What have we done?

- Probabilistic thinking!
- Mild introduction to
 - Probability theory
 - The probabilistic method
 - Randomized algorithms

with quite a few examples.

Next

• The Balls into Bins Model

Throw m balls into n bins, compute

- 0 the distribution of # balls thrown until bin 1 is not empty
- 2 the distribution of # balls thrown until no bin is empty
- the distribution of the numbers of balls in bins?
- Prob[some bin has ≥ 2 balls] (birthday paradox, hash collision)
- Solution Prob[bin i has c balls], E[# balls in bin i]
 - when c = 0, think of the number of empty hash buckets
- the distribution of the maximum load

3. The Exact Distribution

• Let
$$X_i = \#$$
 balls in bin $i, i \in [n]$

• For any k_1, \ldots, k_n with $\sum k_i = m$,

$$\mathsf{Prob}\left[(X_1,\ldots,X_n)=(k_1,\ldots,k_n)\right] = \binom{m}{k_1,\ldots,k_n} \left(\frac{1}{n}\right)^m$$

(Just a multinomial distribution with $p_i = 1/n, \forall i.$)

It's often hard/messy/impossible to compute things with this formula
Try: probability that some bin has ≥ 2 balls

$$=1-\sum_{\substack{k_1+\dots+k_n=m\\k_i\leq 1,\forall i}} \binom{m}{k_1,\dots,k_n} \left(\frac{1}{n}\right)^m$$

- Depending on the question, two typical strategies:
 - A more "local" look (see next two examples)
 - A good approximation (examples after that)

4. Probability that some bin has ≥ 2 balls

- m: number of passwords, n: hash domain size
- = hash collision probability (huge assumption on uniformity)
- Want to know
 - How small should m be s.t. $\mathsf{Prob}[\mathsf{collision}] \leq \epsilon$ (hash collision)
 - How large should m be s.t. Prob[collision] $\geq 1/2$ (birthday paradox)
- Looking at non-empty bins one by one,

$$\mathsf{Prob}[\mathsf{no collision}] = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{m-1}{n}\right)$$

• Applying $e^{-x-x^2} \leq 1-x \leq e^{-x}$,

$$\exp\left\{-\sum_{i=1}^{m-1}(i/n+i^2/n^2)\right\} \leq \operatorname{Prob}[\operatorname{no \ collision}] \leq \exp\left\{-\sum_{i=1}^{m-1}i/n\right\}$$

Hash Collision Probability

• There are constants c_1, c_2, c_3 such that

 $\exp\left\{-(c_1m^2/n + c_2m^3/n)\right\} \le \operatorname{Prob}[\operatorname{no} \operatorname{ collision}] \le \exp\left\{-c_3m^2/n\right\}$

• For $Prob[collision] \leq \epsilon$, only need

$$\exp\left\{-(c_1m^2/n + c_2m^3/n)\right\} \ge 1 - \epsilon$$

 $m = O(\sqrt{n})$ is sufficient

• For $\operatorname{Prob}[\operatorname{collision}] \geq 1/2$, only need

$$\exp\left\{-c_3m^2/n\right\} \le 1/2$$

and $m=\Omega(\sqrt{n})$ is sufficient

5. Distribution of the number of balls in a given bin

• For any k, the probability that bin i has k balls is

$$\operatorname{Prob}[X_i = k] = \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k}$$

– i.e.
$$X_i \in \mathsf{Binomial}(m, 1/n)$$

Question: what's the expected number of bins with k balls?Note:

$$\binom{m}{k} \left(\frac{1}{n}\right)^{k} \left(1 - \frac{1}{n}\right)^{m-k}$$

$$= \frac{1}{k!} \cdot \frac{m(m-1)\cdots(m-k+1)}{n^{k}} \cdot \left(1 - \frac{1}{n}\right)^{m-k}$$

$$\approx \frac{e^{-m/n}(m/n)^{k}}{k!}$$

PTCF: Poisson Distribution, Approximating the Binomial

• X has a Poisson distribution with mean λ iff

$$\mathsf{Prob}[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}, \ k = 0, 1, 2, \dots$$

$$\begin{aligned} \mathsf{E}[X] &= \lambda \\ \mathsf{Var}\left[X\right] &= \lambda \end{aligned}$$

• $X \in \text{Poisson}(\lambda), Y \in \text{Poisson}(\mu)$, then $X + Y \in \text{Poisson}(\lambda + \mu)$

