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Designing Algorithms with the Dynamic Programming Method
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A Quote from Richard Bellman

“Eye of the Hurricane: An Autobiography”

I spent the Fall quarter (of 1950) at RAND. My first task was to find a
name for multistage decision processes. An interesting question is, Where
did the name, dynamic programming, come from? The 1950s were not
good years for mathematical research. We had a very interesting
gentlemen in Washington named Wilson. He was Secretary of Defense,
and he actually had a pathological fear and hatred of the word, research.
... I felt I had to do something to shield Wilson and the Air Force from the
fact that I was really doing mathematics inside the RAND Corporation.
... Thus, I thought dynamic programming was a good name. It was
something not even a Congressmann could object to. So I used it as an
umbrella for my activities.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 3 / 74

A General Description

1 Identify the sub-problems

Often sub-problems share subsub-problems
Total number of (sub)i-problems is “small” (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem
can be computed from solutions to sub-problems

Be careful with the base cases

3 Investigate the recurrence to see how to use a “table” to solve it

4 Design appropriate data structure(s) to construct an optimal solution

5 Pseudo code

6 Analysis of time and space
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Weighted Interval Scheduling: Problem Definition

Each interval Ij now has a weight wj ∈ Z+

Find non-overlapping intervals with maximum total weight

Time
0 1 2 3 4 5 6 7 8 9 10 11
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The Structure of an Optimal Solution

Order intervals so that f1 ≤ f2 ≤ · · · ≤ fn

For each j, let p(j) be the largest index i < j such that Ii and Ij do
not overlap; p(j) = 0 if no such i

p(1)=0
p(2)=0
p(3)=0
p(4)=1
p(5)=0
p(6)=2
p(7)=3
p(8)=5

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Let O be any optimal solution

If In ∈ O, then O′ = O − {In} must be optimal for {I1, . . . , Ip(n)}
Else In /∈ O, then O must be optimal for {I1, . . . , In−1}
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The Recurrence

Identify subproblems: optimal solution for {I1, . . . , In} seems to
depend on some optimal solutions to {I1, . . . , Ij}, j = 0..n

For j ≤ n, let opt(j) be the cost of an optimal solution to
{I1, . . . , Ij}
Crucial Observation:

opt(j) =

{
max{wj + opt(p(j)),opt(j − 1)} j ≥ 1
0 j = 0

Related question

How do we compute the array p(j) efficiently?
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First Attempt at Implementing the Idea

Compute-Opt(j)

1: if j ≤ 0 then
2: Return 0
3: else
4: Return max{wj+ Compute-Opt(p(j)), Compute-Opt(j − 1)}
5: end if

Proof of correctness: often not needed, because it can easily be done by
induction. (You do have to justify your recurrence though!)
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First Attempt was Bad

For the same reason FibA was bad.

3
4
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2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0
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Fixing the Algorithm: a Top-Down Approach

Key Idea of Dynamic Programming: use a table, in this case an array,
to store already computed things

Use M [0..n] to store opt(0), . . . ,opt(n), initially fill M with −1’s

M-Comp-Opt(j)

1: if j = 0 then
2: Return 0
3: else if M [j] 6= −1 then
4: Return M [j]
5: else
6: M [j]← max{wj+ M-Comp-Opt(p(j)), M-Comp-Opt(j − 1)}
7: Return M [j]
8: end if

The top-down approach is often called memoization

Running time: O(n).
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Fixing the Algorithm: a Bottom-Up Approach

Comp-Opt(j)

1: M [0]← 0
2: for j = 1 to n do
3: M [j]← max{wj + M [p(j)],M [j − 1]}
4: end for

Bottom-Up vs Top-Down

Bottom-Up solves all subproblems, Top-Down only solves necessary
sub-problems

Bottom-Up does not involve many function calls, and thus often is
faster
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Constructing an Optimal Schedule

Construct-Solution(j)

1: if j = 0 then
2: Return ∅
3: else if wj + M [p(j)] ≥M [j − 1] then
4: Return Construct-Solution(p(j)) ∪ {Ij}
5: else
6: Return Construct-Solution(p(j − 1))
7: end if
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Longest Common Subsequence: Problem Definition

X = t h i s i s c r a z y
Z = h i c a z y

Z is a subsequence of X.

