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Problems with PAC

What we have seen so far isn’t realistic:

There may not be any h ∈ H such that h = c, thus, there will be
examples which we can’t find a consistent h

There may be some h ∈ H such that h = c, but the problem of
finding a consistent h (with examples) is NP-hard

In practices, examples are noisy. There might be some x labelled with
both 0 and 1. Some “true” label might be flipped due to noise.

There may not be any c at all!

Conclusions

Have to relax the model:

Allow outputting h inconsistent with examples

Measure h’s performance somehow, even when c does not exist!
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A New Model: Inconsistent Hypothesis Model

In this model, (x, y) drawn from Ω× {0, 1} according to some
unknown distribution D
“Quality” of a hypothesis h is measured by

errD(h) := Prob
(x,y)←D

[h(x) 6= y]

(We will drop the subscript D when there’s no confusion.)

err(h) is called the true error of h

The Problem in the Ideal Case

Find h∗ ∈ H whose err(h∗) is minimized, i.e.

h∗ = argmin
h∈H

err(h).

But, we don’t know D, and thus can’t even evaluate the objective
function err(h)
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Bayes Optimal Classifier

But suppose we do know D, what is the best possible classifier?
(There might be more than one.)

The following is called the Bayes optimal classifier

hopt(x) =

{
1 if Prob[y = 1 | x] ≥ 1/2
0 if Prob[y = 0 | x] < 1/2

Question: why is it optimal?

err(hopt) is called the Bayes error, which is an absolute lowerbound
on any err(h)
Note that hopt may not belong to H, and thus h∗ may be different
from hopt
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Empirical Error

Since we don’t know D: find another function approximating err(h)
well, and find h minimizing that function instead!

Let êrr(h) be the fraction of examples wrongly labelled by h.
Specifically, suppose (x1, y1), . . . , (xm, ym) are the examples, let

êrr(h) =
|{i : h(xi) 6= yi}|

m

We will prove that, with enough examples, êrr(h) ≈ err(h) with high
probability. This is called the uniform convergence theorem.

The Real Problem

Find h ∈ H whose empirical error êrr(h) is minimized.
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Chernoff-Hoeffding Bound

(We’ve seen the “multiplicative” version of Chernoff, here’s the “additive”
version.)
Suppose Xi, i ∈ [m] are i.i.d. Bernoulli variables with Prob[Xi = 1] = p.
Let

p̂ =
X1 + · · ·+ Xm

m

Then, for any ε > 0,

Prob[p̂ ≥ p + ε] ≤ e−2ε2m

and
Prob[p̂ ≤ p− ε] ≤ e−2ε2m

Thus,
Prob[|p̂− p| ≥ ε] ≤ 2e−2ε2m
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Uniform Convergence Theorem

Theorem

Suppose the hypothesis class H is finite. If we take

m ≥
log

(
2|H|

δ

)
2ε2

examples, then

Prob [|err(h)− êrr(h)| ≤ ε, for all h ∈ H] ≥ 1− δ.

There’s also a VC-dimension version of this theorem.
Proof idea:

ES [êrr(h)] = err(h)
Apply Chernoff-Hoeffding and union bounds
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Observations from the Uniform Convergence Theorem

Note the dependence on ε2, instead of ε as in Valiant’s theorem

Suppose
ĥ∗ = argmin

h∈H
êrr(h)

Recall
h∗ = argmin

h∈H
err(h)

We really want h∗, but don’t know D, and thus settled for ĥ∗ instead

How good is ĥ∗ compared to h∗? By uniform convergence theorem,

err(ĥ∗) ≤ êrr(ĥ∗) + ε ≤ êrr(h∗) + ε ≤ err(h∗) + 2ε.

The true error of ĥ∗ is not too far from the true error of the best
hypothesis! (Even though we only minimize the empirical error.)
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