
CSE 694 – Prob. Analysis and Randomized Algo.

What is it about?

Probabilistic thinking!

Administrative Stuff

5 assignments (to be done individually)

1 final presentation and report (I will assign papers and topic)

First few weeks

Gentle introduction to concepts and techniques from probability
theory

Done via sample problems from many areas (networking, algorithms,
combinatorics, coding, etc.)

PTCF = Probability Theory Concepts and Facts
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Example 1: Ramsey Numbers

Let R(a, b) be the smallest integer n such that in any 2-edge-coloring
of Kn with red and blue, there exists either a red Ka or a blue Kb.

Analogy: R(a, b) is the smallest n so that in any set of n people there
must be either a mutual acquaintances, or b mutual strangers

Erdős’ Quote

Imagine an alien force, vastly more powerful than us landing on Earth and
demanding the value of R(5, 5) or they will destroy our planet. In that
case, we should marshal all our computers and all our mathematicians and
attempt to find the value. But suppose, instead, that they asked for
R(6, 6), we should attempt to destroy the aliens.
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Erdős’ Theorem (1947)

Theorem

(i) If
(
n
k

)
21−(k

2) < 1, then R(k, k) > n.

(ii) Consequently, R(k, k) > b2k/2c for all k ≥ 3.

To see (ii), let n = b2k/2c.
Then, (

n

k

)
21−(k

2) <
nk

k!
· 2

1+k/2

2k2/2
<

21+k/2

k!
· nk

2k2/2
< 1.

We will give two proofs of (i).
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A Pigeonhole Principle Proof

We’ll show that
(
n
k

)
21−(k

2) < 1 implies, there exists a 2-edge-coloring of
Kn with neither a red Kk nor a blue Kk (i.e. no monochromatic Kk).

Let [n] be the set of vertices

Let Ω = set of all 2-edge-colorings of Kn

For any S ∈
([n]

k

)
, the number of colorings for which S is

monochromatic is 2× 2(n
2)−(k

2)

The number of colorings for which every S ∈
([n]

k

)
is monochromatic

is at most (
n

k

)
× 2× 2(n

2)−(k
2) = 2(n

2)
(

n

k

)
21−(k

2).

But, the total number of colorings is 2(n
2), and

2(n
2)

(
n

k

)
21−(k

2) < 2(n
2) ⇔

(
n

k

)
21−(k

2) < 1
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Probabilistic Method Proof #1

Pick a coloring c ∈ Ω uniformly at random.

For any S ∈
([n]

k

)
, let AS be the event that S is monochromatic, then

Prob[AS ] =
# colorings making S mono.

total # colorings
=

2× 2(n
2)−(k

2)

2(n
2)

= 21−(k
2)

The probability that some S ∈
([n]

k

)
is monochromatic is

Prob

[⋃
S

AS

]
≤

∑
S

Prob[AS ] =
(

n

k

)
21−(k

2) < 1

Thus, there must be some coloring for which no S is monochromatic!
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PTCF: Simple Probability Space

Event A

Sample Space Ω

Ω is a finite set of all possible outcomes of some experiment

Each outcome occurs equally likely
A subset A of outcomes is an event

Think of it as a set of outcomes satisfying a certain property

Prob[A] = |A|
|Ω| : the fraction of outcomes in A

In most cases, not a good way to think about probability spaces
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PTCF: The Union Bound

Lemma

Let A1, A2, . . . be any finite or countably infinite sequence of events.
Then,

Prob

⋃
i≥1

Ai

 ≤∑
i≥1

Prob[Ai]

Note:

this bound hold for any probability space (not just simple ones).

simple but extremely useful!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 8 / 65



Probabilistic Method Proof #2 (much better than #1!)

Color each edge of Kn with either red or blue with probability 1/2

For any S ∈
([n]

k

)
, let AS be the event that S is monochromatic, then

Prob[AS ] = Prob[S is blue] + Prob[S is red] = 2× 1

2(k
2)

= 21−(k
2)

The probability that some S ∈
([n]

k

)
is monochromatic is

Prob

[⋃
S

AS

]
≤

∑
S

Prob[AS ] =
(

n

k

)
21−(k

2) < 1

Thus, there must be some coloring for which no S is monochromatic!
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PTCF: Discrete Probability Space

Event A

Sample Space Ω

pω

Each ω ∈ Ω is assigned a number pω ∈ [0, 1], such that
∑

ω∈Ω pω = 1.

