Randomized Algorithms

Randomized Rounding

- **Brief Introduction to Linear Programming and Its Usage in Combinatorial Optimization**
- Randomized Rounding for Cut Problems
- Randomized Rounding for Satisfiability Problems
- Randomized Rounding for Covering Problems
- Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

- ...

©Hung Q. Ngo (SUNY at Buffalo)
Some Combinatorial Optimization Problems

- MAXFLOW and MINCUT problems
- MULTIWAY CUT problem
- MAX-2SAT, MAX-E3SAT, MAX-SAT problems
- SET COVER, VERTEX COVER problems

They can all be formulated as (integer) linear programs
Cornerstone problems in combinatorial optimization

Many non-trivial applications/reductions: airline scheduling, data mining, bipartite matching, image segmentation, network survivability, many many many more ...

Simple Example: on the Internet with error-free transmission, what is the maximum data rate that a router \(s \) can send to a router \(t \) (assuming no network coding is allowed), given that each link has limited capacity

More examples and applications to come
A flow network is a directed graph \(G = (V, E) \) where each edge \(e \) has a capacity \(c(e) > 0 \).

Also, there are two distinguished nodes: the source \(s \) and the sink \(t \).
Cuts

- An s, t-cut is a partition (A, B) of V where $s \in A$, $t \in B$
- Let $[A, B] = \text{set of edges } (u, v) \text{ with } u \in A, v \in B$
- The capacity of the cut (A, B) is defined by

$$\text{cap}(A, B) = \sum_{e \in [A, B]} c(e)$$

Capacity Example

In the given graph, the capacity is calculated as follows:

- $s \rightarrow A$: edge capacities 5 and 15.
- $A \rightarrow 3$: edge capacities 4 and 15.
- $3 \rightarrow 6$: edge capacity 8.
- $6 \rightarrow t$: edge capacity 10.
- $4 \rightarrow 7$: edge capacity 30.

The total capacity is $5 + 15 + 4 + 15 + 8 + 10 + 30 = 97$.
An s, t-cut is a partition (A, B) of V where $s \in A$, $t \in B$

Let $[A, B] = \text{set of edges (}u, v\text{)}$ with $u \in A, v \in B$

The capacity of the cut (A, B) is defined by

$$\text{cap}(A, B) = \sum_{e \in [A,B]} c(e)$$

![Graph with cut](image)
Minimum Cut - Problem Definition

Given a flow network, find an s, t-cut with minimum capacity

![Flow Network Diagram]

- Capacity = $10 + 8 + 10 = 28$
Flows

- An \(s,t \)-flow is a function \(f : E \rightarrow \mathbb{R} \) satisfying:
 - Capacity constraint: \(0 \leq f(e) \leq c(e), \forall e \in E \)
 - Flow Conservation constraint: \(\sum_{e=(u,v) \in E} f(e) = \sum_{e=(v,w) \in E} f(e) \)

- The value of \(f \): \(\text{val}(f) = \sum_{e=(s,v) \in E} f(e) \)

\[\begin{array}{c}
\text{Values on edges:} \\
4 & 0 & 9 \\
10 & 0 & 15 \\
4 & 4 \\
5 & \text{cap: 15} \\
\text{flow: 0} \\
\end{array}\]
An \(s, t \)-flow is a function \(f : E \rightarrow \mathbb{R} \) satisfying:

- **Capacity constraint:** \(0 \leq f(e) \leq c(e), \ \forall e \in E \)
- **Flow Conservation constraint:** \(\sum_{e=(u,v) \in E} f(e) = \sum_{e=(v,w) \in E} f(e) \)

The value of \(f \): \(\text{val}(f) = \sum_{e=(s,v) \in E} f(e) \)

![Graph](image-url)
Given a flow network, find a flow f with maximum capacity.
First Linear Program for Maximum Flow

\[
\begin{align*}
\text{max} & \quad \sum_{e \in E} f_e \\
\text{subject to} & \quad f_e \leq c_e, \quad \forall e \in E, \\
& \quad \sum_{uv \in E} f_{uv} - \sum_{vw \in E} f_{vw} = 0, \quad \forall v \neq s, t \\
& \quad f_e \geq 0, \quad \forall e \in E
\end{align*}
\]
Let \mathcal{P} be the set of all s, t-paths.

f_P denote the flow amount sent along P

$$\begin{align*}
\text{max} \quad & \sum_{P \in \mathcal{P}} f_P \\
\text{subject to} \quad & \sum_{P: e \in P} f_P \leq c_e, \quad \forall e \in E, \\
& f_P \geq 0, \quad \forall P \in \mathcal{P}.
\end{align*}$$

(2)
What are Linear Programs?

