
CSE 531 Homework Assignment 5

Due in class on Tuesday, Nov 20.

November 5, 2007

There are totally 6 problems, 10 points each. You should do them all. We will grade only
4 problems chosen at my discretion. If it so happens that you don’t do one of the problems we
don’t grade, then no points will be deducted.

Note: this homework is on solving problems with network flow formulation. You should
describe the formulation (along the line of the maximum matching in bipartite graph problem),
show why solving the flow problem gives a solution to the problem at hand. Make sure the
the formulation does not induces an exponential time algorithm in terms of the problem you’re
trying to solve. You do not need to be precise on the running time, as long as you’re certain that
it is a polynomial-time algorithm. This requires, at the very least, that the “transformation”
from an instance of the problem you’re solving to the corresponding network flow instance can
be done in polynomial time.

Problem 1. We define the Escape Problem as follows. We are given a directed graph G = (V,E)
(picture a network of roads). A certain collection of nodes X ⊂ V are designated as populated
nodes, and a certain other collection S ⊂ V are designated as safe nodes. (Assume that X and
S are disjoint.) In case of an emergency, we want evacuation routes from the populated nodes
to the safe nodes. A set of evacuation routes is defined as a set of paths in G so that (i) each
node in X is the starting point of one path, (ii) the last node on each path lies in S, and (iii) the
paths do not share any edges. Such a set of paths gives a way for the occupants of the populated
nodes to “escape” to S, without overly congesting any edge in G.

(a) Given G, X, and S, show how to decide in polynomial time whether such a set of evacuation
routes exists.

(b) Suppose we have exactly the same problem as in (a), but we want to enforce an even
stronger version of the “no congestion” condition (iii): we change (iii) to say “the paths
do not share any nodes.”

With this new condition, show how to decide in polynomial time whether such a set of
evacuation routes exists.

(c) Provide an example with the same G, X, and S, in which the answer is yes to the question
in (a) but no to the question in (b).

Problem 2. Consider the problem faced by a hospital that is trying to evaluate whether its
blood supply is sufficient.

The basic rule for blood transfusion is the following. A person’s own blood supply has certain
antigens present (we can think of antigens as a kind of molecular signature); and a person cannot
receive blood with a particular antigen if their own blood does not have this antigen present.

Concretely, this principle underpins the division of blood into four types: A, B, AB, and O.
Blood of type A has the A antigen, blood of type B has the B antigen, blood of type AB has
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both, and blood of type O has neither. Thus, patients with type A can receive only blood types
A or O in a transfusion, patients with type B can receive only B or O, patients with type O can
receive only O, and patients with type AB can receive any of the four types.

(a) Let sO, sA, sB, and sAB denote the supply in whole units of the different blood types
on hand. Assume that the hospital knows the projected demand for each blood type
dO, dA, dB and dAB for the coming week. Give a polynomial-time algorithm to evaluate if
the blood on hand would suffice for the projected need.

(b) Consider the following example. The typical distribution of blood types in U.S. patients
is roughly 45% type O, 42% type A, 10% type B, and 3% type AB. The hospital wants
to know if the blood supply it has on hand would be enough if 100 patients arrive with
the expected type distribution. There is a total of 105 units of blood on hand. The table
below gives these demands, and the supply on hand.

Blood type supply demand
O 50 45
A 36 42
B 11 10
AB 8 3

Is the 105 units of blood on hand enough to satisfy the 100 units of demand? Find an
allocation that satisfies the maximum possible number of patients. Use an argument based
on a minimum-capacity cut to show why not all patients can receive blood. Also, provide
an explanation for this fact that would be understandable to the clinic administrators,
who have not taken a course on algorithms. (So, for example, this explanation should not
involve the words flow, cut or graph in the sense we use them in our course.)

Problem 3. Let m and k be positive integers. Let G = (L,R;E) be a bipartite graph satisfying
the following conditions: (a) all vertices in L have degree m, (b) all vertices in R have degree
mk.

Show that we can color the edges of G using only m colors (each edge gets one color) such
that vertices in L are incident to edges with different colors, and vertices in R are incident to
exactly k edges of each color.

Problem 4. There are n students in a certain university in the Midwest. The ith student can
only take at most ci courses in a semester. (For simplicity, let’s assume that every student can
take as many courses as she/he wants subject to the upper bounds ci.) There are m courses that
are going to be offered next Spring. Every course needs at least k registered students, otherwise
it will be canceled. Moreover, the ith student has a set Si of courses that she/he prefers. No
student registers for a course she/he does not prefer.

(a) Describe a polynomial-time algorithm which evaluates whether the students can register
for Spring courses so that no course will be canceled.

(b) Now, suppose each student belongs to one of l ethnic groups. For cultural diversity, the
university imposes the constraint that a course will be canceled if all registered students
are from the same ethnic group. Describe a polynomial-time algorithm to evaluate whether
there is a way for students to register for courses so that no course is canceled.

Problem 5. Let G = (V,E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative
edge capacities {ce}. Give a polynomial-time algorithm to decide whether G has a unique
minimum s, t-cut (i.e., an s, t-cut of capacity strictly less that that of all other s, t-cut).
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Problem 6. Two optical switches R and S are connected by f optical fibers. There are totally
w different wavelengths λ1, . . . , λw. However, due to various physical limitations, the jth fiber
can only accommodate up to nj different wavelengths (any subset of at most nj wavelengths is
OK), for 1 ≤ j ≤ f .

A set C of connections are to be routed from switch R to switch S. Each connection in C is
to be carried on a pre-assigned wavelength. In the set C, there are mi connections which were
pre-assigned with wavelength λi, 1 ≤ i ≤ w.

We are to route the connections in C through (R,S), namely each connection in C is assigned
to one of the f fibers such that no two connections with the same wavelength are assigned on
the same fiber, and that the jth fiber does not get assigned to more than nj connections.

Suppose m1 ≥ · · · ≥ mw, and n1 ≤ · · · ≤ nf . Show that the routing can be done if and only
if, for all k, and l, where 0 ≤ k ≤ w, 0 ≤ l ≤ f , it holds that k(f − l) +

∑l
j=1 nj ≥

∑k
i=1 mi.
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