Computational Learning Theory

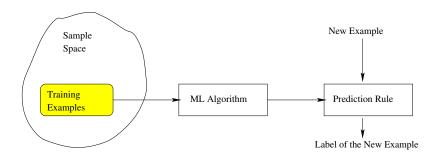
- Brief Overview of Machine Learning
- Consistency Model
- Probably Approximately Correct Learning
- Occam's Razor
- Dealing with Noises
- ...

Don't Have a Good Definition, Only Examples

- Optical character recognition
- Spam filtering
- Document classification
- (IP) Packet filtering/classification
- Face detection
- Medical diagnosis
- Insider threat detection
- Stock price prediction
- Game playing (chess, go, etc.)

Classification Problems

- Input: set of labeled examples (spam and legitimate emails)
- Output: prediction rule (is this newly received email a spam email?)



Many examples on previous slide are classification problems.

Objectives

Numerous, sometimes conflicting:

- Accuracy
- Little computational resources (time and space)
- Small training set
- General purpose
- Simple prediction rule (Occam's Razor)
- Prediction rule "understandable" by human experts (avoid "black box" behavior)

Perhaps ultimately leads to an understanding of human cognition and the induction problem! (So far the reverse is "truer")

Learning Model

In order to characterize these objectives mathematically, we need a mathematical model for "learning."

Computational Learning Theory

- Brief Overview of Machine Learning
- Consistency Model
- Probably Approximately Correct Learning
- Occam's Razor
- Dealing with Noises
- ...

What Do We Mean by a Learning Model?

Definition (Learning Model)

is a mathematical formulation of a learning problem (e.g. classification)

What do we want the model to be like?

- Powerful (to capture REAL learning) and Simple (to be mathematically feasible). Oxymoron? Maybe not!
- By "powerful" we mean the model should capture, at the very least,
 - What is being learned?
 - Where/how do data come from?
 - 4 How's the data given to the learner? (offline, online, etc.)
 - Which objective(s) to achieve/optimize? Under which constraints?

An Example: The Consistency Model

- What is being learned?
 - \bullet Ω : a domain or instance space consisting of all possible examples
 - $c: \Omega \to \{0,1\}$ is a concept we want to learn
- Where/how do data come from?
 - Data: a subset of m examples from Ω , along with their labels, i.e.

$$S = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \cdots, (\mathbf{x}_m, c(\mathbf{x}_m))\}\$$

- Mow's the data given to the learner? (offline, online, etc.)
 - ullet S given offline
 - ullet C, a class of known concepts, containing the unknown concept c.
- Which objective(s) to achieve/optimize? Under which constraints?
 - ullet Output a hypothesis $h \in \mathcal{C}$ consistent with data, or output NO SUCH CONCEPT
 - Algorithm runs in polynomial time

Tricky Issues

- |C| is usually very large, could be exponential in m, or even infinite!
- How do we represent an element of C? h in particular?
 - A truth table is out of the question, since Ω is huge
- For now, let's say
 - ullet We agree in advance a particular way to represent ${\cal C}$
 - The representation of c in C has size size(c)
 - Each example $\mathbf{x} \in \Omega$ is of size $|\mathbf{x}| = O(n)$
 - Require algorithm runs in time poly(m, n, size(c)).

Example 1: MONOTONE CONJUNCTIONS is Learnable

 $C = \text{set of formulae on } n \text{ variables } x_1, \dots, x_n \text{ of the form:}$

$$\varphi = x_{i_1} \wedge x_{i_2} \cdots \wedge x_{i_q}, \quad 1 \le q \le n$$

Data looks like this:

x_1	x_2	x_3	x_4	x_5	$c(\mathbf{x})$
1	1	0	0	1	1
1	1	1	0	0	0
1	0	1	0	1	1
1	1	1	0	1	1
0	1	1	1	1	0

Output hypothesis $h = x_1 \wedge x_5$

- $x_1 =$ "MS Word Running",
- $x_5 =$ "ActiveX Control On",
- $c(\mathbf{x}) = 1$ means "System Down"

Example 2: MONOTONE DISJUNCTIONS is Learnable

 $\mathcal{C} = \text{set of formulae on } n \text{ variables } x_1, \dots, x_n \text{ of the form:}$

$$\varphi = x_{i_1} \lor x_{i_2} \cdots \lor x_{i_q}, \quad 1 \le q \le n$$

Data looks like this:

x_1	x_2			x_5	$c(\mathbf{x})$
1	1	0		1	1
0	0	1	0	0	0
1	0	1	0	1	1
1	1	1	0	1	1
0	0	1	1	1	0