For any event A, Prob[A] =
∑

ω∈A pω.

In the simple space, pω = 1
|Ω| ,∀ω

This is not the most general definition.
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PTCF: How do we “assign” the pω?

Could think of it as a mathematical function, like saying “give each
outcome ω a number pω equal to 1/|Ω|”
That’s not the probabilistic way of thinking!

Probabilistic way of thinking:

An experiment is an algorithm whose outcome is not deterministic
For example, algorithms making use of a random source (like a bunch
of “fair” coins)
Ω is the set of all possible outputs of the algorithm
pω is the “likelihood” that ω is output
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Example 2: Sperner Lemma

Lemma (Sperner, 1928)

The maximum size of a family F of subsets of [n] whose members do not
contain one another is

(
n

bn/2c
)
.

The collection of bn/2c-subsets of [n] satisfies the condition

Suffices to show that, for any such F , |F| ≤
(

n
bn/2c

)
.

Fix F ∈ F , choose a permutation π ∈ Sn uniformly at random

Let AF be the event that F = {π1, . . . , πk} for some k, then

Prob[AF ] =
k!(n− k)!

n!
=

1(
n
k

) ≥ 1(
n

bn/2c
)

The AF are mutually exclusive (why?), hence

1 ≥ Prob

[ ⋃
F∈F

AF

]
=

∑
F∈F

Prob[AF ] ≥ |F|(
n

bn/2c
)
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Example 1: Randomized Min-Cut

Min-Cut Problem

Given a multigraph G, find a cut with minimum size.

Randomized Min-Cut(G)

1: for i = 1 to n− 2 do
2: Pick an edge ei in G uniformly at random
3: Contract two end points of ei (remove loops)
4: end for
5: // At this point, two vertices u, v left
6: Output all remaining edges between u and v
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Analysis

Let C be a minimum cut, k = |C|
If no edge in C is chosen by the algorithm, then C will be returned in
the end, and vice versa

For i = 1..n− 2, let Ai be the event that ei /∈ C and Bi be the event
that {e1, . . . , ei} ∩ C = ∅

Prob[C is returned]
= Prob[Bn−2]
= Prob[An−2 ∩Bn−3]
= Prob[An−2 | Bn−3]Prob[Bn−3]
= . . .

= Prob[An−2 | Bn−3]Prob[An−3 | Bn−4] · · ·Prob[A2 | B1]Prob[B1]
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Analysis

At step 1, G has min-degree ≥ k, hence ≥ kn/2 edges
Thus,

Prob[B1] = Prob[A1] ≥ 1− k

kn/2
= 1− 2

n

Now we estimate Prob[A2 | B1].
At step 2, the min cut is still at least k, hence ≥ k(n− 1)/2 edges
Thus, similar to step 1 we have

Prob[A2 | B1] ≥ 1− 2
n− 1

In general,

Prob[Aj | Bj−1] ≥ 1− 2
n− j + 1

Consequently,

Prob[C is returned] ≥
n−2∏
i=1

(
1− 2

n− i + 1

)
=

2
n(n− 1)
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Lower the Failure Probability

The basic algorithm has failure probability at most 1− 2
n(n−1)

How do we lower it?

Run the algorithm multiple times, say m · n(n− 1)/2 times, return
the smallest cut found

The failure probability is at most(
1− 2

n(n− 1)

)m·n(n−1)/2

<
1

em
.
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PTCF: Independence Events and Conditional Probabilities

A A ∩ B

B

The conditional probability of A given B is

Prob[A | B] :=
Prob[A ∩B]

Prob[B]

A and B are independent if and only if

Prob[A | B] = Prob[A]

Equivalently, A and B are independent if and only if

Prob[A ∩B] = Prob[A] · Prob[B]
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PTCF: Mutually Independence and Independent Trials

A set A1, . . . , An of events are said to be independent or mutually
independent if and only if, for any k ≤ n and {i1, . . . , ik} ⊆ [n] we
have

Prob[Ai1 ∩ · · · ∩Aik ] = Prob[Ai1 ] . . .Prob[Aik ].

