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Example 1: a Randomized 2-SAT Algorithm

2-SAT Problem: given a 2-CNF formula ϕ, find a satisfying truth
assignment

A Randomized Algorithm for 2-SAT

1 Repeat the following at most m times

2 Pick a truth assignment t at random

3 If t(ϕ) 6= true, then choose a non-satisfying clause, flip a literal

4 Else (t(ϕ) =true), return t

5 Return not satisfiable after m steps
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Analysis of the Algorithm

If there’s no satisfying truth assignment, we’re OK.

Suppose there’s one truth assignment t̄

At step i, let Yi be the Hamming distance from t to t̄

Then, we want Yi = 0 for some i. We know

Prob[Yi+1 = k − 1 | Yi = k] ≥ 1/2
Prob[Yi+1 = k + 1 | Yi = k] ≤ 1/2

{Yi}i≥0 is generally not a Markov chain

Define a Markov chain {Xi}i≥0, state space I = {0, 1, · · · , n}

Prob[Xi+1 = k − 1 | Xi = k] = 1/2
Prob[Xi+1 = k + 1 | Xi = k] = 1/2
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Analysis of the Algorithm

{Yi}i≥0 “leans left” heavier than {Xi}i≥0

Expected number of steps until some Yi = 0 is at most expected
number of steps until some Xi = 0
Key: we do know how to compute the expected number of steps until
{Xi}i≥0 “hits” {0}.

The mean hitting times µi = µ
{0}
i are minimal non-negative solutions

to the following

µ0 = 0

µi = 1 +
1
2
(µi−1 + µi+1), 1 ≤ i ≤ n− 1

µn = 1 + µn−1

Induction gives µn−i = n2 − i2
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Analysis of the Algorithm

Let X be the number of steps until 0 is reached

Conditioning on the initial state, E[X] ≤ n2

By Markov

Prob[X ≥ m] ≤ n2

m
=

1
2

for m = 2n2

Run independently k times, error probability is reduced to 1
2k
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Example 2: Undirected s, t-Connectivity (unstconn)

unstconn

Given a graph G, two vertices s and t. Is there an s, t-path?

The Low-Space Solution

Start from s, keep walking on the graph randomly for some time. If t is
found: return yes, otherwise return no.

Main question

How many steps must be taken so that the false negative probability is at
most ε?

Need some basic results on random walks on graphs
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Random Walks on Graphs – Basic Observations

Definition

G = (V,E) a finite and connected undirected graph. A random walk on G
is a Markov chain on V where puv = 1/ deg(u)

Basic observations

The walk is irreducible and recurrent, has an invariant distribution

πv =
deg(v)

2m
, m = |E|.

Thus, it is positive recurrent

The walk is aperiodic iff G is not bipartite, in which case π is the
limit distribution

We will assume G is non-bipartite henceforth
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Random Walks on Graphs – Basic Parameters

µu,v: hitting time (or mean hitting time) is the expected number of
steps to hit v starting from u

κ(u, v) = µu,v + µv,u: commute time

Cover time C(G) is the expected number of steps until all nodes are
visited. If no starting node is specified, we mean the worst case, i.e.
starting from the node with worst cover time.

Mixing rate measures how fast the walk converges (defined precisely
later)

Question

Determine the hitting times and cover time for a random walk on Kn
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Random Walks on Graphs – Basic Results

Lemma

µv,v = 1
πv

= 2m
deg(v)

Lemma

For any edge uv ∈ E(G), κ(u, v) ≤ 2m

Theorem (Cover time bound)

C(G) ≤ 2m(n− 1)
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Back to the unstconn Problem

If there’s no s, t-path, the algorithm returns no correctly

If there’s a path, the walk hits t in expected time at most
C(G) ≤ 2mn < 2n3

Applying Markov as usual, a walk of length 4n3 is sufficient to make
false positive probability ≤ 1/2
Important to note: the algorithm uses only O(log n)-space, so

unstconn ∈ RL (randomized log-space)

