- Brief Overview of Machine Learning
- Consistency Model
- Probably Approximately Correct Learning
- Sample Complexity and Occam's Razor
- Dealing with Noises

• ...

Basic question on sample complexity

Say we want to PAC-learn $\mathcal C$ using $\mathcal H$, how many examples are sufficient?

Theorem

If learner can produce a hypothesis $h \in \mathcal{H}$ consistent with

$$m \ge \frac{1}{\epsilon} \log\left(\frac{|\mathcal{H}|}{\delta}\right)$$

examples, then

$$\mathsf{Prob}[\mathsf{err}_{\mathcal{D}}(h) \leq \epsilon] \geq 1 - \delta.$$

i.e., it is a PAC-learner

A Proof of Valiant's Theorem

- Call a hypothesis h bad if $\operatorname{err}_{\mathcal{D}}(h) > \epsilon$
- Let h be any bad hypothesis, then

 $\operatorname{Prob}[h \text{ consistent with } m \text{ i.i.d. examples}] < (1-\epsilon)^m$

• Noting that the hypothesis produced by learner is consistent with m i.i.d. examples, thus by union bound

Prob[Learner outputs a bad hypothesis]

 \leq Prob[some $h \in \mathcal{H}$ is bad and is consistent with m i.i.d. examples]

$$\leq |\mathcal{H}|(1-\epsilon)^m$$

 $\leq \delta$

last inequality holds because

$$m \ge \frac{1}{\epsilon} \log\left(\frac{|\mathcal{H}|}{\delta}\right)$$

Some Consequences of Valiant's Theorem

Corollary

Learning BOOLEAN CONJUNCTIONS only need $\frac{1}{\epsilon} \log\left(\frac{3^n}{\delta}\right)$ samples. (Thus, the learner is an efficient PAC-learner!)

Corollary

If learner can produce a hypothesis $h \in \mathcal{H}$ consistent with m examples, then

$$\mathsf{Prob}\left[\mathsf{err}_{\mathcal{D}}(h) \leq \frac{1}{m}\log\left(\frac{|\mathcal{H}|}{\delta}\right)\right] \geq 1 - \delta$$

Interpretation:

- $\bullet \mbox{ err}_{\mathcal{D}}(h)$ gets smaller when m gets larger, because there's more data to learn from
- $\operatorname{err}_{\mathcal{D}}(h)$ gets smaller when $|\mathcal{H}|$ gets smaller. The more we know about the concept, the smaller the hypothesis class becomes, thus the better the learning error

©Hung Q. Ngo (SUNY at Buffalo)

Theorem (Occam's Razor, Roughly stated)

If a learner always produce a hypothesis $h \in \mathcal{H}$ with $|h| = O((n|c|)^{\alpha}m^{\beta})$ for some fixed α (arbitrary) and $0 < \beta < 1$, then it is an efficient PAC-learner.

Proof.

The set of all hypotheses that the learner can possibly output is relatively "small" since each such hypothesis has small size. Apply Valiant's theorem.

Natural question

What if $|\mathcal{H}|$ is more than exponential or even infinite? How many (i.i.d.) samples from \mathcal{D} do we need given ϵ, δ ?

V. Vapnik and A. Chervonenkis. *"On the uniform convergence of relative frequencies of events to their probabilities.* Theory of Probability and its Applications, 16(2):264280, 1971. gave a very original and important answer.

- VC-Dimension of a function class measure how "complex" and "expressive" the class is
- Roughly, $VCD(\mathcal{H})$ is the maximum number of data points for which no matter how we label them, there's always $h \in \mathcal{H}$ consistent with them
- VC used this to derive bounds for expected loss given empirical loss
- Since VCD is defined in terms of model fitting and number of data points, the concept applies to almost all imaginable models
- It's a much better indicator of models' ability than number of parameters