Theorem (Poisson Approximation to the Binomial) Let $Y_n \in Binomial(n, p)$, where $\lim_{n \to \infty} np = \lambda$. Then,

$$\lim_{n \to \infty} \mathsf{Prob}[Y_n = k] = \frac{e^{-\lambda} \lambda^k}{k!}$$

©Hung Q. Ngo (SUNY at Buffalo)

Let $X \in \text{Poisson}(\lambda)$, • If $k > \lambda$, then Prob $[X > k] \le e^{-\lambda} \left(\frac{e\lambda}{k}\right)^k$ • If $k < \lambda$, then $\text{Prob}[X < k] \le e^{-\lambda} \left(\frac{e\lambda}{k}\right)^k$

©Hung Q. Ngo (SUNY at Buffalo)

The Poisson Approximation for Balls into Bins

- Recall $X_i = \#$ balls in bin *i*, and $X_i \in \text{Binomial}(m, 1/n)$
- Each X_i is approximately Poisson(m/n)
- For i = 1, ..., n, let Y_i be independent Poisson(m/n) variables

Theorem

For any
$$k_1 + \dots + k_n = m$$
,
 $Prob [(X_1, \dots, X_n) = (k_1, \dots, k_n)] =$
 $Prob \left[(Y_1, \dots, Y_n) = (k_1, \dots, k_n) \mid \sum_{i=1}^n Y_i = m \right]$

The Poisson Approximation for Balls into Bins

Theorem

Let $f(x_1, \ldots, x_n)$ be any non-negative function,

$$\mathsf{E}[f(X_1,\ldots,X_n)] \le e\sqrt{m}\mathsf{E}[f(Y_1,\ldots,Y_m)]$$

$$\begin{split} \mathsf{E}[f(Y_1,\ldots,Y_m)] &\geq \mathsf{E}[f(Y_1,\ldots,Y_m) \mid \sum Y_i = m] \operatorname{\mathsf{Prob}}[\sum Y_i = m] \\ &= \mathsf{E}[f(X_1,\ldots,X_m)] \frac{e^{-m}m^m}{m!} \\ &> \mathsf{E}[f(X_1,\ldots,X_m)]/(e\sqrt{m}) \end{split}$$

Corollary

An event taking place with probability p in the Poisson takes place with probability $\leq e\sqrt{m}p$ in the exact case.

©Hung Q. Ngo (SUNY at Buffalo)

CSE 694 - A Fun Course

Throw m = n balls into n boxes

- What's the typical order of the maximum load? Intuitively,
 - Prob[max load is too large] is small
 - Prob[max load is too small] is small
- Ideally, there's some f(n) s.t.
 - $\mathsf{Prob}[\max \mathsf{load}{=} \Omega(f(n))] = o(1)$
 - $\operatorname{Prob}[\max \operatorname{load} = O(f(n))] = o(1)$

• It's quite amazing that such "threshold function" f(n) exists

$$f(n) = \frac{\ln n}{\ln \ln n}$$

Upper Threshold for Maximum Load

• First trial

$$\operatorname{Prob}[X_i \ge c] = \sum_{k=c}^m \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} = \dots \text{ messy}$$

- Second trial: break it down and use union bound!
- For any set S of c balls, let A_S be the event bin i contains S
- One union bound application

$$\operatorname{Prob}[X_i \ge c] = \operatorname{Prob}[A_S \text{ occurs for some } S] \le \binom{n}{c} (1/n)^c$$

Another union bound application

$$\mathsf{Prob}[\mathsf{Some \ bin \ has} \geq c \ \mathsf{balls}] \leq n \binom{n}{c} (1/n)^c$$

• Prob[Some bin has $\geq e \ln n / \ln \ln n$ balls] $\leq 1/n$, when n large

$$\begin{aligned} \operatorname{Prob}[X_i < c, \forall i] &\leq e\sqrt{n} (\operatorname{Prob}[Y_i \leq c-1])^n \\ &= e\sqrt{n} \left(\sum_{k=0}^{c-1} \frac{e^{-1}(1)^k}{k!} \right)^n \\ &< e\sqrt{n} \left(1 - \frac{1}{e \cdot c!} \right)^n \\ &< e\sqrt{n} e^{-\frac{n}{e \cdot c!}} \\ &\leq 1/n \end{aligned}$$

when $c = \ln n / \ln \ln n$ and n sufficiently large.