If n independent experiments (or trials) are performed in a row, with
the ith being “successful” with probability pi, then

Prob[all experiments are successful] = p1 · · · pn.

(Question: what is the sample space?)
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Example 2: Randomized Quicksort

Randomized-Quicksort(A)

1: n← length(A)
2: if n = 1 then
3: Return A
4: else
5: Pick i ∈ {1, . . . , n} uniformly at random, A[i] is called the pivot
6: L← elements ≤ A[i]
7: R← elements > A[i]
8: // the above takes one pass through A
9: L← Randomized-Quicksort(L)

10: R← Randomized-Quicksort(R)
11: Return L ·A[i] ·R
12: end if
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Analysis of Randomized Quicksort

The running time is proportional to the number of comparisons

Let b1 ≤ b2 ≤ · · · ≤ bn be A sorted non-decreasingly

For each i < j, let Xij be the indicator random variable indicating if
bi was ever compared with bj

The expected number of comparisons is

E

∑
i<j

Xij

 =
∑
i<j

E[Xij ] =
∑
i<j

Prob[bi & bj was compared]

bi was compared with bj if and only if either bi or bj was chosen as a
pivot before any other in the set {bi, bi+1, . . . , bj}
Hence, Prob[bi & bj was compared] = 2

j−i+1

Thus, the expected running time is Θ(n lg n)
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PTCF: Discrete Random Variable

a

a

a

X(ω) 6= a

X(ω) 6= a a

Event X = a is {ω | X(ω) = a}

A random variable is a function X : Ω→ R
pX(a) = Prob[X = a] is called the probability mass function of X

PX(a) = Prob[X ≤ a] is called the (cumulative/probability)
distribution function of X

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 22 / 65



PTCF: Expectation and its Linearity

The expected value of X is defined as

E[X] :=
∑

a

aProb[X = a].

For any set X1, . . . , Xn of random variables, and any constants
c1, . . . , cn

E[c1X1 + · · ·+ cnXn] = c1E[X1] + · · ·+ cnE[Xn]

This fact is called linearity of expectation
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PTCF: Indicator/Bernoulli Random Variable

X : Ω→ {0, 1}

p = Prob[X = 1]

X is called a Bernoulli random variable with parameter p

If X = 1 only for outcomes ω belonging to some event A, then X is called
an indicator variable for A

E[X] = p

Var [X] = p(1− p)
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Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a
Las Vegas algorithm.
Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain
probability) is called a Monte Carlo algorithm.
Its running time may or may not be a random variable.
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Example 3: Max-E3SAT

An E3-CNF formula is a CNF formula ϕ in which each clause has
exactly 3 literals. E.g.,

ϕ = (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x4)

Max-E3SAT Problem: given a E3-CNF formula ϕ, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

Assign each variable to true/false with probability 1/2
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Analyzing the Randomized Approximation Algorithm

Let XC be the random variable indicating if clause C is satisfied

Then, Prob[XC = 1] = 7/8
Let Sϕ be the number of satisfied clauses

Hence,

E[Sϕ] = E

[∑
C

XC

]
=

∑
C

E[XC ] = 7m/8 ≤ opt

8/7

(m is the number of clauses)

So this is a randomized approximation algorithm with ratio 8/7
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Derandomization with Conditional Expectation Method

Derandomization is to turn a randomized algorithm into a
deterministic algorithm

By conditional expectation

E[Sϕ] =
1
2
E[Sϕ | x1 = true] +

1
2
E[Sϕ | x1 = false]

Both E[Sϕ | x1 = true] and E[Sϕ | x1 = false] can be computed
in polynomial time

Suppose E[Sϕ | x1 = true] ≥ E[Sϕ | x1 = false], then

E[Sϕ | x1 = true] ≥ E[Sϕ] ≥ 7m/8

Set x1 =true, let ϕ′ be ϕ with c clauses containing x1 removed, and
all instances of x1, x̄1 removed.