X = t h i s i s c r a z y
Y = b u t i n t e r e s t i n g

So, Z = [t, i, s, i] is a common subsequence of X and Y

The Problem

Given 2 sequences X and Y of lengths m and n, respectively, find a
common subsequence Z of longest length
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The Structure of an Optimal Solution

Denote X = [x1, . . . , xm], Y = [y1, . . . , yn]
Key observation: let lcs(X, Y ) be the length of an LCS of X and Y

If xm = yn, then

lcs(X, Y ) = 1 + lcs([x1, . . . , xm−1], [y1, . . . , yn−1])

If xm 6= yn, then either

lcs(X, Y ) = lcs([x1, . . . , xm], [y1, . . . , yn−1])

or
lcs(X, Y ) = lcs([x1, . . . , xm−1], [y1, . . . , yn])
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The Recurrence

For 0 ≤ i ≤ m, 0 ≤ j ≤ n, let

Xi = [x1, . . . , xi]
Yj = [y1, . . . , yj ]

Let c[i, j] = lcs[Xi, Yj ], then

c[i, j] =


0 if i or j is 0
1 + c[i− 1, j − 1] if xi = yj

max(c[i− 1, j], c[i, j − 1]) if xi 6= yj

Hence, c[i, j] in general depends on one of three entries: the North
entry c[i− 1, j], the West entry c[i, j − 1], and the NorthWest entry
c[i− 1, j − 1].
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Computing the Optimal Value

LCS-Length(X, Y,m, n)
1: c[i, 0]← 0, ∀i = 0, . . . ,m; c[0, j]← 0, ∀j = 0, . . . , n;
2: for i← 1 to m do
3: for j ← 1 to n do
4: if xi = yj then
5: c[i, j]← 1 + c[i− 1, j − 1];
6: else if c[i− 1, j] > c[i, j − 1] then
7: c[i, j]← c[i− 1, j];
8: else
9: c[i, j]← c[i, j − 1];

10: end if
11: end for
12: end for
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Construting an Optimal Solution

Z is a global array, initially empty

LCS-Construction(Z, i, j)
1: k ← c[i, j]
2: if i = 0 or j = 0 then
3: Return Z
4: else if xi = yj then
5: Z[k]← xi

6: LCS-Construction(i− 1, j − 1)
7: else if c[i− 1, j] > c[i, j − 1] then
8: LCS-Construction(i− 1, j)
9: else

10: LCS-Construction(i, j − 1)
11: end if
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Time and Space Analysis

Filling out the c table takes Θ(mn)-time, which is also the running
time of LCS-Length

The space requirement is also Θ(mn)
LCS-Construction takes O(m + n) (why?)
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Segmented Least Square: Problem Definition

Least Squares is a foundational problem in statistics and numerical
analysis

Given n points in the plane: P = {(x1, y1), . . . , (xn, yn)}
Find a line L: y = ax + b that “fits” them best

“Fittest” means minimizing the error term

error(L,P ) =
n∑

i=1

(yi − axi − b)2

Basic calculus gives

a =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)
n
∑

i x
2
i − (

∑
i xi)2

and b =
∑

i yi − a
∑

i xi

n

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 22 / 74

Segmented Least Square: Problem Definition

Least Squares is a foundational problem in statistics and numerical
analysis

Given n points in the plane: P = {(x1, y1), . . . , (xn, yn)}
Find a line L: y = ax + b that “fits” them best

“Fittest” means minimizing the error term

error(L,P ) =
n∑

i=1

(yi − axi − b)2

Basic calculus gives

a =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)
n
∑

i x
2
i − (

∑
i xi)2

and b =
∑

i yi − a
∑

i xi

n

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 22 / 74



Segmented Least Square: Problem Definition

Least Squares is a foundational problem in statistics and numerical
analysis

Given n points in the plane: P = {(x1, y1), . . . , (xn, yn)}
Find a line L: y = ax + b that “fits” them best

“Fittest” means minimizing the error term

error(L,P ) =
n∑

i=1

(yi − axi − b)2

Basic calculus gives

a =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)
n
∑

i x
2
i − (

∑
i xi)2

and b =
∑

i yi − a
∑

i xi

n

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 22 / 74

Practical Issues

x

y
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A Compromised Objective Function

