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Motivations

Efficient networked data transmission is a central question in
Computer Science

Many aspects remain poorly understood
Choosing a suitable mathematical model for data transmission is
not easy
Current (pre-network coding) approaches: network flows,
combinatorial packing

Cover and Thomas – Elements of Information Theory
The theory of information flow in networks does not have the same
simple answers as the theory of flow of water in pipes

Key differences : data can be compressed, combined with signal
processing techniques and/or algebraic operations (XOR); cars on
highways can’t be combined (except during Buffalo’s winter)
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Network Information Theory

Part of Information Theory dealing with data transmission aspects:
noise, interference, correlation between data sources, etc.

Many problems are open, too difficult

(Ahlswede et al., 2000) opened a new door with Network Coding

(Ahlswede et al., 2000) asked
Ignoring noise and interference (which can be dealt with at the physical
layer), can coding data streams together provide any benefits?

Hung Q. Ngo (SUNY at Buffalo) CSE 725 4 / 44

Network Coding – Canonical Example 1
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Figure: The Butterfly Network

Hung Q. Ngo (SUNY at Buffalo) CSE 725 5 / 44



Network Coding – Canonical Example 1

s

u v

w

x

t1 t2

a

a

a⊕ ba⊕ b

ba⊕ b

ba

b

Figure: Network Coding on the Butterfly Network
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Network Coding – Canonical Example 2
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Network Coding – Canonical Example 2
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Figure: Network Coding on the Wheatstone Bridge
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Network Coding – Canonical Example 3

Two base stations B1 and B2 want to communicate

They are out of each other’s radio range

There is a relay transceiver T in the middle, within range of both

How efficient can they communicate with network coding?

B1 sends b1 to T

B2 sends b2 to T

T sends b1⊕ b2 to B1 and B2 at the same time
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Current Research on Network Coding

Network coding has interesting connections in and applications to

Coding and information theory

Networking, including multicasting, switching, wireless
communications, content distribution

Complexity theory, cryptography, operations research, matrix
theory
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This seminar

I will present materials from the perspective of coding and information
theory

Single-source, multiple-source network coding

Cyclic, acyclic networks

Directed, undirected networks

Randomized, deterministic algorithms

Centralized, distributed algorithms

Some aspects of network coding in practice

You will present mostly applications of network coding to other areas,
and/or some theoretical issues that’s not address in class.
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Communications Network

A finite directed graph G = (V, E) (possibly with multiple edges
between any pair of vertices)

Undirected graphs can also be used (later)

A node with in-degree zero is a source node

Each edge is a noiseless channel

Capacity of each edge is 1 (1 “packet” per time unit)

Assume no processing delay and no propagation delay

In the first few weeks, we will assume

G is acyclic

One single source s
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More notations

For each v ∈ V,
∂−(v) = {e | e = (u, v) ∈ E}
∂+(v) = {e | e = (v, w) ∈ E}

∂−(s) contains ω imaginary channels without originating nodes
We want to send one single message x of size ω data units

Each data unit is an element of a base field F = Fq

(In practice, q = 2m for m-bit data units.)
x is thus a vector x = (x1, . . . , xω) ∈ Fω

q

To send x over the network, every channel e participates by
carrying a “symbol” (i.e. data unit) f̃e(x) ∈ F
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Network Code

In the single-source, acyclic case, there are two equivalent ways to
define the network code

Local encoding mapping

Global encoding mapping
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Local Encoding Mapping

Definition
Let F be a finite field, ω a positive integer. An ω-dimensional F-valued
network code on an acyclic communications network consists of a
local encoding mapping

k̃e : F|∂−(v)| → F

for each node v and each channel e∈ ∂+(v).

Note:

this definition does not explicitly give f̃e(x)
since the graph is acyclic, these values f̃e(x) can be computed
recursively, however
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Global Encoding Mapping

Definition
Let F be a finite field, ω a positive integer. An ω-dimensional F-valued
network code on an acyclic communications network consists of a
local encoding mapping k̃e : F|∂−(v)| → F and a global encoding
mapping f̃e : Fω → F for each channel e in the network such that:

(i) ∀v ∈ V, e∈ ∂+(v), f̃e(x) is uniquely determined by
(f̃e′(x), e′ ∈ ∂−(v)), and k̃e is the mapping defined via

(f̃e′(x), e′ ∈ ∂−(v))→ f̃e(x).

(ii) For the ω imaginary channels e, the mappings f̃e are the
projections from Fω to the ω different coordinates, respectively
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Road-map for the first few weeks

Loosely, a network coding solution is a network code allowing
receivers to decode the message.

