We've done
@ Greedy Method

@ Divide and Conquer

Now

@ Designing Algorithms with the Dynamic Programming Method
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@ What is Dynamic Programming?
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A Quote from Richard Bellman

“Eye of the Hurricane: An Autobiography”

| spent the Fall quarter (of 1950) at RAND. My first task was to find a
name for multistage decision processes. An interesting question is, Where
did the name, dynamic programming, come from? The 1950s were not
good years for mathematical research. We had a very interesting
gentlemen in Washington named Wilson. He was Secretary of Defense,
and he actually had a pathological fear and hatred of the word, research.
... | felt I had to do something to shield Wilson and the Air Force from the
fact that | was really doing mathematics inside the RAND Corporation.
... Thus, | thought dynamic programming was a good name. It was
something not even a Congressmann could object to. So | used it as an
umbrella for my activities.
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A General Description
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A General Description

1 Identify the sub-problems

e Often sub-problems share subsub-problems
o Total number of (sub)’-problems is “small” (a polynomial number)
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A General Description

1 Identify the sub-problems

e Often sub-problems share subsub-problems
o Total number of (sub)®-problems is “small” (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem
can be computed from solutions to sub-problems

o Be careful with the base cases
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2 Write a recurrence for the objective function: solution to a problem
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©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

A General Description

1 Identify the sub-problems
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3 Investigate the recurrence to see how to use a “table” to solve it
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A General Description

1 Identify the sub-problems

e Often sub-problems share subsub-problems
o Total number of (sub)’-problems is “small” (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem
can be computed from solutions to sub-problems

e Be careful with the base cases
3 Investigate the recurrence to see how to use a “table” to solve it
4 Design appropriate data structure(s) to construct an optimal solution
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A General Description

1 Identify the sub-problems

e Often sub-problems share subsub-problems
o Total number of (sub)®-problems is “small” (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem
can be computed from solutions to sub-problems

e Be careful with the base cases
3 Investigate the recurrence to see how to use a “table” to solve it
4 Design appropriate data structure(s) to construct an optimal solution
5 Pseudo code

6 Analysis of time and space
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© Weighted Inverval Scheduling

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Weighted Interval Scheduling: Problem Definition

o Each interval I; now has a weight w; € Z*

@ Find non-overlapping intervals with maximum total weight

> Time
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The Structure of an Optimal Solution
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The Structure of an Optimal Solution

@ Order intervalsso that f1 < fo <--- < f,

@ For each j, let p(j) be the largest index ¢ < j such that I; and I; do
not overlap; p(j) = 0 if no such i
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The Structure of an Optimal Solution

@ Order intervalsso that f1 < fo <--- < f,

@ For each j, let p(j) be the largest index i < j such that I; and I; do
not overlap; p(j) = 0 if no such i

1

» Time
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be any optimal solution
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The Structure of an Optimal Solution

@ Order intervals so that f1 < fo <--- < f,

@ For each j, let p(j) be the largest index ¢ < j such that I; and I; do
not overlap; p(j) = 0 if no such i

1

> Time

:5 0 1 2 3 4 5 6 7 8 9 10 1

@ Let O be any optimal solution

o If I, € O, then 0" = O — {I,} must be optimal for {I1,..., Iy}
o Else I, ¢ O, then O must be optimal for {I1,...,I,—1}
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The Recurrence

@ Identify subproblems: optimal solution for {I3,...,I,} seems to
depend on some optimal solutions to {Iy,...,[;}, j =0..n

@ For j < n, let OPT(j) be the cost of an optimal solution to
{I,....1;}
@ Crucial Observation:

max{w; + oPT(p(j)), 0PT(j ~ 1)} j > 1

OPT(j) = {0 =0
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The Recurrence

@ ldentify subproblems: optimal solution for {I;,..., I,,} seems to
depend on some optimal solutions to {I,...,[;}, j =0..n

@ For j < n, let OPT(j) be the cost of an optimal solution to
{I,....I;}
@ Crucial Observation:

0P T(j) = {Bnax{wj +0PT(p(j)), 0PT(j — 1)} j -

Related question
How do we compute the array p(j) efficiently? J
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First Attempt at Implementing the ldea

CoMPUTE-OPT(j)
1: if 7 <0 then

2 Return 0

3: else

4:  Return max{w;+ ComMPUTE-OPT(p(j)), COMPUTE-OPT(j — 1)}
5. end if
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First Attempt at Implementing the Idea

CoOMPUTE-OPT(j)
1: if 7 <0 then

2 Return 0

3: else

4:  Return max{w;+ CoMPUTE-OPT(p(j)), COMPUTE-OPT(j — 1)}
5. end if

Proof of correctness: often not needed, because it can easily be done by

induction.
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First Attempt at Implementing the ldea

CoMPUTE-OPT(j)
1: if 7 <0 then

2 Return 0

3: else

4:  Return max{w;+ ComMPUTE-OPT(p(j)), COMPUTE-OPT(j — 1)}
5. end if

Proof of correctness: often not needed, because it can easily be done by

induction. (You do have to justify your recurrence though!)
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First Attempt was Bad

@ For the same reason FibA was bad.

v

p() =0, p() = j-2
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Fixing the Algorithm: a Top-Down Approach
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Fixing the Algorithm: a Top-Down Approach