Given n points p1 = (x1, y1), . . . , pn = (xn, yn)
x1 < x2 < · · · < xn

Want to minimize both the number s of segments and total (squared)
error e

A common method: use a weighted sum e + cs for a given constant
c > 0

More precisely

Find a partition of the points into some k contiguous parts

Fit jth part with the best segment with error ej

Want to minimize
∑k

j=1 ej + ck
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The Structure of an Optimal Solution

The last part of an optimal solution O consists of points pi, . . . , pn

for some i = 1, . . . , n

The cost for segments fitting p1, . . . , pi−1 must be optimal too! Let
O′ be an optimal solution to p1, . . . , pi−1

In English, if pi, . . . , pn forms the last part of O, then

cost(O) = cost(O′) + e(i, n) + c

(e(i, n) is the least error of fitting a line through pi, . . . , pn)
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The Recurrence

Let e(i, j) be the least error fitting a line through pi, pi+1, . . . , pj

Let opt(i) be the optimal cost for input {p1, . . . , pi}
Then,

opt(j) =

0 if j = 0
min

1≤i≤j
{opt(i− 1) + e(i, j) + c} if j > 0
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Pseudo-Code

Pre-compute e(i, j) for all i < j: brute-force takes O(n3), finer
implementation takes O(n2)
Use recurrence to fill up array opt[0, . . . , n], another O(n2)

Find-Segments(j)
1: if j = 0 then
2: Return ∅
3: else
4: Find i minimizing opt(i− 1) + e(i, j) + c
5: Return segment {pi, . . . , pj} and result of Find-Segments(i− 1)
6: end if
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Outline

1 What is Dynamic Programming?

2 Weighted Inverval Scheduling

3 Longest Common Subsequence

4 Segmented Least Squares

5 Matrix-Chain Multiplication (MCM)

6 01-Knapsack and Subset Sum

7 Sequence Alignment

8 Shortest Paths in Graphs
Bellman-Ford Algorithm
All-Pairs Shortest Paths
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Matrix Chain Multiplication: Problem Definitions

Given A10×100, B100×25, then calculating AB requires
10 · 100 · 25 = 25, 000 multiplications.
Given A10×100, B100×25, C25×4, then by associativity

ABC = (AB)C = A(BC)

AB requires 25, 000 multiplications

(AB)C requires 10 · 25 · 4 = 1000 more multiplications

totally 26, 000 multiplications

On the other hand

BC requires 100 · 25 · 4 = 10, 000 multiplications

A(BC) requires 10× 100× 4 = 4000 more multiplications

totally 14, 000 multiplications
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Problem Definitions (cont)

There are 5 ways to parenthesize ABCD:

(A(B(CD))), (A((BC)D)), ((AB)(CD)), ((A(BC))D), (((AB)C)D)

In general, given n matrices:

A1 of dimension p0 × p1

A2 of dimension p1 × p2

...
...

...

An of dimension pn−1 × pn

Number of ways to parenthesis A1A2 . . .An is

1
n + 1

(
2n

n

)
=

1
n + 1

(2n)!
n!n!

= Ω
(

4n

n3/2

)

The Problem

Find a parenthesization with the least number of multiplications
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Structure of an Optimal Solution

Suppose we split between Ak and Ak+1, then the parenthesization of
A1 . . .Ak and Ak+1 . . .An have to also be optimal

Let c[1, k] and c[k + 1, n] be the optimal costs for the subproblems,
then the cost of splitting at k, k + 1 is

c[1, k] + c[k + 1, n] + p0pkpn

Thus, the main recurrence is

c[1, n] = min
1≤k<n

(c[1, k] + c[k + 1, n] + p0pkpn)

Hence, in general we need c[i, j] for i < j:

c[i, j] = min
i≤k<j

(c[i, k] + c[k + 1, j] + pi−1pkpj)
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The Recurrence

c[i, j] =

{
0 if i = j

mini≤k<j (c[i, k] + c[k + 1, j] + pi−1pkpj) if i < j
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Pseudo Code

Main Question: how do we fill out the table c?