Optimize linear objective subject to linear equalities/inequalities

Example 1:

$$\begin{align*}
\text{min} & \quad c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\
\text{subject to} & \quad a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\
& \quad a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\
& \quad \vdots \quad \vdots \quad \vdots \quad = \quad \vdots \\
& \quad a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n = b_m \\
\end{align*}$$

$$x_i \geq 0, \forall i = 1, \ldots, n,$$

Or simply: $\text{min}\{c^T x \mid Ax = b, x \geq 0\}$
What are Linear Programs?

Optimize linear objective subject to linear equalities/inequalities

Example 2:

\[
\begin{align*}
\text{max} & \quad c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\
\text{subject to} & \quad a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \leq b_1 \\
& \quad a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \leq b_2 \\
& \quad \vdots \quad \vdots \quad \vdots \\
& \quad a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n \leq b_m \\
& \quad x_i \geq 0, \forall i = 1, \ldots, n,
\end{align*}
\]

Or simply: \(\max \{ c^T x \mid Ax \leq b, x \geq 0 \} \)
Certainly, constraints may be mixed: $=, \leq, \geq$, some variables may not need to be non-negative, etc.

Example 3:

$$\min / \max \quad a^T x + b^T y + c^T z$$
subject to
$$A_{11} x + A_{12} y + A_{13} z = d$$
$$A_{21} x + A_{22} y + A_{23} z \leq e$$
$$A_{31} x + A_{32} y + A_{33} z \geq f$$
$$x \geq 0, y \leq 0.$$

Note that A_{ij} are matrices and $a, b, c, d, e, f, x, y, z$ are vectors.

Fortunately, easy to “convert” any LP into any one of the following:

- The min and the max versions of the standard form:

$$\min \{ c^T x \mid Ax = b, x \geq 0 \}, \quad \text{and} \quad \max \{ c^T x \mid Ax = b, x \geq 0 \}.$$

- The min and the max versions of the canonical form:

$$\min \{ c^T x \mid Ax \geq b, x \geq 0 \}, \quad \text{and} \quad \max \{ c^T x \mid Ax \leq b, x \geq 0 \}.$$

Solving Linear Programs

- **Simplex Method** (Dantzig, 1948): worst-case exponential time, but runs very fast on most practical inputs
- **Ellipsoid Method** (Khachian, 1979): worst-case polynomial time, but quite slow in practice. Can even solve some LP with an exponential number of constraints if a separation oracle exists
- **Interior Point Method** (Karmarkar, 1984): worst-case polynomial time, quite fast in practice, not as popular as the simplex method
Linear Programming Duality

To each LP (called the **primal LP**) there corresponds another LP called the **dual LP** satisfying the following:

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible</td>
<td>Feasible</td>
</tr>
<tr>
<td></td>
<td>Optimal</td>
</tr>
<tr>
<td>Infeasible</td>
<td>Unbounded</td>
</tr>
<tr>
<td>Unbounded</td>
<td>Infeasible</td>
</tr>
</tbody>
</table>

(X = Possible, O = Impossible)

If the primal is a \(\min \{ \ldots \} \), then the dual is a \(\max \{ \ldots \} \) and vice versa.

Theorem (Strong duality)

If both the primal and the dual LPs are feasible, then their optimal objective values are the same.
Rules for Writing Down the Dual LP

<table>
<thead>
<tr>
<th>Maximization problem</th>
<th>Minimization problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td>Variables</td>
</tr>
<tr>
<td>ith constraint \leq</td>
<td>ith variable ≥ 0</td>
</tr>
<tr>
<td>ith constraint \geq</td>
<td>ith variable ≤ 0</td>
</tr>
<tr>
<td>ith constraint $=$</td>
<td>ith variable unrestricted</td>
</tr>
<tr>
<td>Variables</td>
<td>Constraints</td>
</tr>
<tr>
<td>jth variable ≥ 0</td>
<td>jth constraint \geq</td>
</tr>
<tr>
<td>jth variable ≤ 0</td>
<td>jth constraint \leq</td>
</tr>
<tr>
<td>jth variable unrestricted</td>
<td>jth constraint $=$</td>
</tr>
</tbody>
</table>

Table: Rules for converting between primals and duals.
In **standard form**, the primal and dual LPs are

\[
\begin{align*}
\text{min} \quad & c^T x & \quad \text{(primal program)} \\
\text{subject to} \quad & Ax = b \\
& x \geq 0 \\
\text{max} \quad & b^T y & \quad \text{(dual program)} \\
\text{subject to} \quad & A^T y \leq c & \text{no non-negativity restriction!}
\end{align*}
\]
In **canonical form**, the primal and dual LPs are

\[
\begin{align*}
\text{min} & \quad c^T x \quad \text{(primal program)} \\
\text{subject to} & \quad Ax \geq b \\
& \quad x \geq 0 \\
\text{max} & \quad b^T y \quad \text{(dual program)} \\
\text{subject to} & \quad A^T y \leq c \\
& \quad y \geq 0.
\end{align*}
\]
Weak Duality and Strong Duality

Primal LP: \(\min \{ c^T x \mid Ax \geq b, x \geq 0 \} \)
Dual LP: \(\max \{ b^T y \mid A^T y \leq c, y \geq 0 \} \).