@ Key ldea of Dynamic Programming: use a table, in this case an array,
to store already computed things
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Fixing the Algorithm: a Top-Down Approach

@ Key ldea of Dynamic Programming: use a table, in this case an array,
to store already computed things

e Use M]0..n] to store oPT(0),...,0PT(n), initially fill M with —1's
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Fixing the Algorithm: a Top-Down Approach

@ Key ldea of Dynamic Programming: use a table, in this case an array,
to store already computed things

e Use M]0..n] to store oPT(0),...,0PT(n), initially fill M with —1's

M-ComP-OpPT(j)
if j =0 then
Return 0
else if M[j] # —1 then
Return Mj]
else
Mj] < max{w;+ M-Comp-OprT(p(j)), M-Comp-OPT(j — 1)}
Return M j]
end if

O XN g DN

@ The top-down approach is often called memoization

@ Running time: O(n).
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Fixing the Algorithm: a Bottom-Up Approach

ComP-OPT(j)
1. M[0] « 0O
2: for j =1 tondo
3. M{[j] « max{w; + M[p(j)], M[j — 1]}
4: end for
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Fixing the Algorithm: a Bottom-Up Approach

Compr-OPT(j)

MI[0] <0

. for j=1tondo

M|j] — max{w; + Mp(j)}, M[j — 1]}
4: end for

w e

Bottom-Up vs Top-Down

@ Bottom-Up solves all subproblems, Top-Down only solves necessary
sub-problems

@ Bottom-Up does not involve many function calls, and thus often is
faster
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Constructing an Optimal Schedule

CONSTRUCT-SOLUTION()
if j =0 then

Return ()
else if w; + M[p(j)] > M|[j — 1] then

Return CONSTRUCT-SOLUTION(p(j)) U {I;}
else

Return CONSTRUCT-SOLUTION(p(j — 1))
end if

1:
2:
3:
4:
5:
6:
1
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© Longest Common Subsequence
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Longest Common Subsequence: Problem Definition

X =1t h i s i s c¢c r a y
L = h i a y
Z is a subsequence of X.
X =t h i s i s cr a z vy
Y = b u t i n t e r e s t i n g

So, Z = [t,1, s,1] is a common subsequence of X and Y

The Problem

Given 2 sequences X and Y of lengths m and n, respectively, find a
common subsequence Z of longest length
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The Structure of an Optimal Solution

@ Denote X = [z1,...,2m], Y =[y1,---, Yn]
@ Key observation: let LcS(X,Y") be the length of an LCS of X and Y
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The Structure of an Optimal Solution

@ Denote X = [z1,...,2m], Y =[y1,---, Yn]
e Key observation: let LCS(X,Y) be the length of an LCS of X and Y

o If z,,, = y,, then

LCS(X, Y) =1+ LCS([iIZl, .. ,a:m_l], [yl, e 7yn—1])
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The Structure of an Optimal Solution

@ Denote X = [z1,...,2m], Y =[y1,---, Yn]
@ Key observation: let LcS(X,Y") be the length of an LCS of X and Y

o If z,,, = yy, then

LCS(X, Y) =1+ LCS([JIl, ce ,xm_l], [yl, . ayn—l])

o If x,, # yn, then either

Les(X,Y) = Los([@1, - - Ty [W1s - - - s Yne1])

or
LCS(X,Y) =vres([x1, -y Tim—1], Y1y - - - Yn))
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The Recurrence
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The Recurrence

@ For0<i<m, 0< 5 <n,let

Xi = [331,...,:1%']
Yj = [yl,...,yj]
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The Recurrence

@ For0<i<m, 0< 5 <n,let

Xi = [331,...,:131']
Yy = [y,

o Let c[i, j] = LCs[X;, Y], then

0 if2orjis0
cli,jl=<1+cli—1,5—1] if x; =y,
max(cfi — 1,7],cli,j —1]) if z; #y;
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The Recurrence

@ For0<i<m, 0< 5 <n,let

Xz' = [331,...,:1%']
Yj = [yl,...,yj]

o Let c[i, j] = LCs[X;, Y]], then

0 if 2 or jis 0
cli,j]=<1+cli—1,5 —1] if x; =y,
max(c[i — 1, 7], cli,j —1]) if z; # y;

@ Hence, c[i, j] in general depends on one of three entries: the North
entry cli — 1, j], the West entry c[i, j — 1], and the North\West entry
cli—1,7 —1].
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Computing the Optimal Value

1
2

12

LCS-LENGTH(X, Y, m,n)

3:

e R -

10:
11:

. ¢[i,0] «—0,Vi=0,...,m; ¢[0,j]—0,Vj=0,...,n;
: for i — 1 to m do
for j — 1 ton do
if ; = Yj then
cli,jl —1+4cli —1,j —1];
else if c[i — 1, j] > c[i,j — 1] then
C[iaj] — C[i - 17j];
else
C[i7j] - C[iaj - 1];
end if
end for
. end for
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Construting an Optimal Solution

LCS-CONSTRUCTION(Z, 4, j)
1
2
3
4
5:
6
7
8
9

10:
11:

@ Z is a global array, initially empty

 k— C[i,j]
. if i =0o0r j =0 then
Return Z
. else if x; = y; then
: LCS-CONSTRUCTION(i — 1,5 — 1)
. else if c[i — 1, j] > c[i,j — 1] then
LCS-CONSTRUCTION(Z — 1, §)
. else