MCM-Order(p, n)
1: c[i, i]← 0 for i = 1, . . . , n
2: for l = 1 to n− 1 do
3: for i← 1 to n− l do
4: j ← i + l; // not really needed, just to be clearer
5: c[i, j]←∞;
6: for k ← i to j − 1 do
7: t← c[i, k] + c[k + 1, j] + pi−1pkpj ;
8: if c[i, j] > t then
9: c[i, j]← t;

10: end if
11: end for
12: end for
13: end for
14: return c[1, n];
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Constructing the Solution

Use s[i, j] to store the optimal splitting point k:
MCM-Order(p, n)
1: c[i, i]← 0 for i = 1, . . . , n
2: for l = 1 to n− 1 do
3: for i← 1 to n− l do
4: j ← i + l; // not really needed, just to be clearer
5: c[i, j]←∞;
6: for k ← i to j − 1 do
7: t← c[i, k] + c[k + 1, j] + pi−1pkpj ;
8: if c[i, j] > t then
9: c[i, j]← t; s[i, j]← k;

10: end if
11: end for
12: end for
13: end for
14: return c, s;
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Space and Time Complexity

Space needed is O(n2) for the tables c and s

Suppose the inner-most loop takes about 1 time unit, then the
running time is

n−1∑
l=1

n−l∑
i=1

l =
n−1∑
l=1

l(n− l)

= n
n−1∑
l=1

l −
n−1∑
l=1

l2

= n
n(n− 1)

2
− (n− 1)n(2(n− 1) + 6)

6
= Θ(n3)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 35 / 74

Outline

1 What is Dynamic Programming?

2 Weighted Inverval Scheduling

3 Longest Common Subsequence

4 Segmented Least Squares

5 Matrix-Chain Multiplication (MCM)

6 01-Knapsack and Subset Sum

7 Sequence Alignment

8 Shortest Paths in Graphs
Bellman-Ford Algorithm
All-Pairs Shortest Paths
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Knapsack & Subset Sum: Problem Definitions

Subset Sum: given n positive integers w1, . . . , wn, and a bound W ,
return a subset of integers whose sum is as large as possible but not
more than W

01-Knapsack: given n items with weights w1, . . . , wn and
corresponding values v1, . . . , vn, and abound W , find a subset of
items with maximum total value whose total weight is bounded by W

Subset Sum is a special case of 01-Knapsack when vi = wi for all
i. Thus, we will try to solve 01-Knapsack only.
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Structure of an Optimal Solution

Let O be an optimal solution, then either the nth item In is in O or
not

If In ∈ O, then O′ = O − {In} must be optimal for the problem
{I1, . . . , In−1} with weight bound W − wn

If In /∈ O, then O′ = O must be optimal for the problem
{I1, . . . , In−1} with weight bound W

The above analysis suggests defining opt(j, w) to be the optimal
value for the problem {I1, . . . , Ij} with weight bound w
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The Recurrence and Analysis

opt(j, w) =


0 j = 0
opt(j − 1, w) w < wj

max{opt(j − 1, w), vj + opt(j − 1, w − wj)} w ≥ wj

Running time is Θ(nW ): not polynomial

This is called pseudo-polynomial time

01-Knapsack is NP-hard ⇒ extremely unlikely to have
polynomial-time solution

However, there exists a poly-time algorithm that returns a feasible
solution with value within ε of optimality
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Sequence Alignment: Motivation 1

How similar are “ocurrance” and “occurrence”?

o c u r r a n c e -

o c c u r r e n c e

o c - u r r a n c e

o c c u r r e n c e

o c - u r r a - n c e

o c c u r r - e n c e
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Sequence Alignment: Motivation 2

Applications in Unix diff program, speech recognition, computational
biology

Edit distance (Levenshtein 1966, Needleman-Wunsch 1970)

Gap penalty δ, mismatch penalty αpq

Distance or cost equals sum of penalties

A C - A G T A - T G C

A C C A T T G T T G C

cost = 2δ + αGT + αAG
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Sequence Alignment: Problem Definition

Given two strings x1, . . . , xm and y1, . . . , yn, find an alignment of
minimum cost

An alignment is a set M of ordered pairs (xi, yj) such that each item
is in at most one pair and there is no crossing

Two pairs (xi, yj) and (xp, yq) cross if i < p but j > q

cost(M) =
∑

(xi,yj)∈M

αxiyj +
∑

unmatched xi

δ +
∑

unmatched yi

δ

=
∑

(xi,yj)∈M

αxiyj + δ(#unmatched xi + #unmatched yj)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 43 / 74



Structure of Optimal Solution and Recurrence

Key observation: either (xm, yn) ∈M or xm unmatched or yn

unmatched

Let opt(i, j) be the optimal cost of aligning x1, . . . , xi with
y1, . . . , yj , then

opt(i, 0) = iδ

opt(0, j) = jδ

opt(i, j) = min{αxiyj + opt(i− 1, j − 1),
δ + opt(i− 1, j), δ + opt(i, j − 1)}
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Time and Space Complexity

Θ(mn) for time and space

Question: for RNA sequences (m,n ≈ 10, 000), Θ(mn)-space is too
large, can we do better?

