Computational Learning Theory

- Brief Overview of Machine Learning
- Consistency Model
- Probably Approximately Correct Learning
- Sample Complexity and Occam’s Razor
- Dealing with Noises and Inconsistent Hypotheses
- ...

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course
Problems with PAC

What we have seen so far isn’t realistic:

- There may not be any $h \in \mathcal{H}$ such that $h = c$, thus, there will be examples which we can’t find a consistent h
- There may be some $h \in \mathcal{H}$ such that $h = c$, but the problem of finding a consistent h (with examples) is NP-hard
- In practices, examples are noisy. There might be some x labelled with both 0 and 1. Some “true” label might be flipped due to noise.
- There may not be any c at all!

Conclusions

Have to relax the model:

- Allow outputting h inconsistent with examples
- Measure h’s performance somehow, even when c does not exist!
A New Model: Inconsistent Hypothesis Model

- In this model, \((x, y)\) drawn from \(\Omega \times \{0, 1\}\) according to some unknown distribution \(D\)
- “Quality” of a hypothesis \(h\) is measured by

\[
\text{err}_D(h) := \text{Prob}_{(x, y) \leftarrow D} \left[h(x) \neq y \right]
\]

(We will drop the subscript \(D\) when there’s no confusion.)
- \(\text{err}(h)\) is called the true error of \(h\)

The Problem in the Ideal Case

Find \(h^* \in \mathcal{H}\) whose \(\text{err}(h^*)\) is minimized, i.e.

\[
h^* = \arg\min_{h \in \mathcal{H}} \text{err}(h).
\]

- But, we don’t know \(D\), and thus can’t even evaluate the objective function \(\text{err}(h)\)
Bayes Optimal Classifier

- But suppose we do know \(\mathcal{D} \), what is the best possible classifier? (There might be more than one.)

- The following is called the **Bayes optimal classifier**

\[
h_{\text{OPT}}(x) = \begin{cases}
1 & \text{if } \text{Prob}[y = 1 \mid x] \geq 1/2 \\
0 & \text{if } \text{Prob}[y = 0 \mid x] < 1/2
\end{cases}
\]

- **Question:** why is it optimal?

- \(\text{err}(h_{\text{OPT}}) \) is called the **Bayes error**, which is an absolute lowerbound on any \(\text{err}(h) \)

- Note that \(h_{\text{OPT}} \) may not belong to \(\mathcal{H} \), and thus \(h^* \) may be different from \(h_{\text{OPT}} \)
Since we don’t know \mathcal{D}: find another function approximating $\text{err}(h)$ well, and find h minimizing that function instead!

Let $\hat{\text{err}}(h)$ be the fraction of examples wrongly labelled by h. Specifically, suppose $(x_1, y_1), \ldots, (x_m, y_m)$ are the examples, let

$$\hat{\text{err}}(h) = \frac{|\{i : h(x_i) \neq y_i\}|}{m}$$

We will prove that, with enough examples, $\hat{\text{err}}(h) \approx \text{err}(h)$ with high probability. This is called the uniform convergence theorem.

The Real Problem

Find $h \in \mathcal{H}$ whose *empirical error* $\hat{\text{err}}(h)$ is minimized.
Chernoff-Hoeffding Bound

(We’ve seen the “multiplicative” version of Chernoff, here’s the “additive” version.)

Suppose $X_i, i \in [m]$ are i.i.d. Bernoulli variables with $\text{Prob}[X_i = 1] = p$. Let

$$\hat{p} = \frac{X_1 + \cdots + X_m}{m}$$

Then, for any $\epsilon > 0$,

$$\text{Prob}[\hat{p} \geq p + \epsilon] \leq e^{-2\epsilon^2 m}$$

and

$$\text{Prob}[\hat{p} \leq p - \epsilon] \leq e^{-2\epsilon^2 m}$$

Thus,

$$\text{Prob}[|\hat{p} - p| \geq \epsilon] \leq 2e^{-2\epsilon^2 m}$$
Uniform Convergence Theorem

Theorem

Suppose the hypothesis class \mathcal{H} is finite. If we take

$$m \geq \log \left(\frac{2|\mathcal{H}|}{\delta} \right)$$

examples, then

$$\text{Prob} \left[| err(h) - \hat{err}(h) | \leq \epsilon, \text{ for all } h \in \mathcal{H} \right] \geq 1 - \delta.$$

There’s also a VC-dimension version of this theorem.

Proof idea:

- $E_S[\hat{err}(h)] = err(h)$
- Apply Chernoff-Hoeffding and union bounds
Observations from the Uniform Convergence Theorem

- Note the dependence on ϵ^2, instead of ϵ as in Valiant’s theorem
- Suppose
 \[\hat{h}^* = \arg\min_{h \in \mathcal{H}} \hat{\text{err}}(h) \]
- Recall
 \[h^* = \arg\min_{h \in \mathcal{H}} \text{err}(h) \]
- We really want h^*, but don’t know \mathcal{D}, and thus settled for \hat{h}^* instead
- How good is \hat{h}^* compared to h^*? By uniform convergence theorem,
 \[\text{err}(\hat{h}^*) \leq \hat{\text{err}}(\hat{h}^*) + \epsilon \leq \hat{\text{err}}(h^*) + \epsilon \leq \text{err}(h^*) + 2\epsilon. \]
- The true error of \hat{h}^* is not too far from the true error of the best hypothesis! (Even though we only minimize the empirical error.)