
Discrete Time Markov Chains and Random Walks

Discrete Time Markov Chains

An extremely pervasive probability model

Random Walks on Graphs

One of the most important special cases of DTMC

Why cover them in this course?

DTMC is the first non-trivial probability model we discuss

Lots of fundamental probabilistic reasoning

Lots of applications in Computer Science
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Example 1: Gambler Ruin Problem

A gambler has $100, bets $1 each game, wins with probability 1/2.

He stops if he gets broke or wins $1000

Questions: what’s the probability that he gets broke? On average
how many games are played?
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Example 2: Slow Sort

Given an array A = (a1, . . . , an) of numbers

Slow-Sort: as long as A is not sorted, swap two random elements

Question: what’s the running time?

The Sorted

Order

n! orderings of a1, . . . , an
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Examples 3 & 4: Card Shuffling and Single Server Queue

Shuffling a Deck of Cards

What’s the number of shuffles until the ordering is “almost” uniform?

Single Server Queue

At each time slot, an Internet router’s buffer gets an additional
packet with probability p, or releases one packet with probability q, or
remains the same with probability r.

Starting from an empty buffer, what is the distribution of the number
of packets after n slots?

As n →∞, will the buffer be overflowed?

As n →∞, what’s the typical buffer size?
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Examples 5 & 6: 2-SAT and P2P Networks

2-SAT: find a satisfying assignment if there’s any

1 Assign xi =true/false with probability 1/2
2 If there’s an unsatisfied clause, flip value of one of the two literals

randomly

3 If there is a satisfying assignment, how long does it take?

Searching on P2P Networks

The initial node sends k independent queries out

Each query sent to a random neighbor

Upon receiving a query, an intermediate node forwards it to its
random neighbor

Questions: how long does it take until all nodes receive one of the
queries? What’s the trade-off between k and this speed?
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Stochastic Process

Stochastic process: a collection of random variables (on some
probability space) indexed by some set T :

{Xt, t ∈ T}

When T ⊆ R, think of T as set of points in time

State space, denoted by I, is the set of all possible values of the Xt

When T is countable: discrete-time stochastic process

When T is an interval of the real line: continuous-time stochastic
process
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Examples of Stochastic Processes

Bernoulli process: a sequence {X0, X1, X2, . . . } of independent Bernoulli
random variables with parameter p.

In assignment 1, we have derived statistics on

Sn = X1 + · · ·+ Xn

Tn = number of slots from the (n− 1)th 1 to the nth 1
Yn = T1 + · · ·+ Tn

In practice, things are not that easy. We often see processes whose
variables are correlated.

Stock market and exchange rate fluctuations

Signals (speech, audio and video)

Daily temperatures

Brownian motion or random walks

etc.
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Discrete-Time Markov Chain

A DTMC is a discrete-time stochastic process {Xn}n≥0

State space I is countable (often labeled with a subset of N)

For all states i, j there is a given probability pij such that

P
[
Xn+1 = j | Xn = i,Xn−1 = in−1, . . . X0 = i0

]
= pij ,

for all i0, . . . , in−1 ∈ I and all n ≥ 0.

pij ≥ 0, ∀i, j ∈ I,∑
j∈I

pij = 1, ∀i ≥ 0.

P = (pij) is called the transition probability matrix of the chain
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Typical Questions We Want Answers To

Given a DTMC P with state space I, A ⊂ I
- Starting from X0 = i /∈ A

What’s the probability A is ever “hit”?

What’s the probability Xn ∈ A for a given n?

What’s the expected number of steps until A is hit

What’s the probability we’ll come back to i?

What’s the expected number of steps until we come back?

What’s the expected number of steps until all states are visited?

As n →∞, what’s the distribution of where we are? Does the “limit
distribution” even exist? If it does, how fast is the convergence rate?

- Given an initial distribution λ of X0, repeat the above questions
- And many more, depending on the application
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Some Definitions

A measure on I is a vector λ where λi ≥ 0, for all i ∈ I.

A measure is a distribution if
∑

i λi = 1.

For any event F , let

Pri[F ] = Pr[F | X0 = i]

For any random variable Z, let

Ei[Z] = E[Z | X0 = i]

If we know λ is the distribution of X0, then we also write

(Xn)n≥0 = Markov(P, λ).
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Multistep Transition Probabilities and Matrices

- Define the probability of going from i to j in n steps p
(n)
ij = Pri[Xn = j]

- And the n-step transition probability matrix P(n) = (p(n)
ij )

Chapman-Kolmogorov Equations

p
(m+n)
ij =

∑
k∈I

p
(n)
ik p

(m)
kj , ∀n, m ≥ 0, i, j ∈ I.