Answer is yes - Θ(m + n) is possible, due to a beautiful idea by
Herschberg in 1975

First attempt: computing opt(m,n) using Θ(m + n)-space. How?

Unfortunately, no easy way to recover the alignment itself.
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Sequence Alignment in Linear Space

Herschberg’s idea: combine D&C and dynamic programming in a
clever way

Inspired by Savitch’s theorem in complexity theory

Edit Distance Graph: let f(i, j) be the shortest path length from
(0, 0) to (i, j), then f(i, j) = opt(i, j)

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

 αxiy j
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Sequence Alignment in Linear Space

For any j, can compute f(·, j) in O(mn)-time and O(m + n)-space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j
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Sequence Alignment in Linear Space

Let g(i, j) be the shortest distance from (i, j) to (m,n), then g(·, j)
can be computed in in O(mn)-time and O(m + n)-space, for any
fixed j

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j
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Sequence Alignment in Linear Space

The cost of a shortest path from (0, 0) to (m,n) which goes through
(i, j) is f(i, j) + g(i, j)

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0
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Sequence Alignment in Linear Space

Let q be an index minimizing f(q, n/2) + g(q, n/2), then a shortest
path through (q, n/2) is also a shortest path overall

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

n / 2

q
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Sequence Alignment in Linear Space using D&C

Compute q as described, output (q, n/2), then recursively solve two
sub-problems.

i-jx1

y1 y2 y3

ε

ε

x2

x3

y4 y5 y6

0-0

q

n / 2

m-n
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Sequence Alignment in Linear Space: Analysis

T (m,n) ≤ cmn + T (q, n/2) + T (m− q, n/2)

Induction gives T (m,n) = O(mn)
Thus, the running time remains O(mn), yet space requirement is only
O(m + n)
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Outline

1 What is Dynamic Programming?

2 Weighted Inverval Scheduling

3 Longest Common Subsequence

4 Segmented Least Squares

5 Matrix-Chain Multiplication (MCM)

6 01-Knapsack and Subset Sum

7 Sequence Alignment

8 Shortest Paths in Graphs
Bellman-Ford Algorithm
All-Pairs Shortest Paths
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Shortest Path: Problem Definition

Shortest Path Problem: given a directed graph G = (V,E) with
edge cost c : E → R, find a shortest path from a given source s to a
destination t

Dijkstra’s algorithm does not work because there might be negative
cycles.

We will also address the problem of finding a negative cycle (if any).
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Structure of an Optimal Solution

Consider first the case when there’s no negative cycle

Let P = s, v1, . . . , vk−1, t be a shortest path from s to t, we can
assume (why?) that P is a simple path (i.e. no repeated vertex)

Attempt 1: let opt(u, t) be the length of a shortest path from u to t,
clearly

opt(u, t) = min{opt(v, t) | (u, v) ∈ E}

Problem is, it’s not clear how the opt(v, t) are “smaller” problems
than the original opt(u, t). Thus, we need a way to clearly say some
opt(v, t) are “smaller” than another opt(u, t)
Bellman-Ford: fix target t, let opt(i, u) be the length of a shortest
path from u to t with at most i edges

What we want is opt(n− 1, s)
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The Recurrence and Analysis

opt(i, u) =


0 i = 0, u = t

∞ i = 0, u 6= t

min
{
opt(i− 1, u), min

v:(u,v)∈E
{opt(i− 1, v) + cuv}

}
i > 0

Space complexity is O(n2)
Time complexity is O(n3): filling out the n× n table row by row, top
to bottom, computing each entry takes O(n)
Better time analysis: computing opt(i, u) takes time O(out-deg(u)),
for a total of

O

(
n
∑

u

out-deg(u)

)
= O(mn)
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More Space-Efficient Implementation

First Attempt: use a two column table, since opt(i, u) only depends
on opt(i− 1, ∗); thus need O(n)-space.

