
Example 1: Probabilistic Packet Marking (PPM)

The Setting

A stream of packets are sent S = R0 → R1 → · · · → Rn−1 → D

Each Ri can overwrite the source IP field F of a packet

D wants to know the set of routers on the route

The Assumption

For each packet D receives and each i, Prob[F = Ri] = 1/n (*)

The Questions

1 How does the routers ensure (*)?

2 How many packets must D receive to know all routers?
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Coupon Collector Problem

The setting

n types of coupons

Every cereal box has a coupon

For each box B and each coupon type t,

Prob [B contains coupon type t] =
1
n

Coupon Collector Problem

How many boxes of cereal must the collector purchase before he has all
types of coupons?
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The Analysis

X = number of boxes he buys to have all coupon types.

For i ∈ [n], let Xi be the additional number of cereal boxes he buys
to get a new coupon type, after he had collected i− 1 different types

X = X1 + X2 + · · ·+ Xn, E[X] =
n∑

i=1

E[Xi]

After i− 1 types collected,

Prob[A new box contains a new type] = pi = 1− i− 1
n

Hence, Xi is geometric with parameter pi, implying

E[Xi] =
1
pi

=
n

n− i + 1

E[X] = n

n∑
i=1

1
n− i + 1

= nHn = n lnn + Θ(n)
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PTCF: Geometric Distribution

A coin turns head with probability p, tail with 1− p

X = number of flips until a head shows up

X has geometric distribution with parameter p

Prob[X = n] = (1− p)n−1p

E[X] =
1
p

Var [X] =
1− p

p2
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Additional Questions

We can’t be sure that buying nHn cereal boxes suffices

Want Prob[X ≥ C], i.e. what’s the probability that he has to buy C
boxes to collect all coupon types?

Intuitively, X is far from its mean with small probability

Want something like

Prob[X ≥ C] ≤ some function of C, preferably � 1

i.e. (large) deviation inequality or tail inequalities

Central Theme

The more we know about X, the better the deviation inequality we can
derive: Markov, Chebyshev, Chernoff, etc.
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PTCF: Markov’s Inequality

Theorem

If X is a r.v. taking only non-negative values, µ = E[X], then ∀a > 0

Prob[X ≥ a] ≤ µ

a
.

Equivalently,

Prob[X ≥ aµ] ≤ 1
a
.

If we know Var [X], we can do better!
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PTCF: (Co)Variance, Moments, Their Properties

Variance: σ2 = Var [X] := E[(X − E[X])2] = E[X2]− (E[X])2

Standard deviation: σ :=
√

Var [X]
kth moment: E[Xk]
Covariance: Cov [X, Y ] := E[(X − E[X])(Y − E[Y ])]
For any two r.v. X and Y ,

Var [X + Y ] = Var [X] + Var [Y ] + 2 Cov [X, Y ]

If X and Y are independent (define it), then

E[X · Y ] = E[X] · E[Y ]
Cov [X, Y ] = 0

Var [X + Y ] = Var [X] + Var [Y ]

In fact, if X1, . . . , Xn are mutually independent, then

Var

[∑
i

Xi

]
=

∑
i

Var [Xi]
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PTCF: Chebyshev’s Inequality

Theorem (Two-sided Chebyshev’s Inequality)

If X is a r.v. with mean µ and variance σ2, then ∀a > 0,

Prob
[
|X − µ| ≥ a

]
≤ σ2

a2
or, equivalently Prob

[
|X − µ| ≥ aσ

]
≤ 1

a2
.

Theorem (One-sided Chebyshev’s Inequality)

Let X be a r.v. with E[X] = µ and Var [X] = σ2, then ∀a > 0,

Prob[X ≥ µ + a] ≤ σ2

σ2 + a2

Prob[X ≤ µ− a] ≤ σ2

σ2 + a2
.
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Back to the Additional Questions

Markov’s leads to,

Prob[X ≥ 2nHn] ≤ 1
2

To apply Chebyshev’s, we need Var [X]:

Prob[|X − nHn| ≥ nHn] ≤ Var [X]
(nHn)2

Key observation: the Xi are independent (why?)

Var [X] =
∑

i

Var [Xi] =
∑

i

1− pi

p2
i

≤
∑

i

n2

(n− i + 1)2
=

π2n2

6

Chebyshev’s leads to

Prob[|X − nHn| ≥ nHn] ≤ π2

6H2
n

= Θ
(

1
ln2 n

)
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Example 2: PPM with One Bit

The Problem

Alice wants to send to Bob a message b1b2 · · · bm of m bits. She can send
only one bit at a time, but always forgets which bits have been sent. Bob
knows m, nothing else about the message.

