Computational Learning Theory

Brief Overview of Machine Learning
Consistency Model

Probably Approximately Correct Learning
Sample Complexity and Occam’s Razor

Dealing with Noises
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Valiant's Theorem

Basic question on sample complexity
Say we want to PAC-learn C using H, how many examples are sufficient?

v

Theorem
If learner can produce a hypothesis h € H consistent with

o ()

Problerrp(h) <€ >1— 0.

examples, then

i.e., it is a PAC-learner
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A Proof of Valiant's Theorem

e Call a hypothesis h bad if errp(h) > €
@ Let h be any bad hypothesis, then

Prob[h consistent with m i.i.d. examples] < (1 — €)™

@ Noting that the hypothesis produced by learner is consistent with m
i.i.d. examples, thus by union bound

Prob[Learner outputs a bad hypothesis]

< Prob[some h € H is bad and is consistent with m i.i.d. examples]
< [HI1-em
< 0

last inequality holds because

€ o
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Some Consequences of Valiant's Theorem

Corollary

Learning BOOLEAN CONJUNCTIONS only need % log (%) samples. (Thus,
the learner is an efficient PAC-learner!)

Corollary

If learner can produce a hypothesis h € H consistent with m examples,
then

Prob |errp(h) < ilog (M)} >1-6
m 0

Interpretation:
e errp(h) gets smaller when m gets larger, because there's more data
to learn from
@ errp(h) gets smaller when |H| gets smaller. The more we know about
the concept, the smaller the hypothesis class becomes, thus the better
the learning error
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Occam'’s Razor

Theorem (Occam'’s Razor, Roughly stated)

If a learner always produce a hypothesis h € H with |h| = O((n|c|)*m®)
for some fixed « (arbitrary) and 0 < 8 < 1, then it is an efficient
PAC-learner.

Proof.

The set of all hypotheses that the learner can possibly output is relatively
“small” since each such hypothesis has small size.

Apply Valiant's theorem. O

v

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 6 /25



What Happens if H is Infinite?

Natural question

What if |H| is more than exponential or even infinite? How many (i.i.d.)
samples from D do we need given ¢, §7

V. Vapnik and A. Chervonenkis. “On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its
Applications, 16(2):264280, 1971.

gave a very original and important answer.
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VC-Dimension Intuitively

@ VC-Dimension of a function class measure how “complex” and
“expressive” the class is

@ Roughly, vCD(H) is the maximum number of data points for which no
matter how we label them, there's always h € H consistent with them

@ VC used this to derive bounds for expected loss given empirical loss

@ Since vCD is defined in terms of model fitting and number of data
points, the concept applies to almost all imaginable models

@ It's a much better indicator of models’ ability than number of
parameters
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VC-Dimension Rigorously

@ Since h: 2 — {0,1}, h can be viewed as a subset of
e For any finite S C Q, let [T (S) ={hNS: h € H}
e We call TIx(S) the projection of H on S

e Equivalently, suppose S = {z1,...,zy}, let
HH(S) = {[h(x1)7 .- ,h(l‘m)] ’ h e H}

we call Iy (S) the set of all dichotomies (also called behaviors) on S
realized by (or induced by) H

o S is shattered by H if |TIy(S)| = 2!

Definition (VC-dimension)
vCD(H) = max{|S| : S shattered by H}. J

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 10 / 25



VC-Dimension: Examples

@ Set of all positive half lines on R has vcD =1

@ Set of all intervals on R has vcp = 2

@ Set of all half-planes on R? has vcp = 3

@ Set of all half-spaces on R% has vep = d + 1

@ Set of all balls on R? has veD = d + 1

@ Set of all axis-parallel rectangles on R? has vcD = 4

@ Set of all d-vertex convex polygons on R? has vcD = 2d + 1

@ Set of all sets of intervals on R has vCD = 0o
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VC-Dimension: Sauer’'s Lemma

Lemma (Sauer 1972, Perles & Shelah 1972)
Suppose VCD(H) = d < co. Define

I3 (m) = max{|IIx(S)|: S C Q,|S| = m}
(113 (m) is the maximum size of a projection of H on an m-subset of (2.)

Then,
mun) < au) =3 () < () = 009

=

(Note that, if vCD(H) = oo, then Iy (m) = 2",Vm)
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A Proof of Sauer’'s Lemma

@ Inducton m+d. Forhe H,let hg=hnNS
e m = 0 is obvious. When d = 0, |IIx(S)| =1 = ®g(m)
o Consider m > 0,d > 0. Fix arbitrary s € S.

@ Define
H = {hs S HH(S) ‘ S ¢ hg, hg U {8} S HH(S)}
@ Then,

T3(S)] = My (S = {sh)] + [H| = [Ty (S = {s})] + [Ty (5)]

Since veD(H') < d — 1,

|HH(S)| < <I>d(m - 1) + @d_l(m) = <I>d(m).
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Vapnik-Chervonenkis Theorem

Theorem

Suppose VCD(H) = d < oco. There’s a constant ¢y > 0 such that, if a
learner can produce a hypothesis h € H consistent with

1 1
m > “« (log <—) + dlog (—))
€ 1) €
i.i.d. examples, then it is a PAC-learner, i.e.

