Computational Learning Theory

Brief Overview of Machine Learning
Consistency Model

Probably Approximately Correct Learning
Occam’s Razor

Dealing with Noises

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 1/33



Don't Have a Good Definition, Only Examples

Optical character recognition
Spam filtering

Document classification

(IP) Packet filtering/classification
Face detection

Medical diagnosis

Insider threat detection

Stock price prediction

Game playing (chess, go, etc.)
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Classification Problems

@ Input: set of labeled examples (spam and legitimate emails)

@ Output: prediction rule (is this newly received email a spam email?)

New Example

Uiming ML Algorithm Prediction Rule
Examples
Label of the New Example

Many examples on previous slide are classification problems.
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Numerous, sometimes conflicting:

Accuracy

Little computational resources (time and space)
Small training set

General purpose

Simple prediction rule (Occam’s Razor)

Prediction rule “understandable” by human experts (avoid “black
box" behavior)

Perhaps ultimately leads to an understanding of human cognition and the
induction problem! (So far the reverse is “truer”)

Learning Model

In order to characterize these objectives mathematically, we need a
mathematical model for “learning.”
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What Do We Mean by a Learning Model?

Definition (Learning Model) J

is a mathematical formulation of a learning problem (e.g. classification)

What do we want the model to be like?

e Powerful (to capture REAL learning) and Simple (to be
mathematically feasible). Oxymoron? Maybe not!
o By “powerful” we mean the model should capture, at the very least,

@ What is being learned?

@ Where/how do data come from?

© How's the data given to the learner? (offline, online, etc.)

@ Which objective(s) to achieve/optimize? Under which constraints?

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 8 /33



An Example: The Consistency Model

@ What is being learned?

e 2: a domain or instance space consisting of all possible examples
o ¢:Q — {0,1} is a concept we want to learn

@ Where/how do data come from?
o Data: a subset of m examples from €2, along with their labels, i.e.

S = {(X1,C(X1)), T, (Xma C(Xm))}

© How's the data given to the learner? (offline, online, etc.)

e S given offline

e C, a class of known concepts, containing the unknown concept c.
© Which objective(s) to achieve/optimize? Under which constraints?

e Output a hypothesis h € C consistent with data, or output NO SUCH
CONCEPT
o Algorithm runs in polynomial time
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Tricky Issues

@ |C| is usually very large, could be exponential in m, or even infinite!
@ How do we represent an element of C? h in particular?

e A truth table is out of the question, since €2 is huge
@ For now, let's say

o We agree in advance a particular way to represent C

o The representation of ¢ in C has size size(c)

o Each example x € Q is of size |x| = O(n)

e Require algorithm runs in time poly(m,n, size(c)).
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Example 1: MONOTONE CONJUNCTIONS is Learnable

C = set of formulae on n variables x1, ..., x, of the form:
o= NTiy - AN, 1<qg<n
Data looks like this:

r1 T2 X3 T4 Tp

—_

o
Or—l»—tO}—t/x\
N—

O =
— = O =
— === O
_ o0 o oo
_= == O

Output hypothesis h = x1 A x5

e z; = “MS Word Running”,
e x5 = "ActiveX Control On",

@ ¢(x) =1 means “System Down”
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Example 2: MONOTONE DISJUNCTIONS is Learnable

C = set of formulae on n variables z1, ..., x, of the form:
p=xy ViV, 1<qg<n

Data looks like this:

x1 my T3 x4 5 || ¢(X)
1 1 0 0 1 1
O 0 1 0 0 0
1 0 1 0 1 1
1 1 1 0 1 1
O 0 1 1 1 0

Output hypothesis h = 21 V 29
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Example 3: BOOLEAN CONJUNCTIONS is Learnable

C = set of formulae on n variables z1, ..., x, of the form:
=Ty NTjg NTig Ao Ny, 1<qg<n
Data looks like this:

x1 my T3 x4 3 || c(X)
1 0 0 1 1
0
1
1
0

O == =

0
1
1
1

_ o O O

0
1
1
1

—_ o o

Output hypothesis h = 29 A T3
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Example 4. k-CNF is Learnable

