Ideally, there's some f(n) s.t.
e Prob[max load= Q(f(n))] = o(1)
e Prob[max load= O(f(n))] = o(1)

@ It's quite amazing that such “threshold function” f(n) exists

Inn

fn) =

"~ Inlnn

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 13 /23

Upper Threshold for Maximum Load

o First trial

=55 (1) (1) (1 1) < ey

k=c

Second trial: break it down and use union bound!

For any set S of ¢ balls, let Ag be the event bin i contains S
One union bound application

Prob[X; > ¢] = Prob[Ag occurs for some S] < <Z> (1/n)°

@ Another union bound application
Prob[Some bin has > ¢ balls] < n<n> (1/n)°
c

@ Prob[Some bin has > elnn/Inlnn balls] < 1/n, when n large

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 14 /23

Lower Threshold for Maximum Load

Prob[X; < ¢,Vi] < ey/n(Prob[Y; <c—1])"

C_lefllk "
_ eﬁ(Z k(!))

k=0

< e\/ﬁ<1— L >n

e-c!
< e nefﬁ
< 1/n

when ¢ = Inn/Inlnn and n sufficiently large.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 15 / 23

A Real Problem: Distributed Web Caching

@ Web proxies cache web-pages for fast delivery, network load
reduction, etc.

@ When a new URL is requested, a proxy needs to know if it or another
proxy has a cached copy

@ Periodically, proxies exchange list of (thousands of) URLs they have
cached

@ Reducing periodic traffic requires reducing sizes of these exchanged
lists

Question J

How would you solve this problem?

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 17 / 23

First Solution: Hash Function

Say, a proxy has m URLs x1,...,x,, in its cache
Brute-force solution requires hundreds of KB

To reduce space, use a hash function h : {URL} — [n]

Assume each URL mapped to i € [n] with probability 1/n (very
strong assumption)

Two ways to transmit
@ n-bit string, bits h(x;) are set to 1

e mlog, n-bit string, log, n bits for each h(x;)

Main Question
Choose n as small as possible so that, if 2 is a URL not on the list,

Problh(x) = h(x;) for some i] < ¢

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 18 / 23

Hash Solution — False Positive Probability

Problh(x) = h(x;), for some i] < mProblh(xz) = h(z1)]
mn Prob[h(x) = h(z1) = 1]

o

Il
3
3

IA
(e

as long as n > m/e.

Number of bits used is either n = m/e or mlgn = m(logm + log(1/e))

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 19 / 23

Second Solution: Bloom Filter

@ Bloom Filter (Bloom, 1970) has been “blooming” in databases,
networking, etc.
o Idea:

e choose k random hash functions hy, ..., h; : {URL} — [n]
e transmit n-bit string: all bits hj(x;) are set to 1 (j € [k], € [m])
e querying for x: return YES if bits h;(x) are 1 for all j € [k]

e Want:
Prob[z is a false positive] < e

Or,
Problall k£ balls thrown into non-empty bins] < e

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 20 /23

Bloom Filter: Preliminary Analysis

o Let Y = # empty bins

mk

E[Y] = Z Prob[X; = 0] = n<1 — > —nprne = np,
i=1
@ Probability that all £ balls thrown into non-empty bins is

(1—Y)kz<1—p>’w<1—pa>’“

n

e First ~ good if Y is highly concentrated
e Second = good for large n

e Minimizing (1 — p,)" leads to k = n1n2/m. With this k,

1 nln2/m
Prob|[false positive] = (1 — pg)* = (2> <e

as long as n > mlog(1/e)/In2

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 21 /23

Is Y Highly Concentrated?

Y
Prob [is 0-close to p] =1— Prob[|Y — np| > dn]
n
@ Let Z; indicates if bin i is empty, then Y =" Z;

@ The event | Y Z; —np| > dn is in the exact case, the Z; are not
independent

@ In the Poisson, Prob[Y; = 0] = e_mk/now = Pa
@ With Chernoff’s help, we get
Prob[|Y — np| > dn] < ey/m - 2e~(0a)(0/pa)?/3 vm

T e26n/3-1

Exponentially smalll Thus, Y is highly concentrated.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 22 /23

An Information Theoretic Lower Bound

@ What is the least number of bits needed if

o No false negative is allowed
o False positive probability is at most €

@ Say, the universe (of all URLs) has U elements
@ Each subset of size m is represented by a string of length n
@ Each string of length n can only represent at most (m“(U*m))

subsets "
<U> < 2n<m—|—e(U—m)>
m m

n > mlogy(1/e)

Hence,

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 23 /23

	Balls into Bins -- The Basics
	The Poisson Approximation
	Application: Bloom Filters