In 2004, Omer Reingold showed a beautiful result that the problem
can be solved deterministically in log-space, implying L = SL

His result makes use of expanders which we’ll discuss next
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Another Proof of Convergence to Equilibrium

Let us first assume G is d-regular, A is the adjacency matrix

Transition probability matrix for the random walk is the normalized
adjacency matrix Â = 1

dA

Both Â and A are real and symmetric

λ is an eigenvalue of A iff λ̂ = λ/d is an eigenvalue of Â with the
same eigenvector

The set of eigenvalues of A is called the spectrum of the graph G
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Spectral Theorem for Real and Symmetric Matrices

Theorem (Spectral Theorem for Real and Symmetric Matrices)

Let A be any real and symmetric n× n matrix, then there is an
orthogonal matrix Q (columns are orthogonal) such that

A = QΛQ−1

where Λ is a real diagonal matrix with entries (λ1, . . . , λn).
In particular, the columns q1, · · · ,qn of Q are orthogonal eigenvectors of
A with corresponding eigenvalues λ1, . . . , λn
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Properties of Spectrum of a Graph

Let λ1 ≥ · · · ≥ λn be the spectrum of a d-regular graph G, then

1 is a d-eigenvector, i.e. A1 = d1

λ1 = d

|λi| ≤ d for all i

G is connected if and only if λi < d for all i ≥ 2
G is not bipartite if and only if λn 6= −d

Thus, if G is connected and not bipartite, its spectrum is

d = λ1 > λ2 ≥ · · · ≥ λn > −d

In particular,
λ(G) = max{|λ2|, |λn|} < λ1 = d
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Another Proof of Convergence for Random Walks on G

The uniform distribution u = 1/n is a 1-eigenvector of Â, thus the
uniform distribution is an invariant distribution of the random walk.

λ̂(G) = max{|λ̂2|, |λ̂n|} < λ̂1 = 1

Let u2, . . . ,un be the other orthogonal eigenvectors of Â, then for
any initial distribution π,

π = c1u + c2u2 + · · · cnun

Since π is a distribution, 〈π,u〉 = 1/n, implying c1 = 1. Thus,

π = u + c2u2 + · · · cnun

Consequently, we obtain another proof of the convergence theorem:

Âkπ = u + c2λ
k
2u2 + · · · cnλk

nun
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Summary: Large Spectral Gap ⇒ Fast Convergence

G: finite, connected and non-bipartite

Then, |λ̂i| ≤ λ̂(G) < 1,∀i ≥ 2.

Moreover, we proved

Âkπ = u + c2λ
k
2u2 + · · · cnλk

nun

which implies
lim

k→∞
Âkπ = u,

for any initial distribution π of the random walk.

1− λ̂(G) is called the spectral gap (equivalently, d− λ(G))
Large spectral gap ⇒ fast convergence
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How to Measure Convergence Speed?

Want to know how far π(k) = Âkπ is from u

Could try l1, l2, l∞ norms, but what do they mean probabilistically?

Definition (Total Variation Distance)

Given two distributions P and Q on a countable sample space Ω, the total
variation distance between P and Q is the largest possible difference in
probabilities that the two distributions can assign to the same event.
Namely,

‖P −Q‖ = sup
A⊂Ω

|P (A)−Q(A)|,

where P (A) =
∑

ω∈A P (ω), Q(A) =
∑

ω∈A Q(ω).
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Variation Distance on Countable State Space

Lemma

When Ω is countable,

‖P −Q‖ =
1
2

∑
ω∈Ω

|P (ω)−Q(ω)|

In other words, the distance is half the l1-norm of the vector P −Q.
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Convergence Speed (Mixing Rate) of Random Walks

Theorem

Let G be finite, connected, non-bipartite, and d-regular with λ̂(G) < 1.
Then, for any initial distribution π we have

‖Âkπ − u‖1 ≤
√

nλ̂k.