Recursively find value for x2
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PTCF: Law of Total Probabilities, Conditional Expectation

Law of total probabilities: let A1, A2, . . . be any sequence of mutually
exclusive events, then

Prob[A] =
∑
i≥1

Prob[A | Ai]Prob[Ai]

The conditional expectation of X given A is

E[X | A] :=
∑

a

aProb[X = a | A].

Let A1, A2, . . . be any sequence of mutually exclusive events, then

E[X] =
∑
i≥1

E[X | Ai]Prob[Ai]

In particular, let Y be any discrete random variable, then

E[X] =
∑

y

E[X | Y = y]Prob[Y = y]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 29 / 65



Example 1: Probabilistic Packet Marking (PPM)

The Setting

A stream of packets are sent S = R0 → R1 → · · · → Rn−1 → D

Each Ri can overwrite the source IP field

D wants to know the set of routers on the route

The Assumption

For each packet D receives and each i, Prob[F = Ri] = 1/n (*)

The Questions

1 How does the routers ensure (*)?

2 How many packets must D receive to know all routers?
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Coupon Collector Problem

The setting

n types of coupons

Every cereal box has a coupon

For each box B and each coupon type t,

Prob [B contains coupon type t] =
1
n

Coupon Collector Problem

How many boxes of cereal must the collector purchase before he has all
types of coupons?
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The Analysis

X = number of boxes he buys to have all coupon types.

For i ∈ [n], let Xi be the additional number of cereal boxes he buys
to get a new coupon type, after he had collected i− 1 different types

X = X1 + X2 + · · ·+ Xn, E[X] =
n∑

i=1

E[Xi]

After i− 1 types collected, a new box contains a new type with prob

pi = 1− i− 1
n

Hence, Xi is geometric with parameter pi, implying

E[Xi] =
1
pi

=
n

n− i + 1

E[X] = n

n∑
i=1

1
n− i + 1

= nHn = n lnn + Θ(n)
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PTCF: Geometric Distribution

A coin turns head with probability p, tail with 1− p

X = number of flips until a head shows up

X has geometric distribution with parameter p

Prob[X = n] = (1− p)n−1p

E[X] =
1
p

Var [X] =
1− p

p2
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Additional Questions

We can’t be sure that buying nHn cereal boxes suffices

Want Prob[X ≥ C], i.e. what’s the probability that he has to buy C
boxes to collect all coupon types?

Intuitively, X is far from its mean with small probability

Want something like

Prob[X ≥ C] ≤ some function of C, preferably � 1

i.e. (large) deviation inequality or tail inequalities

Central Theme

The more we know about X, the better the deviation inequality we can
derive: Markov, Chebyshev, Chernoff, etc.
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PTCF: Markov’s Inequality

Theorem

If X is a r.v. taking only non-negative values, µ = E[X], then ∀a > 0

Prob[X ≥ a] ≤ µ

a
.

Equivalently,

Prob[X ≥ aµ] ≤ 1
a
.

If we know Var [X], we can do better!
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PTCF: (Co)Variance, Moments, Their Properties

Variance: σ2 = Var [X] := E[(X − E[X])2] = E[X2]− (E[X])2

Standard deviation: σ :=
√

Var [X]
kth moment: E[Xk]
Covariance: Cov [X, Y ] := E[(X − E[X])(Y − E[Y ])]
For any two r.v. X and Y ,

Var [X + Y ] = Var [X] + Var [Y ] + 2 Cov [X, Y ]

If X and Y are independent (define it), then

E[X · Y ] = E[X] · E[Y ]
Cov [X, Y ] = 0

Var [X + Y ] = Var [X] + Var [Y ]

In fact, if X1, . . . , Xn are mutually independent, then

Var

[∑
i

Xi

]
=

∑
i

Var [Xi]
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PTCF: Chebyshev’s Inequality

Theorem (Two-sided Chebyshev’s Inequality)

If X is a r.v. with mean µ and variance σ2, then ∀a > 0,

Prob
[
|X − µ| ≥ a

]
≤ σ2

a2
or, equivalently Prob

[
|X − µ| ≥ aσ

]
≤ 1

a2
.