LCS-CONSTRUCTION(%,j — 1)
end if
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Time and Space Analysis

@ Filling out the ¢ table takes ©(mn)-time, which is also the running
time of LCS-LENGTH

@ The space requirement is also ©(mn)
@ LCS-CONSTRUCTION takes O(m + n) (why?)
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@ Segmented Least Squares
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Segmented Least Square: Problem Definition
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Segmented Least Square: Problem Definition

@ Least Squares is a foundational problem in statistics and numerical
analysis

@ Given n points in the plane: P = {(z1,v1),.-., (Tn,yn)}

e Find a line L: y = ax + b that “fits” them best
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Segmented Least Square: Problem Definition

@ Least Squares is a foundational problem in statistics and numerical
analysis

e Given n points in the plane: P = {(x1,y1),.-.,(Tn,¥yn)}
@ Find a line L: y = ax + b that "fits” them best

@ “Fittest’” means minimizing the error term

n

ERROR(L, P) = > (y; — ax; — b)’
=1

@ Basic calculus gives

_ n iy — (0 %) (X, i) and b = D Yi—a)

a

2l — (2, ) n
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Practical Issues
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A Compromised Objective Function

e Given n points p1 = (z1,9Y1),---,Pn = (Tn,Yn)
QI <o <+ < Ty,

@ Want to minimize both the number s of segments and total (squared)
error e

@ A common method: use a weighted sum e + c¢s for a given constant
c>0
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A Compromised Objective Function

e Given n points p1 = (z1,Y1),- -, Pn = (Tn,Yn)
QI <o <+ < Ty

@ Want to minimize both the number s of segments and total (squared)
error e

@ A common method: use a weighted sum e + c¢s for a given constant
c>0

More precisely
@ Find a partition of the points into some k£ contiguous parts

e Fit jth part with the best segment with error ¢;

e Want to minimize Z;?:l e; + ck
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The Structure of an Optimal Solution
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The Structure of an Optimal Solution

@ The last part of an optimal solution O consists of points p;, ..., py
forsomet=1,...,n
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The Structure of an Optimal Solution

@ The last part of an optimal solution O consists of points p;, ..., py
forsomet=1,...,n

@ The cost for segments fitting p1,...,p;—1 must be optimal too! Let
O’ be an optimal solution to p1,...,pi_1
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The Structure of an Optimal Solution

@ The last part of an optimal solution O consists of points p;, ..., py
forsomet=1,...,n

@ The cost for segments fitting p1,...,p;—1 must be optimal too! Let
O’ be an optimal solution to p1,...,p;_1

@ In English, if p;, ..., p, forms the last part of O, then
cost(0) = cost(O') + e(i,n) + ¢

(e(i,n) is the least error of fitting a line through p;, ..., py)
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The Recurrence
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The Recurrence

@ Let e(7, ) be the least error fitting a line through p;, piy1,...,p;
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The Recurrence

@ Let e(4,j) be the least error fitting a line through p;, pit1,...,p;
@ Let oPT(i) be the optimal cost for input {p1,...,p;}

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

The Recurrence

@ Let e(7, ) be the least error fitting a line through p;, piy1,...,p;
@ Let OPT(i) be the optimal cost for input {p1,...,p;}

@ Then,
| 0 if j =0
OPT() =4 min {oPT(i — 1) + (i, j) + ¢} if j >0
1<i<y
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Pseudo-Code

@ Pre-compute e(i, ) for all i < j: brute-force takes O(n?), finer
implementation takes O(n?)

e Use recurrence to fill up array oPT[0,...,n], another O(n?)

FIND-SEGMENTS ()

if 7 =0 then

2. Return ()

3: else

4:  Find ¢ minimizing oPT(i — 1) + e(4,7) + ¢
5

6

=

. Return segment {p;,...,p;} and result of FIND-SEGMENTS( — 1)
. end if
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© Matrix-Chain Multiplication (MCM)
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Matrix Chain Multiplication: Problem Definitions

Given A19x100, B1oox25, then calculating AB requires
10 - 100 - 25 = 25,000 multiplications.
Given A1px100, B1oox2s, Casx4, then by associativity

ABC = (AB)C = A(BC)
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Matrix Chain Multiplication: Problem Definitions

Given A10x100, B1oox2s, then calculating AB requires
10 - 100 - 25 = 25,000 multiplications.
Given A19x100, B1oox25, Caosx4, then by associativity

ABC = (AB)C = A(BC)

@ AB requires 25,000 multiplications
e (AB)C requires 10 - 25 -4 = 1000 more multiplications
e totally 26,000 multiplications

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design




Matrix Chain Multiplication: Problem Definitions

Given A19x100, B1oox25, then calculating AB requires
10 - 100 - 25 = 25,000 multiplications.