C = set of formulae on n variables z1, ..., x, of the form:

(p:(.\/...\/.)/\(.\/...\/.)/\.../\(.\/...\/.)

d S——r
< k literals < k literals < k literals
Data looks like this:
1wy x3 w4 x5 | c(x)
1 0 0 0 1 1
1 0 1 0 0 0
1 0 1 1 1 1
1 0 0 0 1 1
o 1 1 1 1 0

Output hypothesis h = (T2 V x5) A (T3 V x4)
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Example 5: k-TERM DNF is Not Learnable, Vi > 2

C = set of formulae on n variables x1, ..., x, of the form:

902(0/\"'/\0)\/(0/\"'/\0)\/"'\/(0/\"'/\0)
~- S——
term 1 term 2 term k

Theorem

The problem of finding a k-term DNF formula consistent with given data

S is NP-hard, for any k > 2.
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Example 6: DNF is Learnable

C = set of formulae on n variables z1,...,x, of the form:

1 0
1 0
1 0
Output hypothesis trivially is:

hz(1‘1/\,1_22/\@3A.f'4/\$5)V(x1/\.f'z/\:L’3/\.%‘4/\325)
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Example 7: AXIS-PARALLEL RECTANGLES is Learnable

C is the set of all axis-parallel rectangles

o o o o

© o target concept

o

1
1
I’( X * 1/ = = = = = hypothesis
1
1 1
1 1
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Example 8: SEPARATION HYPERPLANES is Learnable

C is the set of all hyperplanes on R"
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/, x
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¢ X
’

Solvable with an LP-solver (a kind of algorithmic Farkas lemma)
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Problems with the Consistency Model

Does not take into account generalization (prediction performance)
No noise involved
DNF is learnable but k-DNF is not?

Strict consistency often means over-fitting
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The PAC Model Informally

© What to learn? Domain €, concept ¢: Q — {0,1}
@ Where/how do data come from?

e Data: S = {(x1,¢(x1)), * , (Xpm, c(xm)}
e Each x; drawn from §2 according to some distribution D

© How's the data given to the learner? (offline, online, etc.)
e S given offline
e Concept class C (2 ¢) along with an implicit representation

© Which objective(s) to achieve/optimize? Under which constraints?
Efficiently output a hypothesis h € C so that the error

ert () 1= Probl(x) # c(x)

is small with high probability.
(i.e. generalization error is small with high confidence!)
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The PAC Model: Preliminary Definition

Definition (PAC Learnability)

A concept class C is PAC learnable if there's an algorithm A (could be
randomized) satisfying the following:

o forany0<e<1/2,0<6d<1/2

e for any distribution D on (2

o A draws m examples from D, along with their labels
@ A outputs a hypothesis h € C such that

Prob [errp(h) <€ >1—0

Definition (Efficiently PAC Learnability)

If A also runs in time poly(1/e€,1/0,n,size(c)), then C is efficiently PAC
learnable.

m must be poly(1/e,1/d,n,size(c)) for C to be efficiently PAC learnable.
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Some Initial Thoughts on

@ Still no explicit involvement of noise

@ However, if (example,label) error is relatively small (under whichever
noise distribution), then the learner can deal with noise by reducing
€,0.

@ The requirement that the learner works for any D seems quite strong.
It's quite amazing that non-trivial concepts are learnable

o Can we do better for some problem if D is known in advance? Is
there a theorem to this effect?
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1) BOOLEAN CONJUNCTIONS is Efficiently PAC-Learnable

@ Need to produce h =11 Ala A -+ ANlg, (I; are literals)
o Start with h=21 AZ1 A Axp ATy,
e For each example (a, c(a) = 1) taken from D, remove from h all
literals contradicting the example
o E.g., ifexampleis (z1 = 0,20 = 1,23 = 0,24 = 0,25 = 1,¢(x) = 1),
then we remove literals x1, T2, 3, 24, Z5 from h (if they haven't been
removed before)

@ h always contain all literals of ¢, thus c(a) =0 = h(a) =0, Va € Q
e h(a) # c(a) iff c(a) =1 and J a literal [ € h — ¢ s.t. a(l) =0.