Theorem (One-sided Chebyshev’s Inequality)

Let X be a r.v. with E[X] = µ and Var [X] = σ2, then ∀a > 0,

Prob[X ≥ µ + a] ≤ σ2

σ2 + a2

Prob[X ≤ µ− a] ≤ σ2

σ2 + a2
.
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Back to the Additional Questions

Markov’s leads to,

Prob[X ≥ 2nHn] ≤ 1
2

To apply Chebyshev’s, we need Var [X]:

Prob[|X − nHn| ≥ nHn] ≤ Var [X]
(nHn)2

Key observation: the Xi are independent (why?)

Var [X] =
∑

i

Var [Xi] =
∑

i

1− pi

p2
i

≤
∑

i

n2

(n− i + 1)2
=

π2n2

6

Chebyshev’s leads to

Prob[|X − nHn| ≥ nHn] ≤ π2

6H2
n

= Θ
(

1
ln2 n

)
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Example 2: PPM with One Bit

The Problem

Alice wants to send to Bob a message b1b2 · · · bm of m bits. She can send
only one bit at a time, but always forgets which bits have been sent. Bob
knows m, nothing else about the message.

The solution

Send bits so that the fraction of bits 1 received is within ε of
p = B/2m, where B = b1b2 · · · bm as an integer

Specifically, send bit 1 with probability p, and 0 with (1− p)

The question

How many bits must be sent so B can be decoded with high probability?
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The Analysis

One way to do decoding: round the fraction of bits 1 received to the
closest multiple of of 1/2m

Let X1, . . . , Xn be the bits received (independent Bernoulli trials)

Let X =
∑

i Xi, then µ = E[X] = np. We want, say

Prob

[∣∣∣∣Xn − p

∣∣∣∣ ≤ 1
3 · 2m

]
≥ 1− ε

which is equivalent to

Prob
[
|X − µ| ≤ n

3 · 2m

]
≥ 1− ε

This is a kind of concentration inequality.
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PTCF: The Binomial Distribution

n independent trials are performed, each with success probability p.

X = number of successes after n trials, then

Prob[X = i] =
(

n

i

)
pi(1− p)n−i, ∀i = 0, . . . , n

X is called a binomial random variable with parameters (n, p).

E[X] = np

Var [X] = np(1− p)
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PTCF: Chernoff Bounds

Theorem (Chernoff bounds are just the following idea)

Let X be any r.v., then

1 For any t > 0

Prob[X ≥ a] ≤ E[etX ]
eta

In particular,

Prob[X ≥ a] ≤ min
t>0

E[etX ]
eta

2 For any t < 0

Prob[X ≤ a] ≤ E[etX ]
eta

In particular,

Prob[X ≥ a] ≤ min
t<0

E[etX ]
eta

(EtX is called the moment generating function of X)
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PTCF: A Chernoff Bound for sum of Poisson Trials

Above the mean case.
Let X1, . . . , Xn be independent Poisson trials, Prob[Xi = 1] = pi,
X =

∑
i Xi, µ = E[X]. Then,

For any δ > 0,

Prob[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

;

For any 0 < δ ≤ 1,

Prob[X ≥ (1 + δ)µ] ≤ e−µδ2/3;

For any R ≥ 6µ,
Prob[X ≥ R] ≤ 2−R.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 44 / 65



PTCF: A Chernoff Bound for sum of Poisson Trials

Below the mean case.
Let X1, . . . , Xn be independent Poisson trials, Prob[Xi = 1] = pi,
X =

∑
i Xi, µ = E[X]. Then, for any 0 < δ < 1:

1

Prob[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

;

2

Prob[X ≤ (1− δ)µ] ≤ e−µδ2/2.
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PTCF: A Chernoff Bound for sum of Poisson Trials

A simple (two-sided) deviation case.
Let X1, . . . , Xn be independent Poisson trials, Prob[Xi = 1] = pi,
X =

∑
i Xi, µ = E[X]. Then, for any 0 < δ < 1:

Prob[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

Chernoff Bounds Informally

The probability that the sum of independent Poisson trials is far from the
sum’s mean is exponentially small.
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Back to the 1-bit PPM Problem