It follows that
P(n) = Pn

Corollary

If λ (a row vector) is the distribution of X0, then λPn is the distribution
of Xn

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 13 / 48



Communication Classes

j is reachable from i if p
(n)
ij > 0 for some n ≥ 0. We write i ; j.

i and j communicate if i ; j and j ; i. We write i ↔ j.

Communication is an equivalence relation, partitioning I into
communication classes

Communication classes are strongly connected components of the
directed graph corresponding to for P

A chain is irreducible if there is only one class

A closed class C is a class where i ∈ C and i ; j imply j ∈ C (no
escape!)

A state i is absorbing if {i} is a closed class
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Illustration of Communication Classes
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Recurrent and Transient States

First passage time

Ti = min{n ≥ 1 | Xn = i} (X0 = i doesn’t count!)

Define

f
(n)
ij = Pri[Xn = j ∧ Xs 6= j, ∀s = 1, .., n− 1] = Pri[Tj = n]

fij =
∞∑

n=1

f
(n)
ij

Note that fij = Pri[Tj < ∞]
State i is
- recurrent (also called persistent) if fii = Pri[Ti < ∞] = 1
- transient if fii = Pri[Ti < ∞] < 1
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When is a State Recurrent?

- Let Vi be the number of visits to i, namely Vi :=
∞∑

n=0

1{Xn=i}.

Theorem

Given a DTMC P and a state i, the following are equivalent

1 i is recurrent

2 fii = Pri[Ti < ∞] = 1
3 Pri[Xn = i for infinitely many n] = 1
4 Ei[Vi] = ∞
5

∑
n≥0 p

(n)
ii = ∞

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 18 / 48



When is a State Transient?

Theorem

Given a DTMC P and a state i, the following are equivalent

1 i is transient

2 fii = Pri[Ti < ∞] < 1
3 Pri[Xn = i for infinitely many n] = 0
4 Ei[Vi] < ∞
5

∑
n≥0 p

(n)
ii < ∞

To prove the last two theorems, we need the strong Markov property
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Strong Markov Property

A r.v. T taking values in N is called a stopping time of a DTMC
(Xn)n≥0 if the event {T = n} can be determined by looking at
X0, · · · , Xn

(Need measure theory to be rigorous on this definition.)

Examples:

First passage time Ti = min{n ≥ 1 : Xn = i} is a stopping time
Last exit time LA = max{n : Xn ∈ A} is not a stopping time

Theorem (Strong Markov Property)

Suppose T is a stopping time of a DTMC (Xn)n≥0. Then, conditioned on
T < ∞ and XT = i, the sequence (XT+n)n≥0 behaves exactly like the
Markov chain with initial state i.
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Proofs of Previous Two Theorems

Proof.

By strong Markovian:

Ei[Vi] =
∞∑

n=1

nfn−1
ii (1− fii) =

1
1− fii

.

On the other hand,

Ei[Vi] = Ei

[ ∞∑
n=0

1{Xn=i}

]
=

∞∑
n=0

Ei[1{Xn=i}] =
∞∑

n=0

p
(n)
ii .
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Recurrence and Transience are Class Properties

Theorem

Recurrence and transience are class properties, i.e. in a communication
class C either all states are recurrent or all states are transient

Why is it true? Suppose i and j belong to the same class. If i is recurrent
and j is transient, each time the process returns to i there’s a positive
chance of going to j. Thus, the process cannot avoid j forever.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 22 / 48



Recurrent and Closed Classes

Theorem

(i) Every recurrent class is closed

(ii) Every finite, closed class is positive recurrent

- Why does (i) hold?
If the class is not closed, there’s an escape route, and thus the class
cannot be recurrent.
- Why does (ii) hold?
In a finite and closed class, it cannot be the case that every state is visited
a finite number of times. So, the chain is recurrent.
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Infinite Closed Class Could be Transient or Recurrent

Consider a random walk on Z, where pi,i+1 = p and pi+1,i = 1− p,
for all i ∈ Z, 0 < p < 1
The chain is an infinite and closed class.

For any state i, we have

p
(2n+1)
ii = 0

p
(2n)
ii =

(
2n

n

)
pn(1− p)n

Hence,

∞∑
n=0

p
(2n)
ii =

∞∑
n=0

(
2n

n

)
pn(1− p)n

≈
∑
n≥n0

1√
πn

(4p(1− p))n(1 + o(1)).

which is ∞ if p = 1/2 and finite if p 6= 1/2.
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More on Irreducible and Recurrent Chain

Theorem

In an irreducible and recurrent chain, fij = 1 for all i, j

Why is it true? If fij < 1, there’s a non-zero chance of the chain starting
from j, getting to i, and never come back to j. However, j is recurrent!
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Example: Birth-and-Death Chain

Consider a DTMC on state space N where

pi,i+1 = ai, pi,i−1 = bi, pii = ci

ai + bi + ci = 1, ∀i ∈ N, and implicitly b0 = 0
ai, bi > 0 for all i, except for b0

Question

When is this chain transient/recurrent?