The solution

Send bits so that the fraction of bits 1 received is within ε of
p = B/2m, where B = b1b2 · · · bm as an integer

Specifically, send bit 1 with probability p, and 0 with (1− p)

The question

How many bits must be sent so B can be decoded with high probability?
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The Analysis

One way to do decoding: round the fraction of bits 1 received to the
closest multiple of of 1/2m

Let X1, . . . , Xn be the bits received (independent Bernoulli trials)

Let X =
∑

i Xi, then µ = E[X] = np. We want, say

Prob

[∣∣∣∣Xn − p

∣∣∣∣ ≤ 1
3 · 2m

]
≥ 1− ε

which is equivalent to

Prob
[
|X − µ| ≤ n

3 · 2m

]
≥ 1− ε

This is a kind of concentration inequality.
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PTCF: The Binomial Distribution

n independent trials are performed, each with success probability p.

X = number of successes after n trials, then

Prob[X = i] =
(

n

i

)
pi(1− p)n−i, ∀i = 0, . . . , n

X is called a binomial random variable with parameters (n, p).

E[X] = np

Var [X] = np(1− p)
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PTCF: Chernoff Bounds

Theorem (Chernoff bounds are just the following idea)

Let X be any r.v., then

1 For any t > 0

Prob[X ≥ a] ≤ E[etX ]
eta

In particular,

Prob[X ≥ a] ≤ min
t>0

E[etX ]
eta

2 For any t < 0

Prob[X ≤ a] ≤ E[etX ]
eta

In particular,

Prob[X ≥ a] ≤ min
t<0

E[etX ]
eta

(EtX is called the moment generating function of X)
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PTCF: A Chernoff Bound for sum of Poisson Trials

Above the mean case.
Let X1, . . . , Xn be independent Poisson trials, Prob[Xi = 1] = pi,
X =

∑
i Xi, µ = E[X]. Then,

For any δ > 0,

Prob[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

;

For any 0 < δ ≤ 1,

Prob[X ≥ (1 + δ)µ] ≤ e−µδ2/3;

For any R ≥ 6µ,
Prob[X ≥ R] ≤ 2−R.
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PTCF: A Chernoff Bound for sum of Poisson Trials

Below the mean case.
Let X1, . . . , Xn be independent Poisson trials, Prob[Xi = 1] = pi,
X =

∑
i Xi, µ = E[X]. Then, for any 0 < δ < 1:

1

Prob[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

;

2

Prob[X ≤ (1− δ)µ] ≤ e−µδ2/2.
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PTCF: A Chernoff Bound for sum of Poisson Trials

A simple (two-sided) deviation case.
Let X1, . . . , Xn be independent Poisson trials, Prob[Xi = 1] = pi,
X =

∑
i Xi, µ = E[X]. Then, for any 0 < δ < 1:

Prob[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

Chernoff Bounds Informally

The probability that the sum of independent Poisson trials is far from the
sum’s mean is exponentially small.
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Back to the 1-bit PPM Problem

Prob
[
|X − µ| > n

3 · 2m

]
= Prob

[
|X − µ| > 1

3 · 2mp
µ

]
≤ 2

exp{ n
18·4mp}

Now,
2

exp{ n
18·4mp}

≤ ε

is equivalent to
n ≥ 18p ln(2/ε)4m.
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Example 3: A Statistical Estimation Problem

The Problem

We want to estimate µ = E[X] for some random variable X (e.g., X is
the income in dollars of a random person in the world).

The Question

How many samples must be take so that, given ε, δ > 0, the estimated
value µ̄ satisfies

Prob[|µ− µ| ≤ εµ] ≥ 1− δ

δ: confidence parameter

ε: error parameter
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Intuitively: Use “Law of Large Numbers”

law of large numbers (there are actually 2 versions) basically says that
the sample mean tends to the true mean as the number of samples
tends to infinity

We take n samples X1, . . . , Xn, and output

µ̄ =
1
n

(X1 + · · ·+ Xn)

But, how large must n be? (“Easy” if X is Bernoulli!)