Output hypothesis $h = x_1 \vee x_2$

Example 3: BOOLEAN CONJUNCTIONS is Learnable

 $\mathcal{C} = \text{set of formulae on } n \text{ variables } x_1, \dots, x_n \text{ of the form:}$

$$\varphi = x_{i_1} \wedge \bar{x}_{i_2} \wedge \bar{x}_{i_3} \wedge \dots \wedge x_{i_q}, \quad 1 \le q \le n$$

Data looks like this:

x_1	x_2			x_5	$c(\mathbf{x})$
1	1	0		1	1
1	0	1	0	0	0
1	1	0	0	1	1
1	1	0	0	1	1
0	1	1	1	1	0

Output hypothesis $h = x_2 \wedge \bar{x}_3$

Example 4: k-CNF is Learnable

 $C = \text{set of formulae on } n \text{ variables } x_1, \dots, x_n \text{ of the form:}$

$$\varphi = \underbrace{\left(\bullet \vee \cdots \vee \bullet \right)}_{\leq k \text{ literals}} \wedge \underbrace{\left(\bullet \vee \cdots \vee \bullet \right)}_{\leq k \text{ literals}} \wedge \cdots \wedge \underbrace{\left(\bullet \vee \cdots \vee \bullet \right)}_{\leq k \text{ literals}}$$

Data looks like this:

Output hypothesis $h = (\bar{x}_2 \lor x_5) \land (\bar{x}_3 \lor x_4)$

Example 5: k-TERM DNF is **Not** Learnable, $\forall k \geq 2$

 $\mathcal{C} = \text{set of formulae on } n \text{ variables } x_1, \dots, x_n \text{ of the form:}$

$$\varphi = \underbrace{\left(\bullet \wedge \cdots \wedge \bullet \right)}_{\text{term } 1} \vee \underbrace{\left(\bullet \wedge \cdots \wedge \bullet \right)}_{\text{term } 2} \vee \cdots \vee \underbrace{\left(\bullet \wedge \cdots \wedge \bullet \right)}_{\text{term } k}$$

Theorem

The problem of finding a k-term DNF formula consistent with given data S is NP-hard, for any $k \geq 2$.

Example 6: DNF is Learnable

 $\mathcal{C} = \text{set of formulae on } n \text{ variables } x_1, \dots, x_n \text{ of the form:}$

$$\varphi = (\bullet \land \cdots \land \bullet) \lor (\bullet \land \cdots \land \bullet) \lor \cdots \lor (\bullet \land \cdots \land \bullet)$$

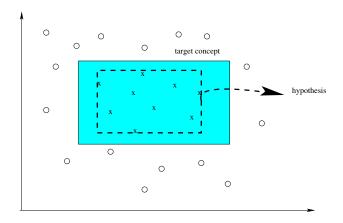
Data looks like this:

Output hypothesis trivially is:

$$h = (x_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge x_5) \vee (x_1 \wedge \bar{x}_2 \wedge x_3 \wedge x_4 \wedge x_5)$$

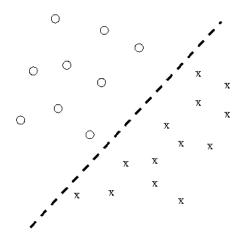
Example 7: AXIS-PARALLEL RECTANGLES is Learnable

 $\mathcal C$ is the set of all axis-parallel rectangles



Example 8: SEPARATION HYPERPLANES is Learnable

 ${\mathcal C}$ is the set of all hyperplanes on ${\mathbb R}^n$



Solvable with an LP-solver (a kind of algorithmic Farkas lemma)

Problems with the Consistency Model

- Does not take into account *generalization* (prediction performance)
- No noise involved
- DNF is learnable but k-DNF is not?
- Strict consistency often means over-fitting

Computational Learning Theory

- Brief Overview of Machine Learning
- Consistency Model
- Probably Approximately Correct Learning (PAC)
- Occam's Razor
- Dealing with Noises
- ...