Problerrp(h) <€ > 1—0.
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Proof of Vapnik-Chervonenkis Theorem

@ Consider a concept ¢ and a hypothesis class H

@ Suppose our algorithm outputs a hypothesis consistent with ¢ on m
i.i.d. examples S = {x1,..., 2}

@ Let hAc denote the symmetric difference between h and ¢,

A(e) = {hAc|heH}
Ac) = {r]reAle), I;Log[x er]>e}

Then, for any h € H, errp(h) > € (i.e. his “bad") iff hAc € Ac(c)
S is called an e-net if SNr # () for every r € Ac(c)
If S is an e-net, then the output hypothesis is good! Thus,

Prob[Algorithm outputs a bad hypothesis]
< Prob[S is not an e-net]
Prob[3r € A(c) s.t. the m i.i.d. examples S does not “hit" r|
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Proof of Vapnik-Chervonenkis Theorem

o Let A be the event that there some region r € A(c) which S does
not hit. We want to upper bound Prob|A]

@ Suppose we draw m more i.i.d. examples T' = {y1,...,ym} (for
analytical purposes, the learner does not really draw T')

@ Let B be the event that there some region r € A¢(c) which S does
not hit but 7" does hit r at least em/2 times

@ Now, for any r € Ac(c) that S does not hit, Prob[y; € r] > €. Hence,
by Chernoff bound, when m > 8/¢, the probability that at least em/2
of the y; belong to r is at least 1/2.

e Consequently, Prob[B | A] > 1/2.
e Thus, Prob[A] < 2Prob[B].
We can thus upper bound Prob[B] instead!
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Proof of Vapnik-Chervonenkis Theorem

Why is upper-bounding B easier?

@ B is the event that, after drawing 2m i.i.d. examples
SUT ={z1,...,Zm,Y1,---,Ym}, there exists some region r € A(c)
which S does not hit but 7" hits > em/2 times.

o Equivalently, B is the event that, after drawing 2m i.i.d. examples
SUT ={z1,...,Zm,Y1,---,Ym}, there exists some region
r € Ha, () (SUT) for which SNr =0 and [T Nr| > em/2.
It is not difficult to see that

2me\ ?
M (o(8 UT)] £ a5 UT)] = (s UT)] < (25°)

@ Prob[B] remains the same if we draw 2m examples
U = {ui,...,uzm} first, and then partition U randomly into
U=SUT.
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Proof of Vapnik-Chervonenkis Theorem

o Fix U and r € lIx () (U). Let p=|UNr|.
o Let F, be the event that SNr =10,|T Nr| > em/2. We can assume
em/2 < p<m. Then
(2m—p)
Prob[F,. | U] = (2”7;‘1)
2m—p)2m—p—1)---(m—p+1
2m(2m —1)---(m+1)
m(m—1)---(m—p+1

2m(2m—1)---2m —p+1)

- ()

9em/2
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Proof of Vapnik-Chervonenkis Theorem

(In the following, if the underlying distribution D on € is continuous,
replace the sum by the corresponding integral, and the probability by the
density function.)

Prob[B] = Prob[3r €€ A.(c) such that F, holds]
= Z Prob [3r € A.(c) such that F,. holds | U] Prob[U]
U

= Z Prob [3r € II5 () (U) such that F, holds | U] Prob[U]
U

2me \ * —em
< Z(d) 27"/ Prob[U]

U
d
d
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Proof of Vapnik-Chervonenkis Theorem

d
Prob[A] < 2Prob[B] < 2 <27§e> 9—em/2 < 5.

v 3 (1)

(We will need e bounded away from 1, say € < 3/4, for ¢y to not be
dependent on ¢, but that's certainly desirable!)

When
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The Lower Bound

Theorem

For any sample space €2 and any concept class C with vCD(C) = d, there
exist a distribution D on it, and a concept ¢ € C such that, any learning
algorithm which takes < d/2 samples will not be a PAC-learner with
€=1/8,6 =1/7. such that
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The Proof

@ Suppose X C ) is shattered by C, | X| =d
@ Let D be the uniform distribution on X, thus D is 0 on Q — X.

e Without loss of generality, we can assume C = 2%

Proof idea

Use the argument from expectation!

Pick ¢ € C at random, show that the expected performance of the learner
(over the random choice c¢) is "bad,” which implies that there exists a

¢ € C for which the performance is bad.

o Let S denote a random sample of < d/2 examples
@ Let x denote a random example

@ Let hg denote the hypothesis output by the learner if its examples are
S
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The Proof

Problhs () # c(2)] > Problhs(v) # c(x) | z ¢ 5] Problx ¢ 5] >

l\')\l—‘
l\DM—l
—

e Marginalizing over ¢, we have

PrSob[hS(a:) # c(z)] = E. {Pgob[hs(x) # c(x) | c]] .

Thus, there exists a ¢ € C such that Probg ,[hs(z) # c(z) | ¢] >
e For this fixed ¢, we have Probg ,[hs(z) # c(z)] > 1.
@ Now, marginalizing over S, we have

% Prob[hg( ) # c(x)] = Eg [ngb[hs(l’) # c(z) | S]] = Eglerr(hg)]
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The Proof

Thus,
Es[l —err(hg)] =1 — Eglerr(hg)] < 3/4.

By Markov's inequality,

Es[l —err(hs)] _3/4 6
Prob[l — hs) > <=/ =2 < =
o[l —err(hs) = 7/8] < 7/8 =787
Thus,
Prob |err(hg) < ! < 6
s AN N d
as desired.
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