To answer this question, we need some results about computing hitting
probabilities
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Hitting Times and Hitting Probabilities

Let P be a DTMC on I. Let A ⊆ I.

The hitting time HA

HA := min{n ≥ 0 : Xn ∈ A}.

The probability of hitting A starting from i

hA
i := Pri[HA < ∞].

If A is a closed class, the hA
i are called the absorption probabilities

The mean hitting time µA
i is defined by

µA
i := Ei[HA] =

∑
n<∞

nPr[HA = n] +∞Pr[HA = ∞]
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Computing Hitting Probabilities

Theorem

The vector (hA
i : i ∈ I) is the minimal non-negative solution to the

following system 
hA

i = 1 for i ∈ A

hA
i =

∑
j∈I

pijh
A
j for i /∈ A
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Back to the Birth-and-Death Chain

Note that f00 = c0 + a0h
{0}
1 = 1− a0(1− h

{0}
1 )

The system:

{
h
{0}
0 = 1

h
{0}
i = aih

{0}
i+1 + cih

{0}
i + bih

{0}
i−1 for i ≥ 1

Define dn := b1...bn
a1...an

, n ≥ 1, and d0 = 1

When
∑∞

n=0 dn = ∞, h
{0}
i = 1,∀i is the solution

When
∑∞

n=0 dn < ∞, we have the following solutionh
{0}
0 = 1

h
{0}
i =

P∞
j=i djP∞
j=0 dj

< 1 for i ≥ 1

Thus,

the DTMC is recurrent (f00 = 1) when
∑∞

j=0 dj = ∞
the DTMC is transient (f00 < 1) when

∑∞
j=0 dj < ∞
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Brief Summary of Recurrent and Transient Properties

We often only need to look at closed classes (that’s where the chain
will eventually end up).

We can then consider irreducible chains instead.

Let P be an irreducible chain.

If P is finite, then P is recurrent.

If P is infinite, then P could be either transient or recurrent.
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Invariant Distribution

A distribution λ is a stationary (also equilibrium or invariant)
distribution if λTP = λ

Theorem

(i) Let (Xn)n≥0 = Markov(P, λ), where λ is stationary, then
(Xn+m)n≥0 = Markov(P, λ) for any fixed m.

(ii) In a finite DTMC, suppose for some i ∈ I we have

lim
n→∞

p
(n)
ij = πj ,∀j ∈ I,

then π = (πj : j ∈ I) is an invariant distribution.
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Infinite State Space Could be Strange

In an infinite DTMC, it is possible that lim
n→∞

p
(n)
ij exists for all i, j,

producing a vector π for each i, yet π is not a distribution.

Consider the DTMC with state space Z and

pi,i+1 = p = 1− q = 1− pi,i−1, ∀i ∈ Z.

(This is a random walk on Z we have considered.)

lim
n→∞

p
(n)
ij = 0,∀i, j.
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Positive and Null Recurrent States

Define

µij =
∞∑

n=1

nf
(n)
ij = Ei[Tj ]

Definition

A recurrent state i is positive recurrent if µii < ∞

Definition

A recurrent state i is null recurrent if µii = ∞
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Example of Positive Recurrent States

P =
[

p 1− p
1− p p

]
, for 0 < p < 1.

Let the states be 0 and 1, then

f
(1)
00 = f

(1)
11 = p

f
(n)
00 = f

(n)
11 = (1− p)2pn−2, n ≥ 2

Both states are recurrent. Moreover,

µ00 = µ11 = p +
∞∑

n=2

n(1− p)2pn−2 = 2.

Hence, both states are positive recurrent states.
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Example of Null Recurrent States

Consider a Markov chain with I = N where p01 = 1, and

Pm,m+1 =
m

m + 1
, ∀m ≥ 1

Pm,0 =
1

m + 1
, ∀m ≥ 1.

Then,

f
(1)
00 = 0

f
(n)
00 =

1
n(n− 1)

f00 =
∞∑

n=1

f
(n)
00 = 1

µ00 =
∞∑

n=1

nf
(n)
00 =

∞∑
n=1

1
n

= ∞.

Consequently, 0 is a null recurrent state.
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Positive and Null Recurrence are Class Properties

Theorem

Positive and null recurrence are class properties, i.e. in a recurrent
communication class either all states are positive recurrent or all states are
null recurrent.
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Example: Birth-and-Death Chain

Consider a DTMC on state space N where

pi,i+1 = ai, pi,i−1 = bi, pii = ci

ai + bi + ci = 1, ∀i ∈ N, and implicitly b0 = 0
ai, bi > 0 for all i, except for b0

Question

When is this chain positive/null recurrent?