Prob
[
|X − µ| > n

3 · 2m

]
= Prob

[
|X − µ| > 1

3 · 2mp
µ

]
≤ 2

exp{ n
18·4mp}

Now,
2

exp{ n
18·4mp}

≤ ε

is equivalent to
n ≥ 18p ln(2/ε)4m.
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Example 3: Oblivious Routing on the Hypercube

Directed graph G = (V,E): network of parallel processors

Permutation Routing Problem

Each node v contains one packet Pv, 1 ≤ v ≤ N = |V |
Destination for packet from v is πv, π ∈ Sn

Time is discretized into unit steps
Each packet can be sent on an edge in one step
Queueing discipline: FIFO

Oblivious algorithm: route Rv for Pv depends on v and πv only

Question: in the worst-case (over π), how many steps must an
oblivious algorithm take to route all packets?

Theorem (Kaklamanis et al, 1990)

Suppose G has N vertices and out-degree d. For any deterministic
oblivious algorithm for the permutation routing problem, there is an
instance π which requires Ω(

√
N/d) steps.
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The (Directed) Hypercube

0110 1110

The n-cube: |V | = N = 2n, vertices v ∈ {0, 1}n, v = v1 · · · vn

(u,v) ∈ E iff their Hamming distance is 1
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The Bit-Fixing Algorithm

Source u = u1 · · ·un, target πu = v1 · · · vn

Suppose the packet is currently at w = w1 · · ·wn, scan w from left to
right, find the first place where wi 6= vi

Forward packet to w1 · · ·wi−1viwi+1 · · ·wn

Source 010011
110010
100010
100110

Destination 100111

There is a π requiring Ω(
√

N/n) steps

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 50 / 65



Valiant Load Balancing Idea

Les Valiant, A scheme for fast parallel communication, SIAM J.
Computing, 11: 2 (1982), 350-361.

Two phase algorithm (input: π)

Phase 1: choose σ ∈ SN uniformly at random, route Pv to σv with
bit-fixing

Phase 2: route Pv from σv to πv with bit-fixing

This scheme is now used in designing Internet routers with high
throughput!
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Phase 1 Analysis

Pu takes route Ru = (e1, . . . , ek) to σu

Time taken is k (≤ n) plus queueing delay

Lemma

If Ru and Rv share an edge, once Rv leaves Ru it will not come back to
Ru

Theorem

Let S be the set of packets other than packet Pu whose routes share an
edge with Ru, then the queueing delay incurred by packet Pu is at most |S|
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Phase 1 Analysis

Let Huv indicate if Ru and Rv share an edge

Queueing delay incurred by Pu is
∑

v 6=u Huv.

We want to bound

Prob

∑
v 6=u

Huv > αn

 ≥ ??

Need an upper bound for E
[∑

v 6=u Huv

]
For each edge e, let Te denote the number of routes containing e∑

v 6=u

Huv ≤
k∑

i=1

Tei

E

∑
v 6=u

Huv

 ≤ k∑
i=1

E[Tei ] = k/2 ≤ n/2
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Conclusion

By Chernoff bound,

Prob

∑
v 6=u

Huv > 6n

 ≤ 2−6n

Hence,

Theorem

With probability at least 1− 2−5n, every packet reaches its intermediate
target (σ) in Phase 1 in 7n steps

Theorem (Conclusion)

With probability at least 1− 1/N , every packet reaches its target (π) in
14n steps
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Example 1: Error-Correcting Codes

Message x ∈ {0, 1}k

Encoding f(x) ∈ {0, 1}n, n > k, f an injection

C = {f(x) | x ∈ {0, 1}k}: codewords

f(x) is sent over noisy channel, few bits altered

y is received instead of f(x)
Find codeword z “closest” to y in Hamming distance

Decoding x′ = f−1(z)
Measure of utilization: relative rate of C

R(C) =
log |C|

n

Measure of noise tolerance: relative distance of C

δ(C) =
minc1,c2∈C Dist(c1, c2)

n
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Linear Codes

For any x ∈ Fn
2 , define

weight(x) = number of 1-coordinates of x

E.g., weight(1001110) = 4
If C is a k-dimensional subspace of Fn

2 , then

|C| = 2k

δ(C) = min{weight(x) | x ∈ C}

Every such C can be defined by a parity check matrix A of dimension
(n− k)× n:

C = {x | Ax = 0}

Conversely, every (n− k)× n matrix A defines a code C of
dimension ≥ k
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A Communication Problem

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes Ck, |Ck| = 2k, for infinitely many k,
such that

R(Ck) ≥ R0 > 0

and
δ(Ck) ≥ δ0 > 0

(Yes, using “magical graphs.”)