Given A1px100, B1oox2s, Casx4, then by associativity

ABC = (AB)C = A(BC)

@ AB requires 25,000 multiplications

@ (AB)C requires 10 - 25 -4 = 1000 more multiplications
e totally 26,000 multiplications
On the other hand

e BC requires 100 - 25 - 4 = 10,000 multiplications

e A(BC) requires 10 x 100 x 4 = 4000 more multiplications
e totally 14,000 multiplications
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Problem Definitions (cont)

There are 5 ways to parenthesize ABCD:

(A(B(CD))), (A((BC)D)), ((AB)(CD)), ((A(BC))D), ((AB)C)D)
In general, given n matrices:

A of dimension pg X p1

Ao of dimension pj X po

A, of dimension p,_1 X p,

Number of ways to parenthesis AjAy... A, is
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Problem Definitions (cont)

There are 5 ways to parenthesize ABCD:
(A(B(CD))), (A((BC)D)), ((AB)(CD)), ((A(BC))D), (((AB)C)D)
In general, given n matrices:

A, of dimension pg X p;

Ao of dimension pj X po

A, of dimension p,_1 X p,

Number of ways to parenthesis AjAs... A, is

I [(2n) 1 (277,)!_Q 4"
n+1\n/) n+1nn n3/2
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Problem Definitions (cont)

There are 5 ways to parenthesize ABCD:
(A(B(CD))), (A((BC)D)), ((AB)(CD)), ((A(BC))D), (((AB)C)D)
In general, given n matrices:

A of dimension pg X p1

Ao of dimension pj X po

A, of dimension p,_1 X p,

Number of ways to parenthesis AjAy... A, is
I (2n) 1 (2n)!_Q 4m
n+1\n/) n+1nn n3/2
The Problem

Find a parenthesization with the least number of multiplications
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Structure of an Optimal Solution
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Structure of an Optimal Solution

@ Suppose we split between Ay and Ay, 1, then the parenthesization of
Ai...Ap and Agi1... A, have to also be optimal
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Structure of an Optimal Solution

@ Suppose we split between Ay and Ay, 1, then the parenthesization of
Ai...Ap and Agy1... A, have to also be optimal

@ Let ¢[1, k] and c|k + 1, n] be the optimal costs for the subproblems,
then the cost of splitting at k, &k + 1 is

c[1, k] + c[k + 1,n] + poprpn
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Structure of an Optimal Solution

@ Suppose we split between Ay and Ay, 1, then the parenthesization of
Ai...Ap and Agi1... A, have to also be optimal

@ Let ¢[1, k] and c|k + 1, n] be the optimal costs for the subproblems,
then the cost of splitting at k, &k + 1 is

c[1, k] + clk + 1,n] + poprpn

@ Thus, the main recurrence is

c[l,n] = 1<mljgn (c[1, k] + c[k + 1,n] + poprpn)
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Structure of an Optimal Solution

@ Suppose we split between Ay and Ay, 1, then the parenthesization of
Ai...Ap and Agy1... A, have to also be optimal

@ Let ¢[1, k] and c|k + 1, n] be the optimal costs for the subproblems,
then the cost of splitting at k, &k + 1 is

c[1, k] + c[k + 1,n] + poprpn

@ Thus, the main recurrence is

c[l,n] = 13}33“ (c[1, k] + c[k + 1,n] + popkpn)

@ Hence, in general we need cli, j] for i < j:

cli,jl = min (cli, k] + c[k + 1, j] + pi-1pep;)
1<k<y
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The Recurrence

min;<k<; (ct, k] + clk + 1, 5] + picapep;) if i <

i ] {0 if i =
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Pseudo Code

@ Main Question: how do we fill out the table ¢?
MCM-ORDER(p, n)

1. cli,i] «—0fori=1,...,n

2. fori=1ton—1do

33 fori<— 1ton—1[do

4: j < i+1; // not really needed, just to be clearer
5 cli, j| « oo;

6: for k—itoj—1do

7: t — cli, k] + clk + 1, 7] + pi—1prpy;

8: if c[i,j] >t then

9: cli, j] < t;

10: end if

11: end for

12:  end for

13: end for

14: return c[1,n];
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Constructing the Solution

Use s[i, j] to store the optimal splitting point k:
MCM-ORDER(p, n)

1 cli,i] —0fori=1,...,n

2: fori=1ton—1do

3: fori—1ton—1[do

4: j < i+1; // not really needed, just to be clearer
5 cli, j| « oo;

6: for k—itoj—1do

7: t — cli, k] + clk + 1, 7] + pi—1prpy;

8: if c[i,j] >t then

o: cli,jl —t; sli,j] < k;

10: end if

11: end for

12:  end for

13: end for

14: return ¢, s;
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Space and Time Complexity

@ Space needed is O(n?) for the tables c and s

@ Suppose the inner-most loop takes about 1 time unit, then the
running time is

n—1
ZZZ = ) I(n-1)
l:;—l n—1
= ny - I
=1

=1
_ =1 (n—1n2(n—1) +6)
2 6
= O(n’)
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@ 01-Knapsack and Subset Sum
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Knapsack & Subset Sum: Problem Definitions
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Knapsack & Subset Sum: Problem Definitions

@ SUBSET SUM: given n positive integers wq, ..., w,, and a bound W,
return a subset of integers whose sum is as large as possible but not
more than W
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Knapsack & Subset Sum: Problem Definitions

@ SUBSET SUM: given n positive integers wq, ..., w,, and a bound W,
return a subset of integers whose sum is as large as possible but not
more than W

@ 01-KNAPSACK: given n items with weights wy, ..., w, and
corresponding values v1,...,v,, and abound W, find a subset of
items with maximum total value whose total weight is bounded by W
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Knapsack & Subset Sum: Problem Definitions

@ SUBSET SUM: given n positive integers wq, ..., w,, and a bound W,
return a subset of integers whose sum is as large as possible but not
more than W

@ 01-KNAPSACK: given n items with weights wq, ..., w, and

corresponding values vy, ..., v,, and abound W, find a subset of
items with maximum total value whose total weight is bounded by W

@ SUBSET SUM is a special case of 01-KNAPSACK when v; = w; for all
t. Thus, we will try to solve 01-KNAPSACK only.