Theorem (Ahlswede et al., 2000)
For acyclic networks, there always exists a network coding solution
such that the maximum throughput of single-source multicast is equal
to the capacity of a minimum cut separating the source and some sink

Practical concerns: solution description may be very large

(Lehman and Lehman, SODA 2005) showed that a
doubly-exponential q (alphabet size) might be necessary for some
(non-multicast) problem

Consider n = |V|, q = 2, and some vertex v with in-degree
m = Θ(n). The number of functions from Fm

2 → F2 is
doubly-exponential in m, thus there are functions requiring
2m = 2Θ(n) bits to encode.
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Road-map for the first few weeks

It would be nice to have linear network coding solution

Theorem (Li et al., 2003)
For acyclic network, multicast problem, there exists a linear network
coding solution over some alphabet.

Theorem (Koetter and Médard, INFOCOM 2003)
Alphabet size only needs to be polynomial

It takes polynomial-space (in instance size and log of alphabet
size) to write down a linear solution
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Road-map for the first few weeks

More practical concerns: OK, a good solution exists, but can we find
one efficiently?
YES

(Ho et al., 2003) gave randomized algorithms

(Sanders et al., SPAA’03) and (Jaggi et al., ISIT’03) gave
deterministic algorithms
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Linear encoding mappings

When f̃e is linear,
f̃e(x) = 〈fe, x〉, fe ∈ Fω

When k̃e is linear (e = (u, v)),

k̃e(y) = 〈ke, y〉, ke, y ∈ F∂−(u).

Theorem
The local encoding mappings are linear if and only if the global
encoding mappings are linear.

(⇒) obvious by induction.
(⇐) needs a little more setup
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Global Linearity Implies Local Linearity

Definition
Strictly speaking, a map f is linear iff

f (αx + βy) = αf (x) + βf (y), ∀α, β, x, y.

Lemma (1)
f : Fm→ F is linear iff ∃f ∈ Fm s.t. f (x) = 〈f, x〉

Lemma (2)
Let Sby a subspace of Fm, then f : S→ F is linear iff ∃f ∈ Fm s.t.
f (x) = 〈f, x〉
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Proof of Lemma (1)

Sufficiency is immediate.

For necessity, let ui be the ith unit vector in the natural basis for
Fm.

It follows that
f (x) = f (

∑
i

xiui) =
∑

i

f (ui)xi .
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Proof of Lemma (3)

Sufficiency is obvious. For necessity:

Suppose dim(S) = k ≤ m. Let {u1, . . . , uk} be a basis for S. Let A
be a m× k matrix with columns ui

x ∈ S iff x = Ay for some y ∈ Fk

Let B be A’s left inverse, i.e. BA = I

Define g : Fk→ F by g(y) = f (Ay), then

g(αy + βy′) = · · · = αg(y) + βg(y′)

Thus, ∃g ∈ Fk such that g(y) = 〈g, y〉
Hence,

f (x) = f (Ay) = g(y) = 〈g, y〉 = 〈g, Bx〉 = gTBx = (BTg)Tx

= 〈BTg, x〉 = 〈f, x〉
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Global Linearity Implies Local Linearity

Consider e = (u, v), ∂−(u) = {e1, . . . , em}, and the subspace

S= {(f̃e1(x), . . . , f̃em(x)) | x ∈ Fω} ⊆ Fm

k̃e : S→ F, defined by

k̃e(y) = k̃e(f̃e1(x), . . . , f̃em(x)) = f̃e(x).

Thus,

k̃e(αy1 + βy2) = k̃e(αf̃e1(x1) + β f̃e1(x2), . . . , αf̃em(x1) + β f̃em(x2))
= k̃e(f̃e1(αx1 + βx2), . . . , f̃em(αx1 + βx2))
= f̃e(αx1 + βx2)
= αf̃e(x1) + β f̃e(x2)
= αk̃e(y1) + βk̃e(y2)
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Local description of linear network codes

Definition
An ω-dimensional F-valued linear network code on an acyclic
communications network consists of a local encoding kernel K v for
every node v, where

K v = (ke,e′)e∈∂−(v),e′∈∂+(v)

is a matrix with entries in F.
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Global description of linear network codes

Definition
An ω-dimensional F-valued linear network code on an acyclic
communications network consists of a local encoding kernel K v for
every node v, where

K v = (ke,e′)e∈∂−(v),e′∈∂+(v)

is a matrix with entries in F, and a global encoding kernel fe for every
edge e, where fe ∈ Fω, such that

(i) for each e∈ ∂+(v),
fe =

∑
e′∈∂−(v)

ke′,efe′

(ii) the vectors fe for the ω imaginary channels form the natural basis
of the vector space Fω
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Back to the Butterfly Network

Example
The network code for the butterfly network we saw is linear.