Proof.

‖Âπ − u‖2 = ‖Â(π − u)‖2 ≤ λ̂‖π − u‖2 ≤ λ̂

Inductively,
‖Âkπ − u‖2 ≤ λ̂k‖π − u‖2 ≤ λ̂k

Cauchy-Schwartz completes the proof.

(Note: there’s also a notion of convergence in entropy.)
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Mixing Lemma

Lemma (Expander Mixing Lemma)

Let G = (V,E) be a d-regular graph on n vertices, λ = λ(G), λ̂ = λ̂(G).
Let (S, T ) = {(u, v) | u ∈ S, v ∈ T} (set of ordered pairs). Then,
∀S, T ⊆ V , ∣∣∣∣|(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T |

Simple Consequences, when λ̂ < 1
Maximum independent set size of G is at most λ̂n

Chromatic number is at least 1/λ̂

Diameter is O(log n)
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Spectral Expansion and Edge Expansion

Edge boundary ∂(S) of S ⊂ V :

∂(S) = |(S, S̄)|

Edge expansion ratio h(G) of G:

h(G) = min
S⊂V,|S|≤n/2

|∂S|
|S|

also called Cheeger constant or Cheeger number of G

Theorem (Connection between edge expansion and spectral gap)

Let G be d-regular with spectrum λ1 ≥ · · · ≥ λn. Then,

d− λ2

2
≤ h(G) ≤

√
2d(d− λ2)
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Expanders: Finally!

Three definitions which are more or less equivalent. (We only consider
regular expanders for simplicity.)

Definition (Spectral Expander)

A d-regular graph G is called an α-spectral expander if λ̂(G) ≤ α.

Definition (Edge Expander)

A d-regular graph G is called an β-edge expander if h(G) ≥ β.

Definition (Vertex Expander)

A d-regular graph G is called an γ-vertex expander if

min
S⊂V,|S|≤n/2

|Γ(S)|
|S|

≥ γ.
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They are More or Less Equivalent

We have seen a relationship between spectral expansion and edge
expansion before. We connect spectral vs. vertex expansion below.

Lemma

An α-spectral expander is also a 2
α2+1

-vertex expander

Lemma

A β-vertex expander is also an α-spectral expander with

α =

√
1− (β − 1)2

d2(8 + 4(β − 1)2)

It is straightforward to connect vertex vs. edge expansions.
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Family of Expanders

Definition

A sequence of d-regular graphs {Gi}∞i=1 is a family of spectral expanders if
there exists ε > 0 such that λ̂(Gi) ≤ 1− ε for all i.
ni = |V (Gi)| are required to be strictly increasing.

(Families of vertex- and edge-expanders are defined similarly.)
Intuitively, good families of expanders (i.e. usable for most applications)
satisfy the following

{ni} is not increasing too fast (e.g., ni+1 ≤ n2
i is good)

the Gi can be generated in polynomial time
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Good Families of Expanders

Let {Gi} be a family of d-regular expanders, where {ni} is increasing but
not too fast

the family is called mildly explicit if there’s an algorithm generating
the ith graph Gi in time polynomial in i

the family is called very explicit if there’s an algorithm which, on
inputs i and v ∈ [ni] and k ∈ [d], computes the kth neighbor of v in
Gi in time polynomial in (the binary representation of) the input
(i, v, k)
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Example: Margulis Construction

Margulis (1973) constructed the following expander family

For every integer m,

V (Gm) = Zm × Zm

neighbors of (x, y) are (x + y, y), (x− y, y), (x, y + x), (x, y −
x), (x + y + 1, y), (x− y + 1, y), (x, y + x + 1), (x, y − x + 1) (all
operations done in the ring Zm)

this is a family of very explicit 8-regular expanders
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Applications of Expanders and Random Walks on
Expanders

Numerous

Constructing good topologies for P2P networks

Taking double cover of expanders gives bipartite expanders
(remember magical graph from the first weak): can be used to
construct good error-correcting codes, superconcentrators,
concentrators, good interconnection networks, etc.