Practicality

Design such a family explicitly, such that the codes are efficiently
encodable and decodable.
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Magical Graph

(n, c, d, α, β)-graph
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n (1− c)n

degree d

|Γ(S)| ≥ β|S|
|S| ≤ αn

c, d, α, β are constants, n varies.
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From Magical Graphs to Code Family

Suppose (n, c, d, α, β)-graphs exist for infinitely many n, and
constants β > d/2
Consider such a G = (L ∪R,E), |L| = n, |R| = (1− c)n = m

Let A = (aij) be the m× n 01-matrix, column indexed by L, and
row-indexed by R, aij = 1 iff (i, j) ∈ E

Define a linear code with A as parity check:

C = {x | Ax = 0}

Then, dim(C) = n− rank(A) ≥ cn, and

|C| = 2dim(C) ≥ 2cn ⇒ R(C) ≥ c

For every x ∈ C, weight(x) ≥ αn, hence

δ(C) =
min{weight(x) | x ∈ C}

n
≥ α
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Existence of Magical Graph with β > d/2

Determine n, c, d, α, β later

Let L = [n], R = [(1− c)n].
Choose each of the d neighbors for u ∈ L uniformly at random

For 1 ≤ s ≤ αn, let As be the event that some subset S of size s has
|Γ(S)| < β|S|
For each S ⊂ L, T ⊂ R, |S| = s, |T | = βs, define

XS,T =

{
1 Γ(S) ⊆ T

0 Γ(S) 6⊆ T

Then,

Prob[As] ≤ Prob

∑
S,T

XS,T > 0

 ≤∑
S,T

Prob[XS,T = 1]
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Existence of Magical Graph with β > d/2

Prob[As] ≤
(

n

s

)(
(1− c)n

βs

) (
βs

(1− c)n

)sd

≤
(ne

s

)s
(

(1− c)ne

βs

)βs (
βs

(1− c)n

)sd

=

[( s

n

)d−β−1
(

β

1− c

)d−β

eβ+1

]s

≤

[(
αβ

1− c

)d−β

· e
β+1

α

]s

Choose α = 1/100, c = 1/10, d = 32, β = 17 > d/2,

Prob[As] ≤ 0.092s
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Existence of Magical Graph with β > d/2

The probability that such a randomly chosen graph is not an
(n, c, d, α, β)-graph is at most

αn∑
s=1

Prob[As] ≤
∞∑

s=1

0.092s =
0.092

1− 0.092
< 0.11

Not only such graphs exist, there are a lot of them!!!
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Example 2: Non-Adaptive Group Testing

A t× n matrix A is called d-disjunct iff the union of any d columns
does not contain another column

Columns are codewords of superimposed codes

Rate of the code is R(a) = log n
t

Want codes with high rates. But, as n→∞ and d→∞

1
d2 log e

(1 + o(1)) ≤ lim sup
A

R(A) ≤ 2 log d

d2
(1 + o(1))

(From Dyachkov, Rykov (1982), and Dyachkov, Rykov and Rashad
(1989))

We’ll prove the lower bound
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Existence of Good d-disjunct Matrix

Set aij to 1 with probability p

The probability that A is not d-disjunct is at most

(d + 1)
(

n

d + 1

) [
1− p(1− p)d

]t
≤

(d + 1)
(

n

d + 1

) [
1− 1

d + 1
(1− 1

d + 1
)d

]t

This is < 1 as long as

t ≥ 3(d + 1) ln
[
(d + 1)

(
n

d + 1

)]
In particular, for large n, there exist d-disjunct matrices with rate

log n

t
≈ 1

3(d + 1)2
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