Exercise
Determine all the K v and fe, given the solution we discussed on the
butterfly network.

Exercise
Let all ke,e′ be variables, determine the global encoding kernels fe for
the butterfly network.
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Desirable properties of linear network codes

Let T be the set of sinks, maxflow(s, T) is an upper bound on the
information rate from s to T

For each vertex v, let

Sv = span{fe | e∈ ∂−(v)}.

v can decode iff dim(Sv) = ω (⇒ maxflow(s, v) ≥ ω)

Whether this bound is achievable depends on the topology, ω, F,
and the coding scheme

We will define three classes of linear network codes which
achieve the bound in 3 different extents: linear multicast, linear
broadcast, linear dispersion
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Linear Multicast/Broadcast/Dispersion

Definition
A linear network code is a linear multicast, linear broadcast, linear
dispersion, respectively, if the following conditions hold:

(i) dim(Sv) = ω for every non-source node v with maxflow(s, v) ≥ ω

(ii) dim(Sv) = min{ω, maxflow(s, v)} for every non-source node v

(iii) dim(span{∪v∈TSv}) = min{ω, maxflow(s, T)} for every collection T
of non-source nodes.

linear dispersion⇒ linear broadcast⇒ linear multicast

linear multicast 6⇒ linear broadcast 6⇒ linear dispersion
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Generic linear network codes

Definition
An ω-dimensional F-valued linear network code on an acyclic
communications network is said to be generic if:

Let {e1, . . . , em} be any set of channels, where ei ∈ ∂+(vi). (The vi

are not necessarily distinct.) Then, the vectors fei are linearly
independent (thus m≤ ω) provided that

for any i ∈ [m], Svi 6⊆ span{fej | j 6= i}.

In a sense, this is saying that every collection of global encoding
kernels that can possibly be independent must be independent

generic linear network code⇒ linear dispersion (will prove later)

linear dispersion 6⇒ generic linear network code
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Existence

Theorem (Existence of generic linear network code)
Given a positive integer ω and an acyclic network, there exists an
ω-dimensional F-valued generic linear network code if |F| is sufficiently
large.

Theorem
Every generic linear network code is a linear dispersion
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Existence

Corollary (Existence of linear dispersion)
Given a positive integer ω and an acyclic network, there exists an
ω-dimensional F-valued linear dispersion if |F| is sufficiently large.

Corollary (Existence of linear broadcast)
Given a positive integer ω and an acyclic network, there exists an
ω-dimensional F-valued linear broadcast if |F| is sufficiently large.

Corollary (Existence of linear multicast)
Given a positive integer ω and an acyclic network, there exists an
ω-dimensional F-valued linear multicast if |F| is sufficiently large.
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Existence of a linear multicast – Koetter-Médard’s
Method

The local encoding kernels ke,e′ are variables whose values are to
be determined so that the code is a linear multicast

For every path P = (e1, . . . , em), define its “weight” to be

wP = ke1,e2 · · · kem−1,em.

For every channel e,

fe =
∑

e′∈∂−(s)

 ∑
P: a path from e′ to e

wP

 fe′

Thus, every component of every vector fe is a polynomial in the
ring F[{ke,e′ | (e, e′) are adjacent }].
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Existence of a linear multicast – Koetter-Médard’s
Method

Let t be a node with maxflow(s, t) ≥ ω. Then, there exists ω
edge-disjoint paths from ∂−(s) to ∂−(t). (Menger theorem)

Let Lt be the ω × ω matrix formed by putting together the vectors
fe, e∈ ∂−(t) and e belongs to one of these paths. (This is a matrix
of variables.)

Want: find local encoding kernels such that all Lt have full rank.

Theorem
If F is sufficiently large, then there are local encoding kernels such that
Lt have full rank for all t with maxflow(s, t) ≥ ω.
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Proof of Koetter-Médard Theorem

Lt has full rank iff det(Lt) 6= 0

det(Lt) is a polynomial in F[ke,e′ ]
Just need to find local encoding kernels such that the polynomial
p(·) =

∏
t det(Lt) is not zero.

Lemma (1)
The polynomial det(Lt) is not a zero polynomial. Thus, p(·) is not
identically zero.