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design



Structure of an Optimal Solution
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Structure of an Optimal Solution

@ Let O be an optimal solution, then either the nth item I,, is in O or
not
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Structure of an Optimal Solution

@ Let O be an optimal solution, then either the nth item I,, is in O or
not

o If I, € O, then O' = O — {I,,} must be optimal for the problem
{I,...,I,—1} with weight bound W — w,
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Structure of an Optimal Solution

@ Let O be an optimal solution, then either the nth item I,, is in O or
not

o If I, € O, then O’ = O — {I,,} must be optimal for the problem
{I1,...,In_1} with weight bound W — w,,

o If I, ¢ O, then O’ = O must be optimal for the problem
{I,...,I,—1} with weight bound W
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Structure of an Optimal Solution

@ Let O be an optimal solution, then either the nth item I,, is in O or
not

o If I, € O, then O' = O — {I,,} must be optimal for the problem
{I,...,I,—1} with weight bound W — w,

o If I,, ¢ O, then O’ = O must be optimal for the problem
{I1,...,In—1} with weight bound W

@ The above analysis suggests defining OPT(j, w) to be the optimal
value for the problem {I3,...,I;} with weight bound w

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design
The Recurrence and Analysis
0 i=0
OPT(j,w) = ¢ OPT(j — 1, w) w < W

max{OPT(j — 1,w),v; + OPT(j — L, w —w;)} w > wj
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The Recurrence and Analysis

0 =0
OPT(j,w) = ¢ OPT(j — 1, w) w < W
max{OPT(j — 1,w),v; + OPT(j — 1, w —w;)} w > wj

@ Running time is ©(nW): not polynomial
@ This is called pseudo-polynomial time

@ 01-KNAPSACK is NP-hard = extremely unlikely to have
polynomial-time solution

@ However, there exists a poly-time algorithm that returns a feasible
solution with value within € of optimality

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

@ Sequence Alignment
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Sequence Alignment: Motivation 1

How similar are “ocurrance” and “occurrence”?
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Sequence Alignment: Motivation 1

How similar are “ocurrance” and “occurrence”?
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Sequence Alignment: Motivation 1

How similar are “ocurrance” and “occurrence”?
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Sequence Alignment: Motivation 1

How similar are “ocurrance” and “occurrence”?

o | C u r r d C € =
o u r r © ©
O = ujrijr n
(0] C ujri|r n
(0] - uj|rijr d -
o|C C ujjr|r - S n
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Sequence Alignment: Motivation 2

@ Applications in Unix diff program, speech recognition, computational
biology
e Edit distance (Levenshtein 1966, Needleman-Wunsch 1970)

e Gap penalty 4, mismatch penalty ayq
e Distance or cost equals sum of penalties

AlC| - |A| G |T|]A/| -
AlCIlC|A| T | TG | T|T|G|C

—
()
@

cost = 20 + agr + aag
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Sequence Alignment: Problem Definition

e Given two strings x1,...,Z,;, and y1,...,yn, find an alignment of
minimum cost

@ An alignment is a set M of ordered pairs (z;,y;) such that each item
is in at most one pair and there is no crossing

e Two pairs (z;,y;) and (xp,y,) cross if i < p but j > ¢

cost(M) = Z Qgyy; + Z o+ Z J

(xi,y;)EM unmatched z; unmatched y;
= Z Qzy; + 0(FFunmatched z; + #unmatched y;)
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Structure of Optimal Solution and Recurrence
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Structure of Optimal Solution and Recurrence

e Key observation: either (x,,,yn) € M or x,, unmatched or y,
unmatched
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Structure of Optimal Solution and Recurrence

@ Key observation: either (z,,,yn) € M or x,, unmatched or y,
unmatched

@ Let oPT(4,j) be the optimal cost of aligning 1, ..., x; with
Yis- -5 Yjs then
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Structure of Optimal Solution and Recurrence

e Key observation: either (x,,,yn) € M or x,, unmatched or y,
unmatched

@ Let oPT(i,j) be the optimal cost of aligning 1, ..., x; with
Y1y Yj then

opT(i,0) = id

opT(0,5) = jo

OPT(i,j) = min{ag,,, +OPT(i—1,j—1),
d+opr(i—1,5),6 + oPT(i,j — 1)}
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Time and Space Complexity

@ O(mn) for time and space
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Time and Space Complexity

@ O(mn) for time and space

@ Question: for RNA sequences (m,n ~ 10,000), ©(mn)-space is too
large, can we do better?
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Time and Space Complexity

@ O(mn) for time and space

@ Question: for RNA sequences (m,n =~ 10,000), ©(mn)-space is too
large, can we do better?