A Real Problem: Distributed Web Caching

- Web proxies cache web-pages for fast delivery, network load reduction, etc.
- When a new URL is requested, a proxy needs to know if it or another proxy has a cached copy
- Periodically, proxies exchange list of (thousands of) URLs they have cached
- Reducing periodic traffic requires reducing sizes of these exchanged lists

Question

How would you solve this problem?

- Say, a proxy has m URLs x_1, \ldots, x_m in its cache
- Brute-force solution requires hundreds of $K\!B$
- To reduce space, use a hash function $h : {\rm URL} \} \rightarrow [n]$
- Assume each URL mapped to $i \in [n]$ with probability 1/n (very strong assumption)

Two ways to transmit

- *n*-bit string, bits $h(x_i)$ are set to 1
- $m \log_2 n$ -bit string, $\log_2 n$ bits for each $h(x_i)$

Main Question

Choose n as small as possible so that, if x is a URL not on the list,

$$\mathsf{Prob}[h(x) = h(x_i) \text{ for some } i] \leq \epsilon$$

$$\begin{aligned} \operatorname{Prob}[h(x) &= h(x_i), \text{ for some } i] &\leq m \operatorname{Prob}[h(x) &= h(x_1)] \\ &= mn \operatorname{Prob}[h(x) &= h(x_1) = 1] \\ &= mn \left(\frac{1}{n}\right)^2 \\ &\leq \epsilon \end{aligned}$$

as long as $n \ge m/\epsilon$.

Number of bits used is either $n = m/\epsilon$ or $m \lg n = m(\log m + \log(1/\epsilon))$

- Bloom Filter (Bloom, 1970) has been "blooming" in databases, networking, etc.
- Idea:
 - choose k random hash functions $h_1, \ldots, h_k : {\text{URL}} \rightarrow [n]$
 - transmit n-bit string: all bits $h_j(x_i)$ are set to 1 $(j \in [k], i \in [m])$
 - querying for x: return YES if bits $h_j(x)$ are 1 for all $j \in [k]$
- Want:

$$\mathsf{Prob}[x \text{ is a false positive}] \le \epsilon$$

Or,

 $\mathsf{Prob}[\mathsf{all}\ k \text{ balls thrown into non-empty bins}] \leq \epsilon$

Bloom Filter: Preliminary Analysis

• Let
$$Y = \#$$
 empty bins

$$\mathsf{E}[Y] = \sum_{i=1}^{n} \mathsf{Prob}[X_i = 0] = n \left(1 - \frac{1}{n}\right)^{mk} = np \approx ne^{-\frac{mk}{n}} = np_a$$

• Probability that all k balls thrown into non-empty bins is

$$\left(1 - \frac{Y}{n}\right)^k \approx (1 - p)^k \approx (1 - p_a)^k$$

- First \approx good if Y is highly concentrated
- Second \approx good for large n
- Minimizing $(1 p_a)^k$ leads to $k = n \ln 2/m$. With this k,

$$\mathsf{Prob}[\mathsf{false positive}] = (1 - p_a)^k = \left(\frac{1}{2}\right)^{n \ln 2/m} \le \epsilon$$

as long as $n \ge m \log(1/\epsilon) / \ln 2$

$$\operatorname{Prob}\left[\frac{Y}{n} \text{ is } \delta\text{-close to } p\right] = 1 - \operatorname{Prob}[|Y - np| > \delta n]$$

- Let Z_i indicates if bin i is empty, then $Y = \sum Z_i$
- The event $|\sum Z_i np| > \delta n$ is in the exact case, the Z_i are not independent
- In the Poisson, $\mathsf{Prob}[Y_i=0] = \frac{e^{-mk/n}(mk/n)^0}{0!} = p_a$
- With Chernoff's help, we get

$$\mathsf{Prob}[|Y - np| > \delta n] \le e\sqrt{m} \cdot 2e^{-(np_a)(\delta/p_a)^2/3} = \frac{\sqrt{m}}{e^{2\delta n/3 - 1}}$$

Exponentially small! Thus, Y is highly concentrated.

• What is the least number of bits needed if

- No false negative is allowed
- False positive probability is at most ϵ
- Say, the universe (of all URLs) has U elements
- Each subset of size m is represented by a string of length n
- Each string of length n can only represent at most $\binom{m+\epsilon(U-m)}{m}$ subsets

$$\binom{U}{m} \le 2^n \binom{m + \epsilon(U - m)}{m}$$

Hence,

$$n \geq m \log_2(1/\epsilon)$$