Second Attempt: use a one column table. Instead of opt(i, u) we
only have opt(u), using i as the iteration number

Space Efficient Bellman-Ford(G, t)
1: opt(u)←∞,∀u; opt(t)← 0
2: for i = 1 to n− 1 do
3: for each vertex u do

4: opt(u)← min
{
opt(u), min

v:(u,v)∈E
{opt(v) + cuv}

}
5: end for
6: end for
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Why Does Space Efficient Bellman-Ford Work?

What might be the problem?

Before, opt(i, u) = length of shortest u, t-path with ≤ i edges
Now, after iteration i, opt(u) may no longer be the length of shortest
u, t-path with ≤ i edges

However, by induction we can show

For any i, if opt(u) <∞ then there is a u, t-path with length opt(u)
After i iterations, opt(u) ≤ opt(i, u)

Consequently, after n− 1 iterations we have opt(u) ≤ opt(n− 1, u),
done!
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Construction of Shortest Paths

Similar to Dijkstra’s algorithm, maintain a pointer successor(u) for each
u, pointing to the next vertex along the current path to t (thus, total
space complexity = O(m + n))

Space Efficient Bellman-Ford(G, t)
1: opt(u)←∞,∀u; opt(t)← 0
2: successor(u)← nil,∀u
3: for i = 1 to n− 1 do
4: for each vertex u do
5: w ← argmin

v:(u,v)∈E
{opt(v) + cuv}

6: if opt(u) > opt(w) + cuw then
7: opt(u)← opt(w) + cuw

8: successor(u)← w
9: end if

10: end for
11: end for
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Detecting Negative Cycles

Lemma

If opt(n, u) = opt(n− 1, u) for all nodes u, then there is no negative
cycle on any path from u to t

Theorem

If opt(n, u) < opt(n− 1, u) for some node u, then any shortest path
from u to t contains a negative cycle C.
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Detecting Negative Cycles
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Detecting Negative Cycles: Application

Given n currencies and exchange rates between them, is there an
arbitrage opportunity?

Fast algorithm is ... money!

F$

£ ¥DM

1/7

3/102/3 2

170 56

3/504/3

8

IBM

1/10000

800
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All-Pairs Shorest Paths: Problem Definition

Input: directed graph G = (V,E), cost function c : E → R. Assume
no negative cycle.

Input represented by a cost matrix C = (cuv)

cuv =


c(uv) if uv ∈ E

0 if u = v

∞ otherwise

Output:

a distance matrix D = (duv), where duv = shortest path length from u
to v, and ∞ otherwise.
a predecessor matrix Π = (πuv), where πuv is v’s previous vertex on a
shortest path from u to v, and nil if v is not reachable from u or
u = v.
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A Solution Based on Bellman-Ford’s Idea

d
(k)
uv : length of a shortest path from u to v with ≤ k edges (k ≥ 1)

Let D(k) = (d(k)
uv ) (a matrix)

We can see that D = D(n−1), D(1) = C

Then,

d(k)
uv = min

w∈V,w 6=v

{
d(k−1)

uv , d(k−1)
uw + cwv

}
= min

w∈V

{
d(k−1)

uw + cwv

}
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Implementation of the Idea

Use a 3-dimensional table for the d
(k)
uv , how to fill the table?

Bellman-Ford APSP(C, n)
1: D(1) ← C // this actually takes O(n2)
2: for k ← 2 to n− 1 do
3: for each u ∈ V do
4: for each v ∈ V do
5: d

(k)
uv ← minw∈V {d(k−1)

uw + cwv}
6: end for
7: end for
8: end for
9: Return D(n−1) // the last “layer”

O(n4)-time, O(n3)-space.

Space can be reduced to O(n2), how?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 67 / 74



Implementation of the Idea

Use a 3-dimensional table for the d
(k)
uv , how to fill the table?

Bellman-Ford APSP(C, n)
1: D(1) ← C // this actually takes O(n2)
2: for k ← 2 to n− 1 do
3: for each u ∈ V do
4: for each v ∈ V do
5: d

(k)
uv ← minw∈V {d(k−1)

uw + cwv}
6: end for
7: end for
8: end for
9: Return D(n−1) // the last “layer”

O(n4)-time, O(n3)-space.