@ Answer is YES - O(m + n) is possible, due to a beautiful idea by
Herschberg in 1975
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Time and Space Complexity

@ O(mn) for time and space

@ Question: for RNA sequences (m,n ~ 10,000), ©(mn)-space is too
large, can we do better?

@ Answer is YES - O(m + n) is possible, due to a beautiful idea by
Herschberg in 1975

e First attempt: computing OPT(m,n) using ©(m + n)-space. How?
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Time and Space Complexity

O(mn) for time and space

Question: for RNA sequences (m,n = 10,000), ©(mn)-space is too
large, can we do better?

@ Answer is YES - O(m + n) is possible, due to a beautiful idea by
Herschberg in 1975

First attempt: computing OPT(m, n) using ©(m + n)-space. How?

Unfortunately, no easy way to recover the alignment itself.
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Sequence Alignment in Linear Space

@ Herschberg's idea: combine D&C and dynamic programming in a
clever way

@ Inspired by Savitch's theorem in complexity theory
e Edit Distance Graph: let f(i,7) be the shortest path length from
(0,0) to (z,7), then f(i,7) = oPT(z,j)

€ Y1 Y2 Y3 Ya Ys Ye
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Sequence Alignment in Linear Space

e For any j, can compute f(-,7) in O(mn)-time and O(m + n)-space

€ Y1 Y2 Y3 Ys Ys Ye
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Sequence Alignment in Linear Space

@ Let g(i,7) be the shortest distance from (i,j) to (m,n), then g(-,J)
can be computed in in O(mn)-time and O(m + n)-space, for any
fixed j
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Sequence Alignment in Linear Space

@ The cost of a shortest path from (0,0) to (m,n) which goes through
(4,9) is f(4,5) + (3, ])

€ Y1 Y2 Y3 Y4 Ys Ye
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Sequence Alignment in Linear Space

@ Let ¢ be an index minimizing f(q,n/2) + g(q,n/2), then a shortest
path through (¢,n/2) is also a shortest path overall

n/2

€ Y1 Y2 Y3 Ya Y5 Ye
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Sequence Alignment in Linear Space using D&C

e Compute ¢ as described, output (g,n/2), then recursively solve two
sub-problems.

n/2
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Sequence Alignment in Linear Space: Analysis

T(m,n) <cmn+T(q,n/2)+T(m —q,n/2)

Induction gives T'(m,n) = O(mn)
Thus, the running time remains O(mn), yet space requirement is only
O(m +n)
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@ Shortest Paths in Graphs
@ Bellman-Ford Algorithm
@ All-Pairs Shortest Paths
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@ Shortest Paths in Graphs
@ Bellman-Ford Algorithm
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Shortest Path: Problem Definition

@ SHORTEST PATH PROBLEM: given a directed graph G = (V, E) with
edge cost ¢ : E — R, find a shortest path from a given source s to a
destination ¢

@ Dijkstra’s algorithm does not work because there might be negative
cycles.

@ We will also address the problem of finding a negative cycle (if any).

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Structure of an Optimal Solution
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Structure of an Optimal Solution

@ Consider first the case when there's no negative cycle
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Structure of an Optimal Solution

@ Consider first the case when there's no negative cycle

@ Let P =s,v1,...,v1_1,t be a shortest path from s to ¢, we can
assume (why?) that P is a simple path (i.e. no repeated vertex)
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Structure of an Optimal Solution

@ Consider first the case when there's no negative cycle

@ Let P =s,v1,...,Ur_1,t be a shortest path from s to ¢, we can
assume (why?) that P is a simple path (i.e. no repeated vertex)

e Attempt 1: let OPT(u,t) be the length of a shortest path from u to ¢,
clearly
oPT(u,t) = min{oPT(v,t) | (u,v) € E}
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Structure of an Optimal Solution

@ Consider first the case when there's no negative cycle

@ Let P =s,v1,...,v1_1,t be a shortest path from s to ¢, we can
assume (why?) that P is a simple path (i.e. no repeated vertex)

e Attempt 1: let OPT(u,t) be the length of a shortest path from u to ¢,
clearly
oPT(u,t) = min{oPT(v,t) | (u,v) € E}

@ Problem is, it's not clear how the OPT(v,t) are “smaller” problems
than the original OPT(u,t). Thus, we need a way to clearly say some
OPT(v,t) are “smaller” than another OPT(u,1)
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Structure of an Optimal Solution

@ Consider first the case when there's no negative cycle

@ Let P =s,v1,...,Ur_1,t be a shortest path from s to ¢, we can
assume (why?) that P is a simple path (i.e. no repeated vertex)

e Attempt 1: let OPT(u,t) be the length of a shortest path from u to ¢,
clearly
oPT(u,t) = min{oPT(v,t) | (u,v) € E}

@ Problem is, it's not clear how the OPT(v,t) are “smaller” problems
than the original OPT(u,t). Thus, we need a way to clearly say some
OPT(v,t) are “smaller” than another oPT(u,t)

@ Bellman-Ford: fix target t, let OPT(i,u) be the length of a shortest
path from u to ¢ with at most ¢ edges

@ What we want is opT(n — 1, s)

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design
The Recurrence and Analysis

0 1=0,u=t
opT(i,u) = { i=0,u#t

min {OPT(i —1,u), (migl E{OPT(@' —1,v)+ cw}} 1> 0
vi(u,v)e

@ Space complexity is O(n?)
e Time complexity is O(n?3): filling out the n x n table row by row, top
to bottom, computing each entry takes O(n)

@ Better time analysis: computing OPT(i,u) takes time O(out-deg(u)),

for a total of
O (nz out—deg(u)) = O(mn)
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More Space-Efficient Implementation
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More Space-Efficient Implementation

@ First Attempt: use a two column table, since OPT(%,u) only depends
on OPT(i — 1, x); thus need O(n)-space.
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More Space-Efficient Implementation

@ First Attempt: use a two column table, since OPT(i,u) only depends
on OPT(i — 1, x); thus need O(n)-space.