To answer this question, we need a result on computing mean hitting times
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Mean Hitting Times

Let P be a DTMC on I. Let A ⊆ I.

The hitting time HA

HA := min{n ≥ 0 : Xn ∈ A}.

The probability of hitting A starting from i

hA
i := Pri[HA < ∞].

If A is a closed class, the hA
i are called the absorption probabilities

The mean hitting time µA
i is defined by

µA
i := Ei[HA] =

∑
n<∞

nPr[HA = n] +∞Pr[HA = ∞]
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Computing Mean Hitting Times

Theorem

The vector (µA
i : i ∈ I) is the minimal non-negative solution to the

following system 
µA

i = 0 for i ∈ A

µA
i = 1 +

∑
j /∈A

pijµ
A
j for i /∈ A
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Back to the Birth-and-Death Chain

Note that µ00 = c0 + a0(1 + µ
{0}
1 ) = 1 + a0µ

{0}
1

The system:


µ
{0}
0 = 0

µ
{0}
1 = 1 + a1µ

{0}
2 + c1µ

{0}
1

µ
{0}
i = 1 + aiµ

{0}
i+1 + ciµ

{0}
i + biµ

{0}
i−1 for i ≥ 2

Define en := a0...an−1

b1...bn
, n ≥ 1.

When
∑∞

n=1 en = ∞, µ
{0}
i = ∞,∀i ≥ 1 is the solution

When
∑∞

n=1 en < ∞, we have the following solution
µ
{0}
0 = 0

µ
{0}
1 = 1

a0

∑∞
n=1 en

µ
{0}
i = di

a0
(
∑∞

j=i ej) for i ≥ 2

Thus, (conditioned on the chain being recurrent)

the DTMC is positive recurrent when
∑∞

j=1 ej < ∞
the DTMC is null recurrent when

∑∞
j=1 ej = ∞
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Existence of a Stationary Distribution

Theorem

An irreducible DTMC P has a stationary distribution if and only if one of
its states is positive recurrent.
Moreover, if P has a stationary distribution π, then

πi = 1/µii

.

Line of proof

Every irreducible and recurrent P basically has a unique invariant
measure (unique up to rescaling)

Due to positive recurrence, the measure can be normalized to be
come an invariant distribution
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Proof of the Existence of a Stationary Distribution

Define the expected time spent in i between visits to k

γ
(k)
i = Ek

[
Tk−1∑
n=0

1Xn=i

]

Lemma

If P is irreducible and recurrent, then

(i) γ
(k)
k = 1

(ii) the vector γ(k) = (γ(k)
i | i ∈ I) is an invariant measure, namely

γ(k)P = γ(k)

(iii) 0 < γ
(k)
i < ∞ for all i ∈ I

Conversely, if P is irreducible and λ is an invariant measure with λk = 1,
then λ ≥ γ(k). Moreover, if P is also recurrent, then λ = γ(k)
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Periodicity

For a state i ∈ I, let di = gcd{n ≥ 1 : p
(n)
ii > 0}.

When di ≥ 2, state i is periodic with period di.

When di = 1, state i is aperiodic.

A DTMC is periodic if it has a periodic state. Otherwise, the chain is
violetaperiodic.

Theorem

If i ↔ j, then di = dj .

If i is aperiodic, then ∃n0 : p
(n)
ii > 0, ∀n ≥ n0.

Corollary

If P is irreducible and has an aperiodic state i, then Pn has all strictly
positive entries for sufficiently large n.
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Ergodicity

An ergodic state is an aperiodic and positive recurrent state.

An ergodic Markov chain is a Markov chain in which all states are
ergodic.
(Basically, a “well-behaved” chain.)
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Convergence to equilibrium

Theorem

Suppose P is irreducible and ergodic. Then, it has an invariant
distribution π. Moreover,

1
µjj

= πj = lim
n→∞

p
(n)
ij , ∀j ∈ I.

Thus, π is the unique invariant distribution of P.

Note: there is a generalized version of this theorem for irreducible chains
with period d ≥ 2. (And the chain is not even required to be positive
recurrent.)
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Ergodic Theorem

Let

Vi(n) =
n−1∑
k=0

1{Xk=i}.

Theorem (Ergodic Theorem)

Let P be an irreducible DTMC. Then

Pr

[
lim

n→∞

Vi(n)
n

=
1

µii

]
= 1

Moreover, if P is positive recurrent with (unique) invariant distribution π,
then for any bounded function f : I → R

Pr

[
lim

n→∞

1
n

n−1∑
k=0

f(Xk) =
∑
i∈I

πifi

]
= 1,
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