Construct parallel sorting networks of size O(n lg n) (a huge result!)

Efficient error reduction in probabilistic algorithms

Metric embedding

PCP Theorem and many other results in complexity theory
(remember Reingold’s result)

...

(See Bulletin of the AMS Survey by Hoory, Linial, and Wigderson)
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Application: Efficient Error Reduction

Some problems whose most efficient solutions are randomized algorithms:

Primality testing: is the input a prime?

Polynomial identity checking: is P (x)Q(x) ≡ R(x) for given
polynomials P,Q,R under some finite field

Matrix indentity checking: is AB = C for matrices on finite fields

These are examples of decision problems Π which have a randomized
poly-time (Monte Carlo) algorithm A satisfying the following:

On input x of size n, A uses r = r(n) random bits

x ∈ Πyes =⇒ Prob
s∈{0,1}r

[A(x, s) = yes] ≥ 1/2

x ∈ Πno =⇒ Prob
s∈{0,1}r

[A(x, s) = no] = 1

RP is the complexity class consisting of these kinds of problems
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The Straightforward Way to Reduce Error Probability

Pick k random strings s1, . . . , sk ∈ {0, 1}r

Return no only if all A(x, si) say no

False negative probability is (1/2)k

Number of random bits used is kr

Another view of this method

For any input x, let Bx be the set of strings s ∈ {0, 1}r = Ω for
which A(x, s) gives the wrong answer for x

If x ∈ Πyes, |Bx| ≤ |Ω|/2
The algorithm sample k independent points from Ω
Probability that all k points are bad (i.e. in Bx) is at most (1/2)k
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Sampling by Random Walk on Expanders

Let G = (V,E) be a very explicit d-regular α-spectral expander where
V = Ω, where α < 1/2
Instead of sampling k independent points, start from a uniformly
random vertex s0 of G and take a random walk of length k:
s0, s1, . . . , sk

Run A(x, si) and return no only if all A(x, si) says no

Number of random bits used is r + k log2 d = r + O(k)
Error probability equal the probability that all s0, . . . , sk stay inside Bx

Theorem (Ajtai-Komlós-Szemerédi, 1987)

Let G = (V,E) be an α-spectral expander. Consider B ⊂ V , |B| ≤ β|V |.
The probability that a random walk of length k (with uniformly chosen
initial vertex) stays inside B the entire time is at most (α + β)k.
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Proof of AKS Theorem

Let P be the orthogonal projection onto the coordinates B, i.e.
P = (pij) where pij = 1 iff i = j ∈ B, pij = 0 otherwise.

The probability that the length-k walk stays in B is

‖(P Â)kPu)‖1

(conditioned on s0 ∈ B, apply Chapman-Kolmogorov equation)

Next, for any vector v,

‖P ÂPv)‖2 ≤ (α + β)‖v‖2

Finally,

‖(P Â)kPu)‖1 ≤
√

n‖(P Â)kPu)‖2

=
√

n‖(P ÂP )ku)‖2

≤
√

n(α + β)k‖u‖2

= (α + β)k
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How Big can the Spectral Gap be?

The best expander is Kn, whose spectrum is

[n− 1,−1,−1, . . . ,−1]

However, we are interested in cases where n � d. In this case,

Theorem (Alon-Boppana)

If G is d-regular with n vertices, then,

λ(G) ≥ 2
√

d− 1− on(1)

A d-regular graph G is called a Ramanujan Graph if λ(G) ≤ 2
√

d− 1
Amazingly: Ramanujan graphs can be constructed explicitly when
d− 1 is any prime power. (Using Cayley graphs of projective linear
groups.)
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Many Other Known Constructions

Most random graphs are expanders

Most random graphs are Ramanujan graphs!!!

Many explicit constructions based on Cayley graphs

Zig-Zag Product! (Lead to Reingold’s result)
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TBD
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