@ Second Attempt: use a one column table. Instead of OPT(%,u) we
only have OPT(u), using i as the iteration number

SPACE EFFICIENT BELLMAN-FORD(G, t)
1. OPT(u) « oo,Vu; oOPT(t) «— 0

2. fortr=1ton—1do

3:  for each vertex u do

4; OPT(u) < min {OPT(u), min {opT(v) + Cuv}}
vi(u,v)eEE

5. end for

6: end for

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Why Does Space Efficient Bellman-Ford Work?

@ What might be the problem?
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Why Does Space Efficient Bellman-Ford Work?

@ What might be the problem?

o Before, OPT(i,u) = length of shortest u, t-path with < i edges
o Now, after iteration i, OPT(u) may no longer be the length of shortest
u, t-path with < ¢ edges
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Why Does Space Efficient Bellman-Ford Work?

@ What might be the problem?

o Before, OPT(i,u) = length of shortest u, t-path with < i edges
e Now, after iteration i, OPT(u) may no longer be the length of shortest
u, t-path with <7 edges

@ However, by induction we can show
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Why Does Space Efficient Bellman-Ford Work?

@ What might be the problem?
o Before, OPT(i,u) = length of shortest u, t-path with < i edges
o Now, after iteration i, OPT(u) may no longer be the length of shortest
u, t-path with < ¢ edges
@ However, by induction we can show
e For any i, if OPT(u) < oo then there is a u, t-path with length opPT(u)
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Why Does Space Efficient Bellman-Ford Work?

@ What might be the problem?
o Before, OPT(i,u) = length of shortest u, t-path with < i edges
e Now, after iteration i, OPT(u) may no longer be the length of shortest
u, t-path with <7 edges
@ However, by induction we can show

e For any i, if OPT(u) < oo then there is a u, t-path with length oPT(u)
o After i iterations, OPT(u) < OPT(7,u)
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Why Does Space Efficient Bellman-Ford Work?

@ What might be the problem?
o Before, OPT(i,u) = length of shortest u, t-path with < i edges
o Now, after iteration i, OPT(u) may no longer be the length of shortest
u, t-path with < ¢ edges
@ However, by induction we can show
e For any i, if OPT(u) < oo then there is a u, t-path with length OPT(u)
o After i iterations, OPT(u) < OPT(i, u)
e Consequently, after n — 1 iterations we have oPT(u) < OPT(n — 1, u),
donel!
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Construction of Shortest Paths

Similar to Dijkstra’s algorithm, maintain a pointer SUCCESSOR(u) for each
u, pointing to the next vertex along the current path to ¢ (thus, total
space complexity = O(m + n))

SPACE EFFICIENT BELLMAN-FORD(G,t)
OPT(u) « oo,Vu; OPT(t) «— 0

2: SUCCESSOR(u) +— NIL, Yu

3: fort=1ton—1do

4.  for each vertex u do

5

w «— argmin {OPT(v) + ¢y}
v:(u,w)ER

=

6 if oPT(u) > OPT(w) + ¢y then
7 OPT(u) «— OPT(W) + Cypy

8: SUCCESSOR(u) «— w

9 end if

10: end for

11: end for
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Detecting Negative Cycles
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Detecting Negative Cycles

Lemma

If opT(n,u) = OPT(n — 1,u) for all nodes wu, then there is no negative
cycle on any path from u to t

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design



Detecting Negative Cycles

Lemma

If oPT(n,u) = OPT(n — 1,u) for all nodes u, then there is no negative
cycle on any path from u to t

Theorem

If oPT(n,u) < OPT(n — 1,u) for some node u, then any shortest path
from u to t contains a negative cycle C.
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Detecting Negative Cycles
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Detecting Negative Cycles: Application

@ Given n currencies and exchange rates between them, is there an
arbitrage opportunity?

@ Fast algorithm is ... money!

8

$ ) 1/7 F

4&

800
3/10
4/3  2/3 2 3/50 @
1/10000

£ 170 =\D\@ 56 > ®/
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@ Shortest Paths in Graphs

@ All-Pairs Shortest Paths
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All-Pairs Shorest Paths: Problem Definition

@ Input: directed graph G = (V, E), cost function ¢: E — R. Assume
no negative cycle.

@ Input represented by a cost matrix C = (c¢yy)

cluwv) ifuv e F
Cuv = 4 0 ifu=v

00 otherwise

e Output:

e a distance matrix D = (dyy), where d,, = shortest path length from u
to v, and oo otherwise.

e a predecessor matrix IT = (my, ), where 7y, is v's previous vertex on a
shortest path from u to v, and NIL if v is not reachable from wu or
U= .