The PAC Model Informally

- **1** What to learn? Domain Ω , concept $c:\Omega \to \{0,1\}$
- Where/how do data come from?
 - Data: $S = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \cdots, (\mathbf{x}_m, c(\mathbf{x}_m))\}$
 - ullet Each \mathbf{x}_i drawn from Ω according to some distribution $\mathcal D$
- How's the data given to the learner? (offline, online, etc.)
 - ullet S given offline
 - Concept class \mathcal{C} $(\ni c)$ along with an implicit representation
- **1** Which objective(s) to achieve/optimize? Under which constraints? Efficiently output a hypothesis $h \in \mathcal{C}$ so that the error

$$\operatorname{err}_{\mathcal{D}}(h) := \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{Prob}}[h(\mathbf{x}) \neq c(\mathbf{x})]$$

is small with high probability.

(i.e. generalization error is small with high confidence!)

The PAC Model: Preliminary Definition

Definition (PAC Learnability)

A concept class $\mathcal C$ is PAC learnable if there's an algorithm A (could be randomized) satisfying the following:

- for any $0 < \epsilon < 1/2$, $0 < \delta < 1/2$
- ullet for any distribution ${\mathcal D}$ on Ω
- ullet A draws m examples from \mathcal{D} , along with their labels
- A outputs a hypothesis $h \in \mathcal{C}$ such that

$$\mathsf{Prob}\left[\mathsf{err}_{\mathcal{D}}(h) \leq \epsilon\right] \geq 1 - \delta$$

Definition (Efficiently PAC Learnability)

If A also runs in time $poly(1/\epsilon, 1/\delta, n, size(c))$, then $\mathcal C$ is efficiently PAC learnable.

m must be $\operatorname{poly}(1/\epsilon,1/\delta,n,\operatorname{size}(c))$ for $\mathcal C$ to be efficiently PAC learnable.

Some Initial Thoughts on the Model

- Still no explicit involvement of noise
- However, if (example,label) error is relatively small (under whichever noise distribution), then the learner can deal with noise by reducing ϵ, δ .
- ullet The requirement that the learner works for any ${\cal D}$ seems quite strong. It's quite amazing that non-trivial concepts are learnable
- ullet Can we do better for some problem if ${\mathcal D}$ is known in advance? Is there a theorem to this effect?

1) BOOLEAN CONJUNCTIONS is Efficiently PAC-Learnable

- Need to produce $h = l_1 \wedge l_2 \wedge \cdots \wedge l_k$, $(l_i \text{ are literals})$
 - Start with $h = x_1 \wedge \bar{x}_1 \wedge \cdots \wedge x_n \wedge \bar{x}_n$
 - For each example $(\mathbf{a}, c(\mathbf{a}) = 1)$ taken from \mathcal{D} , remove from h all literals contradicting the example
 - E.g., if example is $(x_1=0,x_2=1,x_3=0,x_4=0,x_5=1,c(\mathbf{x})=1)$, then we remove literals $x_1,\bar{x}_2,x_3,x_4,\bar{x}_5$ from h (if they haven't been removed before)
- h always contain all literals of c, thus $c(\mathbf{a}) = 0 \Rightarrow h(\mathbf{a}) = 0$, $\forall \mathbf{a} \in \Omega$
- $h(\mathbf{a}) \neq c(\mathbf{a})$ iff $c(\mathbf{a}) = 1$ and \exists a literal $l \in h c$ s.t. $\mathbf{a}(l) = 0$.

$$\begin{split} \operatorname{err}_{\mathcal{D}}(h) &= & \operatorname{Prob}[h(\mathbf{a}) \neq c(\mathbf{a})] \\ &= & \operatorname{Prob}\left[c(\mathbf{a}) = 1 \wedge \mathbf{a}(l) = 0 \text{ for some } l \in h-c\right] \\ &\leq & \sum_{l \in h-c} \underbrace{\operatorname{Prob}_{\mathbf{a} \in \mathcal{D}}\left[c(\mathbf{a}) = 1 \wedge \mathbf{a}(l) = 0\right]}_{p(l)} \end{split}$$