errp(h) = Prob[h(a) # c(a)]

acD

= Problc(a) =1Aa(l) =0 for somel € h — (]
aeD

< = =

< le%; zg%b [c(a) =1Aa(l) =0]

p(l)
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1) BOOLEAN CONJUNCTIONS is Efficiently PAC-Learnable

e So, if p(I) < e€/2n,Vl € h — ¢ then we're OK!
@ How many samples from D must we take to ensure all
p(l) < €/2n,Vl € h — ¢ with probability > 1 — 47
e Consider an [ € h — ¢ for which p(l) > €/2n, call it a bad literal
o [ will be removed with probability p(l)

@ [ survives m samples with probability at most
(1—p)" < (1—¢/2n)"
@ Some bad literal survives with probability at most

2 (1 —€/2n)™ < 2ne~ 2" < §

m > 2?” (In(2n) + In(1/5))
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2) k-TERM DNF is Not Efficiently PAC-Learnable

(k > 2)

@ Pitt and Valiant in
Leonard Pitt and Leslie G. Valiant. Computational limitations on learning
from examples. Journal of the ACM, 35(4):965-984, October 1988
showed that k-TERM DNF is not efficiently learnable unless
RP = NP
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3) k-CNF is Efficiently PAC-Learnable

Say k=3
We can reduce learning 3-CNF to learning (monotone)
CONJUNCTIONS

@ For every triple of literals u, v, w, create a new variable ¥, , ., for a
total of O(n?) variables

Basic idea:

(uVovVw) € Yuow

@ Each example from 3-CNF can be transformed into an example for
the CONJUNCTIONS problem under variables 4, 4.«

A hypothesis k' for CONJUNCTIONS can be transformed back easily.
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4) AXIS PARALLEL RECTANGLES is Efficiently

PAC-Learnable

The algorithm is like in the consistency model

Error is the area-difference between target rectangle ¢ and hypothesis
rectangle h

“Area” is measured in density according to D

Hence, even with area ¢, the probability that all m samples misses the
areais (1 —¢)™
Only need m > (1/€)In(1/9)
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The PAC Model: Informal Revision

Troubling: k-TERM DNF C k-CNF but the latter is learnable and
the former is not.

Representation matters a great deal!

We should allow the algorithm to output a hypothesis represented
differently from C

o Particular, let H be a hypothesis class which is “more expressive”
than C
(“more expressive” = every ¢ can be represented by some h)

@ C is PAC-learnable using H if blah blah blah and allow output h € H
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The PAC Model: Final Revision

Definition (PAC Learnability)

A concept class C is PAC learnable using a hypothesis class H if there's an
algorithm A (could be randomized) satisfying the following:

o forany0<e<1/2,0<d<1/2
e for any distribution D on 2
@ A draws m examples from D, along with their labels

@ A outputs a hypothesis h € H such that
Prob [errp(h) <€ >1—0

If A also runs in time poly(1/¢,1/,n,size(c)), then C is efficiently PAC
learnable. )

We also want each h € H to be efficiently evaluatable. This is implicit!
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Let's Summarize

1-TERM DNF (i.e. CONJUNCTIONS) is efficiently PAC-learnable
using 1-TERM DNF

@ k-TERM DNF is not efficiently PAC-learnable using k-TERM DNF,
forany k > 2

k-TERM DNF is efficiently PAC-learnable using k-CNF, for any
k>2

k-CNF is efficiently PAC-learnable using k-CNF, for any k > 2

AXIS PARALLEL RECTANGLES (natural representation) is efficiently
PAC-learnable
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Couple More Hardness Results

@ Blum and Rivest (Neural Networks, 1989): training 3-node neural
networks is NP-hard

@ Alekhnovich et al. (FOCS 04): some classes of Boolean functions and
decision trees are hard to PAC-learn
e Feldman (STOC 06): DNF is not learnable, even with membership
querying
e Guruswami and Raghavendra (FOCS 06): learning half-spaces
(perceptron) with noise is hard
Main reason: we made no assumption about D, hence these are worst case
results.
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