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

A Solution Based on Bellman-Ford's ldea

o d\l). length of a shortest path from u to v with < k edges (k > 1)
o Let D) = (dz(ﬁ,)) (a matrix)
o We can see that D = D) D) = C
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A Solution Based on Bellman-Ford’'s ldea

o df). length of a shortest path from u to v with < k edges (k > 1)
o Let D) = (dgi,)) (a matrix)
e We can see that D = D(»-1) D@ = C

Then,

dgf) = min {d(k_l) dk—=1) —|—ch}

v w0 Yuw
weVw#v

= min {d&’f;” + cwv}
weV

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

Implementation of the Idea

Use a 3-dimensional table for the d&’?), how to fill the table?
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Implementation of the Idea

Use a 3-dimensional table for the dgf)), how to fill the table?

Bellman-Ford APSP(C,n)
1: DM« C // this actually takes O(n?)
2: fork—2ton—1do
3: foreachuecV do

4 for each v € V do

3 dz(ﬁz)) — minweV{dgiu_l) + va}
6: end for

7 end for

8: end for

9: Return D=1 // the last “layer”
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Implementation of the Idea

Use a 3-dimensional table for the d&’?), how to fill the table?
Bellman-Ford APSP(C,n)

1: D« C // this actually takes O(n?)

2. fork«+—2ton—1do

3: for each u € V do

4 for each v € V do

5: dyy) — mingey {d ) + cun)
6: end for

7 end for

8: end for

9: Return D(®=1) // the last “layer”

o O(n*)-time, O(n?)-space.

@ Space can be reduced to O(n?), how?
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Some Observations

@ II can be updated at each step as usual
@ Ignoring the outer loop, replace min by ) and + by -, the previous
code becomes

1: for each u € V do
2: for each v € V do

3: dgf,) — Zwev dq(jf,u_l) * Cuw
4: end for
5: end for

e This is like D*) . D(*-1) C, where ® is identical to matrix
multiplication, except that ) replaced by min, and - replaced by +

o D@ Disjust COC---®C, n—1 times.
@ It is easy (7) to show that ® is associative

@ Hence, D1 can be calculated from C in O(lgn) steps by
“repeated squaring,” for a total running time of O(n3lgn)
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Floyd-Warshall's Idea

Write V = {1,2,...,n}

Let dg?) be the length of a shortest path from ¢ to 7, all of whose
intermediate vertices are in the set [k] :={1,...,k}.0 <k <n

@ We agree that [0] = (), so that dg?) is the length of a shortest path
between i and j with no intermediate vertex.

@ Then, we get the following recurrence:

dij” = : (k—1) (k—1)\ (k—1) :
J mm{(dik +dkj ) d; } ifk>1

9 'Lj

@ The matrix we are looking for is D = D™,
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Pseudo Code for Floyd-Warshall Algorithm

FLOYD-WARSHALL(C, n)
1: D(O) — C
2: for k — 1 tondo
3: fori<—1tondo

4 for j — 1 ton do

k . k—1 k—1 k—1
5: dl(j) — mln{(dz(.k ) —|—d,(€j )),dl(-j )}
6 end for
7:  end for
8: end for

9: Return D™ // the last “layer”
Time: O(n?), space: O(n?).
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Constructing the II matrix

(0) NIL if i =j or ¢;; = o0
1 otherwise

and for k > 1

. {Mw £ a5 < gD 4 gD

me D ifds Y > dl Y e ap Y

Question: is it correct if we do

@)::{W%D if dis Y < dy Y+ al Y

s u
o Y ifdl Y > dy Y Y

Finally, ITT = I1(").
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Floyd-Warshall with Less Space

SPACE EFFICIENT FLOYD-WARSHALL(C,n)
1. D C
2: for kK — 1 ton do
33 fori—1tondo
4 for j — 1 ton do
5: dij — mm{(dzk + dkj), d”}
6 end for
7. end for
8: end for
9: Return D
Time: O(n?), space: O(n?).
Why does this work?
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Application: Transitive Closure of a Graph

@ Given a directed graph G = (V, E)

@ We'd like to find out whether there is a path between 7 and j for
every pair i, j.

o G* = (V, E*), the transitive closure of G, is defined by

ij € E* iff there is a path from i to j in G.

@ Given the adjacency matrix A of G
(ai; = 1if ij € E, and 0 otherwise)

@ Compute the adjacency matrix A* of G*

©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design




Transitive Closure with Dynamic Programming

@ Let a,gf) be a boolean variable, indicating whether there is a path

from 7 to j all of whose intermediate vertices are in the set [k].
o We want A* = A,

@ Note that
(0) TRUE ifije Fori=j
a..” =
4 FALSE otherwise
and for k > 1 . 1) . .
-1 -1 1
az(-j = a,gj v (agk A a,(Cj ))

o Time: O(n?), space O(n?)
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Transitive Closure with Dynamic Programming

o Let az(f) be a boolean variable, indicating whether there is a path

from 7 to j all of whose intermediate vertices are in the set [k].
We want A* = A",

°
@ Note that
0 _ {TRUE ifij € Eori=j
" FALSE otherwise
and for k >1
a,g?) = ag?_l) Y (agllz_1> A a,g;._l))

Time: O(n?), space O(n?)
So what's the advantage of doing this instead of Floyd-Warshall?
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