Example 1: Probabilistic Packet Marking (PPM)

The Setting
@ A stream of packets are sent S= Ry —- R — - —> R, 1 — D
@ Each R; can overwrite the SOURCE IP field F' of a packet
@ D wants to know the set of routers on the route
The Assumption
e For each packet D receives and each i, Prob[F' = R;] = 1/n (*)
The Questions
@ How does the routers ensure (*)?

@ How many packets must D receive to know all routers?
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Coupon Collector Problem

The setting
@ n types of coupons
@ Every cereal box has a coupon
@ For each box B and each coupon type t,

1
Prob [B contains coupon type t] = —
n

Coupon Collector Problem
How many boxes of cereal must the collector purchase before he has all

types of coupons?

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 3/29



The Analysis

@ X = number of boxes he buys to have all coupon types.
e For i € [n], let X; be the additional number of cereal boxes he buys
to get a new coupon type, after he had collected 7 — 1 different types

X=X1+Xo+  +X,, E[X]=) E[X|]
o After i — 1 types collected,

,— 1
Prob[A new box contains a new type] =p; =1 — !

@ Hence, X; is geometric with parameter p;, implying

1 n
pi n—i+1

. 1
E[X] = nzm =nH, =nlnn+0O(n)
i=1
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PTCF: Geometric Distribution

@ A coin turns head with probability p, tail with 1 —p
@ X = number of flips until a head shows up

@ X has geometric distribution with parameter p

ProbX =n] = (1-p)" !p
EX] = ;
Var[X] = 1p—2p
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Additional Questions

@ We can't be sure that buying nH,, cereal boxes suffices

e Want Prob[X > C], i.e. what's the probability that he has to buy C
boxes to collect all coupon types?

o Intuitively, X is far from its mean with small probability

@ Want something like
Prob[X > (] < some function of C, preferably < 1

i.e. (large) deviation inequality or tail inequalities

Central Theme

The more we know about X, the better the deviation inequality we can
derive: Markov, Chebyshev, Chernoff, etc.
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PTCF: Markov's Inequality

Theorem

If X is a r.v. taking only non-negative values, u = E[X], then Va > 0
Prob[X > a] < g

Equivalently,
Prob[X > au| <

SHN

If we know Var [X], we can do better!
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PTCF: (Co)Variance, Moments, Their Properties

Standard deviation: o :=
kth moment;: E[Xk]

Variance: 02 = Var [X] := E[(X — E[X])?] = E[X?] — (E[X])?

Var [ X]

Covariance: Cov [X,Y] := E[(X — E[X])(Y — E[Y])]
For any two r.v. X and Y,

Var [X + Y] = Var [X] + Var[Y] 4+ 2Cov [X, Y]

E[X

If X and Y are independent (define it), then

Y] = E[X]-E[Y]

Cov[X,Y] = 0
Var[X +Y] = Var[X]+ Var[Y]

e In fact, if X4,...,X,, are mutually independent, then

Var
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PTCF: Chebyshev's Inequality

Theorem (Two-sided Chebyshev's Inequality)
If X is a r.v. with mean j and variance o2, then Va > 0,
2

1
Prob[|X — u| > a] < % or, equivalently Prob[|X — p| > ac] < e

Theorem (One-sided Chebyshev's Inequality)
Let X be a r.v. with E[X] = p and Var [X] = o2, then Va > 0,

2

o
Prob[X > —_—
rob[X > pu+a] < a2
o2
Prob[X < u — € —
rob[X <pu—a] < N
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Back to the Additional Questions

@ Markov's leads to,
Prob[X > 2nH,] <

N |

@ To apply Chebyshev's, we need Var [X]:
Var [X]
2

Prob[|X — nH,| > nH,| < (L)

o Key observation: the X; are independent (why?)

1- 1
Var [X ZVar Z p <Z i+l 7r6n

7

@ Chebyshev's leads to

7r2 1
nn
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Example 2: PPM with One Bit

The Problem

Alice wants to send to Bob a message b1bs - - - by, of m bits. She can send
only one bit at a time, but always forgets which bits have been sent. Bob
knows m, nothing else about the message.