Lemma (2)
Let p(z1, . . . , zn) be a non-zero polynomial over F. If |F| is greater than
the maximum degree of any variable zi , then there are values
a1, . . . , an ∈ F such that p(a1, . . . , an) 6= 0.
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Proof of Lemma 1

det(Lt) is a polynomial in ke,e′

assign ke,e′ = 1 if (e, e′) are consecutive on a path of the ω
edge-disjoint paths from s to t

assign ke,e′ = 0 for all other pairs (e, e′)
then, det(Lt) = 1 for this set of values of ke,e′

thus, as a polynomial, det(Lt) is not identically zero
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Proof of Lemma 2

Lemma (2)
Let p(z1, . . . , zn) be a non-zero polynomial over F. If |F| is greater than
the maximum degree of any variable zi , then there are values
a1, . . . , an ∈ F such that p(a1, . . . , an) 6= 0.

Proof.
Induction on n.
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Further Notes on Koetter-Médard’s Method

Works for linear broadcast also

Implicitly gives a (recursive) algorithm to construct linear
multicasts

However, it is not clear if there exists efficient algorithms to
construct linear multicasts using this method

Jaggi, Sanders, et al. (IEEE Trans. Info. Theory, 2005) gave a
deterministic polynomial time algorithm to construct linear
multicast (we will discuss later)

Tracy Ho et al. (IEEE Trans. Info. Theory, 2006) gave randomized
and distributed algorithm
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Construction of Generic Linear Network Code

Assume: |F| ≥
(M+ω−1

ω−1

)
, M is the number of channels

1: {fe | e∈ ∂−(s)} is the natural basis for Fω

2: fe← 0, for each e /∈ ∂−(s)
3: for each node u in breath-first order do
4: for each e∈ ∂+(u) do
5: Choose w ∈ Su such that w /∈ span{fe′ : e′ ∈ S′},

for any set S′ of ω − 1 channels (not including e) for which
Su 6⊆ span{fe′ : e′ ∈ S′}

6: fe← w
7: end for
8: end for
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Correctness of the Construction

∃S′ as in line 5, and ∃w as in line 5

Consider {e1, . . . , em}, ei ∈ ∂+(vi), Svj 6⊆ span{fei | j 6= i}, ∀j
WLOG, assume em is considered after other ei

We will induct that {fe1, . . . , fem} are independent

We know {fe1, . . . , fem−1} are independent by induction hypothesis

Svm 6⊆ span{fe1, . . . , fem−1} ⇒ m− 1 < ω ⇒ m≤ ω

If m = ω, then fem = w /∈ span{fe1, . . . , fem−1}
If m < ω, let R = {fe1, . . . , fem−1}, |R| ≤ ω − 2.

∃ imaginary channels e′, e′′ such that R∪ {fe′ , fe′′} are independent

Either Svm 6⊆ R′ = R∪ {fe′} or Svm 6⊆ R′′ = R∪ {fe′′}
Replace R by R′ or R′′, until |R| = ω − 1
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Generic LNC⇒ Linear Dispersion

For any T 63 s, let

ST := span{∪u∈TSu} = span[T̄, T]

Here, [T̄, T] = {(u, v) ∈ E | u ∈ T̄, v ∈ T}Want: for any such T,
dim(ST) = min{ω, maxflow(s, T)}. We have

dim(ST) ≤ min{ω, maxflow(s, T)}, ∀T
If dim(ST) = ω, we are done.

Suppose dim(ST) < ω, will show ∃W ⊇ T s.t.

s∈ W̄, dim(ST) = |[W̄, W]|
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Generic LNC⇒ Linear Dispersion

We will show by induction that

∀T 63 s,∃W ⊇ T, s /∈W, s.t. dim(ST) = |[W̄, W]|.

Induct on the number of non-source vertices not in T.
Base case. Suppose T = V(G)− {s}. Let {e1, . . . , em} = ∂+(s).
Apply definition of Generic LNC to {e1, . . . , em}, then,

either m < ω and fe1, . . . , fem are independent,⇒W = T works.
or m≥ ω and every ω subset of fe1, . . . , fem are independent,⇒
W = T ∪ {s} works.
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Generic LNC⇒ Linear Dispersion

Suppose T ⊂ V(G)− {s}.
If ∃u ∈ U = V(G)− {s} ∪ T s.t. Su ⊂ ST, then
ω > dim(ST) = dim(ST∪{u}). By induction hypothesis,
∃W ⊇ T ∪ {u} such that

|[W̄, W]| = dim(ST∪{u}) = dim(ST).

Now, assume ∀u ∈ U, there is e∈ ∂−(u) such that fe /∈ ST.
Let {e1, . . . , em} = [T̄, T], and ei ∈ ∂+(ui).
Since ui ∈ U, ∀i,

Sui 6⊆ ST = span{fe1, . . . , fem}

Thus, for all i
Sui 6⊆ span{fej | j 6= i}

By definition of generic LNC, fe1, . . . , fem are independent,⇒W = T
works!
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