Space can be reduced to O(n2), how?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 67 / 74

Implementation of the Idea

Use a 3-dimensional table for the d
(k)
uv , how to fill the table?

Bellman-Ford APSP(C, n)
1: D(1) ← C // this actually takes O(n2)
2: for k ← 2 to n− 1 do
3: for each u ∈ V do
4: for each v ∈ V do
5: d

(k)
uv ← minw∈V {d(k−1)

uw + cwv}
6: end for
7: end for
8: end for
9: Return D(n−1) // the last “layer”

O(n4)-time, O(n3)-space.

Space can be reduced to O(n2), how?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 67 / 74



Some Observations

Π can be updated at each step as usual

Ignoring the outer loop, replace min by
∑

and + by ·, the previous
code becomes

1: for each u ∈ V do
2: for each v ∈ V do
3: d

(k)
uv ←

∑
w∈V d

(k−1)
uw · cwv

4: end for
5: end for

This is like D(k) ← D(k−1) �C, where � is identical to matrix
multiplication, except that

∑
replaced by min, and · replaced by +

D(n−1) is just C�C · · · �C, n− 1 times.

It is easy (?) to show that � is associative

Hence, D(n−1) can be calculated from C in O(lg n) steps by
“repeated squaring,” for a total running time of O(n3 lg n)
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Floyd-Warshall’s Idea

Write V = {1, 2, . . . , n}
Let d

(k)
ij be the length of a shortest path from i to j, all of whose

intermediate vertices are in the set [k] := {1, . . . , k}.0 ≤ k ≤ n

We agree that [0] = ∅, so that d
(0)
ij is the length of a shortest path

between i and j with no intermediate vertex.

Then, we get the following recurrence:

d
(k)
ij =

{
cij if k = 0

min
{(

d
(k−1)
ik + d

(k−1)
kj

)
, d

(k−1)
ij

}
if k ≥ 1

The matrix we are looking for is D = D(n).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 69 / 74



Pseudo Code for Floyd-Warshall Algorithm

Floyd-Warshall(C, n)
1: D(0) ← C
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do

5: d
(k)
ij ← min{(d(k−1)

ik + d
(k−1)
kj ), d(k−1)

ij }
6: end for
7: end for
8: end for
9: Return Dn // the last “layer”

Time: O(n3), space: O(n3).
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Constructing the Π matrix

π
(0)
ij =

{
nil if i = j or cij =∞
i otherwise

and for k ≥ 1

π
(k)
ij =

{
π

(k−1)
ij if d

(k−1)
ij ≤ d

(k−1)
ik + d

(k−1)
kj

π
(k−1)
kj if d

(k−1)
ij > d

(k−1)
ik + d

(k−1)
kj

Question: is it correct if we do

π
(k)
ij =

{
π

(k−1)
ij if d

(k−1)
ij < d

(k−1)
ik + d

(k−1)
kj

π
(k−1)
kj if d

(k−1)
ij ≥ d

(k−1)
ik + d

(k−1)
kj

Finally, Π = Π(n).
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Floyd-Warshall with Less Space

Space Efficient Floyd-Warshall(C, n)
1: D← C
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do
5: dij ← min{(dik + dkj), dij}
6: end for
7: end for
8: end for
9: Return D

Time: O(n3), space: O(n2).
Why does this work?
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Application: Transitive Closure of a Graph

Given a directed graph G = (V,E)
We’d like to find out whether there is a path between i and j for
every pair i, j.

G∗ = (V,E∗), the transitive closure of G, is defined by

ij ∈ E∗ iff there is a path from i to j in G.

Given the adjacency matrix A of G
(aij = 1 if ij ∈ E, and 0 otherwise)

Compute the adjacency matrix A∗ of G∗
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Transitive Closure with Dynamic Programming

Let a
(k)
ij be a boolean variable, indicating whether there is a path

from i to j all of whose intermediate vertices are in the set [k].
We want A∗ = A(n).

Note that

a
(0)
ij =

{
true if ij ∈ E or i = j

false otherwise

and for k ≥ 1
a

(k)
ij = a

(k−1)
ij ∨ (a(k−1)

ik ∧ a
(k−1)
kj )

Time: O(n3), space O(n3)

So what’s the advantage of doing this instead of Floyd-Warshall?
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