The solution
@ Send bits so that the fraction of bits 1 received is within € of
p = B/2™, where B = bjby - - by, as an integer
@ Specifically, send bit 1 with probability p, and 0 with (1 — p)

The question

How many bits must be sent so B can be decoded with high probability?
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The Analysis

@ One way to do decoding: round the fraction of bits 1 received to the
closest multiple of of 1/2™

e Let X1,..., X, be the bits received (independent Bernoulli trials)
o Let X =) X;, then u = E[X] = np. We want, say

X 1
Prob | |2 —p|l < —— | >1—
which is equivalent to

Prob[|X—,u|§L} >1—c¢
3-2m

This is a kind of concentration inequality.
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PTCF: The Binomial Distribution

@ n independent trials are performed, each with success probability p.

@ X = number of successes after n trials, then
. n ; i .
Prob[X =i] = (,)p’(l —p)", Vi=0,...,n
i
e X is called a binomial random variable with parameters (n,p).

E[X] = np
Var[X] = np(1-p)
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PTCF: Chernoff Bounds

Theorem (Chernoff bounds are just the following idea)
Let X be any r.v., then
Q@ Foranyt>0
E tX
Prob[X > a] < [et ]
e a
In particular,
[e"¥]
Prob[X > a] < min —
t>0 et
@ Foranyt<O0
E tX
Prob[X < a] < [et ]
e a
In particular,
] E[etX]
Prob[X > a] < min —
t<0 et

(EYX is called the moment generating function of X)
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PTCF: A Chernoff Bound for sum of Poisson Trials

Above the mean case.

Let X1,..., X, be independent Poisson trials, Prob[X; = 1] = p;,
X =5, X;, p=E[X]. Then,
e For any § > 0,

66 K
Prob[X > (14 d)u| < (W) ;

@ Forany 0 < 4§ <1,

Prob[X > (1 + 0)u] < e #0°/3;

e For any R > 6,
Prob[X > R] < 27 f.
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PTCF: A Chernoff Bound for sum of Poisson Trials

Below the mean case.
Let X1,..., X, be independent Poisson trials, Prob[X; = 1] = p;,
X =5, X;, p=E[X]. Then, forany 0 <6 < 1:

o

- o
Prob[X < (1 —0d)u] < ((1—6)15> ;

Prob[X < (1 — §)u] < e /2,
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PTCF: A Chernoff Bound for sum of Poisson Trials

A simple (two-sided) deviation case.
Let Xi,..., X, be independent Poisson trials, Prob[X; = 1] = p;,
X =5, X;, p=E[X]. Then, forany 0 <6 < 1:

Prob[|X — u| > du] < 2 #0°/3,

Chernoff Bounds Informally

The probability that the sum of independent Poisson trials is far from the
sum's mean is exponentially small.
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Back to the 1-bit PPM Problem

meX—m> n }: M%DX—M>

1
3.2m 3'2mp”]

2
eXp{lg%mp}
Now,
2 <
—— <€
exp{ g}

is equivalent to
n > 18pIn(2/€)4™.
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Example 3: A Statistical Estimation Problem

The Problem

We want to estimate u = E[X] for some random variable X (e.g., X is
the income in dollars of a random person in the world).

The Question

How many samples must be take so that, given ¢, > 0, the estimated
value 1 satisfies

Prob[|g — | < eu] >1 -4

@ §: confidence parameter

@ €. error parameter
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Intuitively: Use “Law of Large Numbers”

law of large numbers (there are actually 2 versions) basically says that
the sample mean tends to the true mean as the number of samples
tends to infinity

o We take n samples X1, ..., X,,, and output

1
p= (Xt 4 Xa)

But, how large must n be? (“Easy” if X is Bernoulli!)