Markov is of some use, but only gives upper-tail bound

Need a bound on the variance σ2 = Var [X] too, to answer the
question
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Applying Chebyshev

Let Y = X1 + · · ·+ Xn, then µ = Y/n and E[Y ] = nµ

Since the Xi are independent, Var [Y ] =
∑

i Var [Xi] = nσ2

Let r = σ/µ, Chebyshev inequality gives

Prob[|µ− µ| > εµ] = Prob [|Y − E[Y ]| > εE[Y ]]

<
Var [Y ]
(εE[Y ])2

=
nσ2

ε2n2µ2
=

r2

nε2
.

Consequently, n = r2

δε2
is sufficient!

We can do better!
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Finally, the Median Trick!

If confident parameter is 1/4, we only need Θ(r2/ε2) samples; the
estimate is a little “weak”

Suppose we have w weak estimates µ1, . . . , µw

Output µ̄: the median of these weak estimates!

Let Ij indicates the event |µj − µ| ≤ εµ, and I =
∑w

j=1 Ij

By Chernoff’s bound,

Prob[|µ− µ| > εµ] ≤ Prob [Y ≤ w/2]
≤ Prob [Y ≤ (2/3)E[Y ]]
= Prob [Y ≤ (1− 1/3)E[Y ]]

≤ 1
eE[Y ]/18

≤ 1
ew/24

≤ δ

whenever w ≥ 24 ln(1/δ).
Thus, the total number of samples needed is n = O(r2 ln(1/δ)/ε2).
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Example 4: Oblivious Routing on the Hypercube

Directed graph G = (V,E): network of parallel processors

Permutation Routing Problem

Each node v contains one packet Pv, 1 ≤ v ≤ N = |V |
Destination for packet from v is πv, π ∈ Sn

Time is discretized into unit steps
Each packet can be sent on an edge in one step
Queueing discipline: FIFO

Oblivious algorithm: route Rv for Pv depends on v and πv only

Question: in the worst-case (over π), how many steps must an
oblivious algorithm take to route all packets?

Theorem (Kaklamanis et al, 1990)

Suppose G has N vertices and out-degree d. For any deterministic
oblivious algorithm for the permutation routing problem, there is an
instance π which requires Ω(

√
N/d) steps.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 23 / 29



The (Directed) Hypercube

0110 1110

The n-cube: |V | = N = 2n, vertices v ∈ {0, 1}n, v = v1 · · · vn

(u,v) ∈ E iff their Hamming distance is 1
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The Bit-Fixing Algorithm

Source u = u1 · · ·un, target πu = v1 · · · vn

Suppose the packet is currently at w = w1 · · ·wn, scan w from left to
right, find the first place where wi 6= vi

Forward packet to w1 · · ·wi−1viwi+1 · · ·wn

Source 010011
110010
100010
100110

Destination 100111

There is a π requiring Ω(
√

N/n) steps
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Valiant Load Balancing Idea

Les Valiant, A scheme for fast parallel communication, SIAM J.
Computing, 11: 2 (1982), 350-361.

Two phase algorithm (input: π)

Phase 1: choose σ ∈ SN uniformly at random, route Pv to σv with
bit-fixing

Phase 2: route Pv from σv to πv with bit-fixing

This scheme is now used in designing Internet routers with high
throughput!
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Phase 1 Analysis

Pu takes route Ru = (e1, . . . , ek) to σu

Time taken is k (≤ n) plus queueing delay

Lemma

If Ru and Rv share an edge, once Rv leaves Ru it will not come back to
Ru

Theorem

Let S be the set of packets other than packet Pu whose routes share an
edge with Ru, then the queueing delay incurred by packet Pu is at most |S|
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Phase 1 Analysis

Let Huv indicate if Ru and Rv share an edge

Queueing delay incurred by Pu is
∑

v 6=u Huv.

We want to bound

Prob

∑
v 6=u

Huv > αn

 ≥ ??

Need an upper bound for E
[∑

v 6=u Huv

]
For each edge e, let Te denote the number of routes containing e∑

v 6=u

Huv ≤
k∑

i=1

Tei

E

∑
v 6=u

Huv

 ≤
k∑

i=1

E[Tei ] = k/2 ≤ n/2
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Conclusion

By Chernoff bound,

Prob

∑
v 6=u

Huv > 6n

 ≤ 2−6n

Hence,

Theorem

With probability at least 1− 2−5n, every packet reaches its intermediate
target (σ) in Phase 1 in 7n steps

Theorem (Conclusion)

With probability at least 1− 1/N , every packet reaches its target (π) in
14n steps
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