1) BOOLEAN CONJUNCTIONS is Efficiently PAC-Learnable

- So, if $p(l) \le \epsilon/2n, \forall l \in h-c$ then we're OK!
- How many samples from $\mathcal D$ must we take to ensure all $p(l) \le \epsilon/2n, \forall l \in h-c$ with probability $\ge 1-\delta$?
- Consider an $l \in h-c$ for which $p(l) > \epsilon/2n$, call it a bad literal
- l will be removed with probability p(l)
- l survives m samples with probability at most $(1 p(l))^m < (1 \epsilon/2n)^m$
- Some bad literal survives with probability at most

$$2n\left(1 - \epsilon/2n\right)^m \le 2ne^{-\epsilon m/2n} \le \delta$$

if

$$m \ge \frac{2n}{\epsilon} \left(\ln(2n) + \ln(1/\delta) \right)$$

2) k-TERM DNF is **Not** Efficiently PAC-Learnable $(k \ge 2)$

• Pitt and Valiant in Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. Journal of the ACM, 35(4):965-984, October 1988 showed that k-TERM DNF is not efficiently learnable unless $\mathbf{RP} = \mathbf{NP}$

3) k-CNF is Efficiently PAC-Learnable

- Say k=3
- We can reduce learning 3-CNF to learning (monotone)
- For every triple of literals u,v,w, create a new variable $y_{u,v,w}$, for a total of $O(n^3)$ variables
- Basic idea:

$$(u \lor v \lor w) \Leftrightarrow y_{u,v,w}$$

- ullet Each example from $3\text{-}\mathrm{CNF}$ can be transformed into an example for the CONJUNCTIONS problem under variables $y_{u,v,w}$
- ullet A hypothesis h' for CONJUNCTIONS can be transformed back easily.

4) AXIS PARALLEL RECTANGLES is Efficiently PAC-Learnable

- The algorithm is like in the consistency model
- \bullet Error is the area-difference between target rectangle c and hypothesis rectangle h
- ullet "Area" is measured in density according to ${\cal D}$
- \bullet Hence, even with area $\epsilon,$ the probability that all m samples misses the area is $(1-\epsilon)^m$
- Only need $m \ge (1/\epsilon) \ln(1/\delta)$

The PAC Model: Informal Revision

- Troubling: k-TERM DNF $\subseteq k$ -CNF but the latter is learnable and the former is not.
- Representation matters a great deal!
- \bullet We should allow the algorithm to output a hypothesis represented differently from ${\cal C}$
- Particular, let \mathcal{H} be a hypothesis class which is "more expressive" than \mathcal{C} ("more expressive" = every c can be represented by some h)
- $m{\mathcal{C}}$ is PAC-learnable using \mathcal{H} if blah blah and allow output $h \in \mathcal{H}$

The PAC Model: Final Revision

Definition (PAC Learnability)

A concept class C is PAC learnable using a hypothesis class H if there's an algorithm A (could be randomized) satisfying the following:

- for any $0 < \epsilon < 1/2$, $0 < \delta < 1/2$
- ullet for any distribution ${\mathcal D}$ on Ω
- ullet A draws m examples from \mathcal{D} , along with their labels
- ullet A outputs a hypothesis $h \in \mathcal{H}$ such that

$$\mathsf{Prob}\left[\mathsf{err}_{\mathcal{D}}(h) \leq \epsilon\right] \geq 1 - \delta$$

If A also runs in time $poly(1/\epsilon, 1/\delta, n, size(c))$, then $\mathcal C$ is efficiently PAC learnable.

We also want each $h \in \mathcal{H}$ to be efficiently evaluatable. This is implicit!

Let's Summarize

- 1-TERM DNF (i.e. CONJUNCTIONS) is efficiently PAC-learnable using 1-TERM DNF
- \bullet $k\text{-}\mathrm{TERM}$ DNF is not efficiently PAC-learnable using $k\text{-}\mathrm{TERM}$ DNF, for any $k\geq 2$
- k-TERM DNF is efficiently PAC-learnable using k-CNF, for any $k \geq 2$
- ullet $k ext{-}\mathrm{CNF}$ is efficiently PAC-learnable using $k ext{-}\mathrm{CNF}$, for any $k\geq 2$
- AXIS PARALLEL RECTANGLES (natural representation) is efficiently PAC-learnable

Couple More Hardness Results

- Blum and Rivest (Neural Networks, 1989): training 3-node neural networks is NP-hard
- Alekhnovich et al. (FOCS 04): some classes of Boolean functions and decision trees are hard to PAC-learn
- Feldman (STOC 06): DNF is not learnable, even with membership querying
- Guruswami and Raghavendra (FOCS 06): learning half-spaces (perceptron) with noise is hard

Main reason: we made no assumption about $\ensuremath{\mathcal{D}},$ hence these are worst case results.