Markov is of some use, but only gives upper-tail bound

@ Need a bound on the variance 02 = Var[X] too, to answer the
question
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Applying Chebyshev

Let Y = X1+ -+ X, then i =Y/n and E[Y] = npu
Since the X; are independent, Var[Y] = 3. Var [X;] = no?
Let » = o/u, Chebyshev inequality gives

Prob[[z — p| > eu] = Prob [|Y — E[Y]| > €E[Y]]
Var[Y] no? r?

(eE[Y])?2  €e2n2u2  ne?’

Consequently, n = % is sufficient!
We can do better!
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Finally, the Median Trick!

If confident parameter is 1/4, we only need ©(r?/e?) samples; the
estimate is a little “weak”

Suppose we have w weak estimates i1, - .., fhy

Output fi: the median of these weak estimates!

Let I; indicates the event |p; — pu| < ep, and I = Z?’Zl I;
By Chernoff's bound,

Prob[[z — p| > eu] < Prob[Y <w/2]
< Prob[Y < (2/3)E[Y]]
= Prob[Y < (1—1/3)E[Y]]
1 1
< < )

CEIVT/18 = qw/24 =

whenever w > 241n(1/4).
Thus, the total number of samples needed is n = O(r?In(1/5)/€2).
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Example 4: Oblivious Routing on the Hypercube

o Directed graph G = (V, E): network of parallel processors
@ Permutation Routing Problem
o Each node v contains one packet P,, 1 <v < N = |V|
o Destination for packet from v is w,, m € S,
e Time is discretized into unit steps
e Each packet can be sent on an edge in one step
e Queueing discipline: FIFO
@ Oblivious algorithm: route R, for P, depends on v and m, only
@ Question: in the worst-case (over 7), how many steps must an

oblivious algorithm take to route all packets?

Theorem (Kaklamanis et al, 1990)

Suppose G has N vertices and out-degree d. For any deterministic
oblivious algorithm for the permutation routing problem, there is an
instance  which requires Q(\/N/d) steps.
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The (Directed) Hypercube

@ The n-cube: |V| =N = 2", vertices v € {0,1}", v =01 - v,
@ (u,v) € E iff their Hamming distance is 1

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 24 /29



The Bit-Fixing Algorithm

@ Source u = uj - - - uy, target m, = vy Uy

@ Suppose the packet is currently at w = wy - - - w,, scan w from left to
right, find the first place where w; # v;

o Forward packet to wy -+ - W;—1V;Wi41 - - - Wy

Source 010011
110010

100010

100110

Destination 100111

@ There is a 7 requiring Q(1/N/n) steps
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Valiant Load Balancing Ildea

Les Valiant, A scheme for fast parallel communication, SIAM J.
Computing, 11: 2 (1982), 350-361.

Two phase algorithm (input: 7)
@ Phase 1: choose o € Sy uniformly at random, route P, to o, with
bit-fixing
o Phase 2: route P, from o, to m, with bit-fixing
This scheme is now used in designing Internet routers with high
throughput!
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Phase 1 Analysis

e P, takes route R, = (ey,...,ex) to oy

e Time taken is k (< n) plus queueing delay

Lemma

If R, and R, share an edge, once R, leaves R, it will not come back to
R,

Theorem

Let S be the set of packets other than packet P, whose routes share an
edge with R,,, then the queueing delay incurred by packet P, is at most |S|
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Phase 1 Analysis

o Let H,, indicate if R, and R, share an edge
@ Queueing delay incurred by P, is Zviu Hy,.
@ We want to bound

Prob ZHM,>0m > 77
vFEU

@ Need an upper bound for E {Zv#u Huv]

@ For each edge ¢, let T, denote the number of routes containing e

> Hy < ZT

vFEU

k

vFU =1
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Conclusion

@ By Chernoff bound,

Prob Z H,, > 6n| <27
vFEU

@ Hence,

Theorem

With probability at least 1 — 275", every packet reaches its intermediate
target (o) in Phase 1 in Tn steps

Theorem (Conclusion)

With probability at least 1 — 1/N, every packet reaches its target () in
14n steps

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 29 /29



	Lecture 3: Variance and Covariance, Concentration Inequalities, Sampling and Estimation