Theorem (Weak Duality)
Suppose \(x \) is primal feasible, and \(y \) is dual feasible, then \(c^T x \geq b^T y \).
In particular, if \(x^* \) is primal-optimal and \(y^* \) is dual-optimal, then
\[
c^T x^* \geq b^T y^*.
\]

Theorem (Strong Duality)
If the primal LP has an optimal solution \(x^* \), then the dual LP has an optimal solution \(y^* \) such that
\[
c^T x^* = b^T y^*.
\]
Given the following programs

Primal LP: \(\min \{ c^T x \mid Ax \geq b, x \geq 0 \} \),

Dual LP: \(\max \{ b^T y \mid A^T y \leq c, y \geq 0 \} \).

Let \(x^* \) and \(y^* \) be feasible for the primal and the dual programs, respectively. Then, \(x^* \) and \(y^* \) are optimal for their respective LPs if and only if

\[
(c - A^T y^*)^T x^* = 0, \quad and \quad (b - Ax)^T y^* = 0.
\]
Intuition: for a cut \((A, B)\), set \(x_v = 1\) if \(v \in A\) and \(x_v = 0\) otherwise.

\[
\begin{align*}
\text{min} \quad & \sum_{e \in E} c_e z_e \\
\text{subject to} \quad & z_e \geq x_u - x_v \quad \forall e = uv \in E, \\
& z_e \geq x_v - x_u \quad \forall e = uv \in E, \\
& x_s = 1 \\
& x_t = 0 \\
& z_e, x_v \in \{0, 1\}, \quad \forall v \in V, e \in E
\end{align*}
\]
Second ILP for Mincut

Let \mathcal{P} be the collection of all s,t-paths

\[
\min \sum_{e \in E} c_e y_e \\
\text{subject to } \sum_{e \in P} y_e \geq 1, \quad \forall P \in \mathcal{P}, \\
y_e \in \{0, 1\}, \quad \forall e \in E.
\]
Multiway Cut

MULTIWAY CUT:

Given an edge weighted graph $G = (V, E)$ ($w : E \to \mathbb{R}^+$) and k terminals $\{t_1, \ldots, t_k\}$. Find a min-weight subset of edges whose removal disconnects the terminals from one another.

Let \mathcal{P} be the collection of all s_i, s_j-paths

$$
\begin{align*}
\min & \quad \sum_{e \in E} w_e x_e \\
\text{subject to} & \quad \sum_{e \in P} x_e \geq 1, \quad \forall P \in \mathcal{P}, \\
& \quad x_e \in \{0, 1\}, \quad \forall e \in E.
\end{align*}
$$

(5)
Vertex Cover

Weighted Vertex Cover

Given a graph $G = (V, E)$, $|V| = n$, $|E| = m$, a weight function $w : V \to \mathbb{R}$. Find a vertex cover $C \subseteq V$ for which $\sum_{i \in C} w(i)$ is minimized.

An equivalent integer linear program (ILP) is

\[
\begin{align*}
\text{min} & \quad w_1 x_1 + w_2 x_2 + \cdots + w_n x_n \\
\text{subject to} & \quad x_i + x_j \geq 1, \quad \forall ij \in E, \\
& \quad x_i \in \{0, 1\}, \quad \forall i \in V.
\end{align*}
\]
Weighted Set Cover

Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of $[m] = \{1, \ldots, m\}$, and a weight function $w : S \rightarrow \mathbb{R}$. Find a cover $C = \{S_j \mid j \in J\}$ with minimum total weight.

Use a 01-variable x_j to indicate the inclusion of S_j in the cover. The corresponding ILP is thus

$$
\begin{align*}
\text{min} & \quad w_1 x_1 + \cdots + w_n x_n \\
\text{subject to} & \quad \sum_{j : S_j \ni i} x_j \geq 1, \quad \forall i \in [m], \\
& \quad x_j \in \{0, 1\}, \quad \forall j \in [n].
\end{align*}
$$
Max-SAT

Weighted max-sat:

Given a CNF formula φ with m weighted clauses on n variables, find a truth assignment maximizing the total weight of satisfied clauses.

Say, clause C_j has weight $w_j \in \mathbb{R}^+$. Here’s an ILP

$$\begin{align*}
\text{max} & \quad w_1 z_1 + \cdots + w_m z_n \\
\text{subject to} & \quad \sum_{i : x_i \in C_j} y_i + \sum_{i : \bar{x}_i \in C_j} (1 - y_i) \geq z_j, \quad \forall j \in [m], \\
& \quad y_i, z_j \in \{0, 1\}, \quad \forall i \in [n], j \in [m]
\end{align*}$$