VC-Dimension Rigorously

- Since $h:\Omega \to \{0,1\}, \, h$ can be viewed as a subset of Ω
- For any finite $S \subseteq \Omega$, let $\Pi_{\mathcal{H}}(S) = \{h \cap S : h \in \mathcal{H}\}$
- We call $\Pi_{\mathcal{H}}(S)$ the *projection* of \mathcal{H} on S
- Equivalently, suppose $S = \{x_1, \ldots, x_m\}$, let

$$\Pi_{\mathcal{H}}(S) = \{ [h(x_1), \dots, h(x_m)] \mid h \in \mathcal{H} \}$$

we call $\Pi_{\mathcal{H}}(S)$ the set of all dichotomies (also called behaviors) on S realized by (or induced by) \mathcal{H}

• S is shattered by \mathcal{H} if $|\Pi_{\mathcal{H}}(S)| = 2^{|S|}$

Definition (VC-dimension) $VCD(\mathcal{H}) = \max\{|S| : S \text{ shattered by } \mathcal{H}\}.$

- Set of all positive half lines on $\mathbb R$ has $\mathrm{VCD}=1$
- Set of all intervals on $\mathbb R$ has $\mathrm{VCD}=2$
- Set of all half-planes on \mathbb{R}^2 has VCD = 3
- Set of all half-spaces on \mathbb{R}^d has VCD = d + 1
- Set of all balls on \mathbb{R}^d has VCD = d + 1
- Set of all axis-parallel rectangles on \mathbb{R}^2 has ${\rm VCD}=4$
- Set of all d-vertex convex polygons on \mathbb{R}^2 has $\operatorname{VCD} = 2d + 1$
- Set of all sets of intervals on $\mathbb R$ has ${\rm VCD}=\infty$

Lemma (Sauer 1972, Perles & Shelah 1972)

Suppose $VCD(\mathcal{H}) = d < \infty$. Define

$$\Pi_{\mathcal{H}}(m) = \max\{|\Pi_{\mathcal{H}}(S)| : S \subseteq \Omega, |S| = m\}$$

 $(\Pi_{\mathcal{H}}(m) \text{ is the maximum size of a projection of } \mathcal{H} \text{ on an } m\text{-subset of } \Omega.)$ Then,

$$\Pi_{\mathcal{H}}(m) \le \Phi_d(m) = \sum_{i=0}^d \binom{m}{d} \le \left(\frac{em}{d}\right)^d = O(m^d)$$

(Note that, if $\operatorname{VCD}(\mathcal{H}) = \infty$, then $\Pi_{\mathcal{H}}(m) = 2^m, \forall m$)

A Proof of Sauer's Lemma

- Induct on m + d. For $h \in \mathcal{H}$, let $h_S = h \cap S$
- m = 0 is obvious. When d = 0, $|\Pi_{\mathcal{H}}(S)| = 1 = \Phi_0(m)$
- Consider m > 0, d > 0. Fix arbitrary $s \in S$.

Define

$$\mathcal{H}' = \{ h_S \in \Pi_{\mathcal{H}}(S) \mid s \notin h_S, \ h_S \cup \{s\} \in \Pi_{\mathcal{H}}(S) \}$$

• Then,

 $|\Pi_{\mathcal{H}}(S)| = |\Pi_{\mathcal{H}}(S - \{s\})| + |\mathcal{H}'| = |\Pi_{\mathcal{H}}(S - \{s\})| + |\Pi_{\mathcal{H}'}(S)|$

• Since $\operatorname{VCD}(\mathcal{H}') \leq d-1$,

$$|\Pi_{\mathcal{H}}(S)| \le \Phi_d(m-1) + \Phi_{d-1}(m) = \Phi_d(m).$$

Theorem

Suppose $VCD(\mathcal{H}) = d < \infty$. There's a constant $c_0 > 0$ such that, if a learner can produce a hypothesis $h \in \mathcal{H}$ consistent with

$$m \ge \frac{c_0}{\epsilon} \left(\log\left(\frac{1}{\delta}\right) + d\log\left(\frac{1}{\epsilon}\right) \right)$$

i.i.d. examples, then it is a PAC-learner, i.e.

$$\mathsf{Prob}[\mathsf{err}_{\mathcal{D}}(h) \le \epsilon] \ge 1 - \delta.$$

- $\bullet\,$ Consider a concept c and a hypothesis class ${\cal H}\,$
- Suppose our algorithm outputs a hypothesis consistent with c on m i.i.d. examples $S=\{x_1,\ldots,x_m\}$
- Let $h\Delta c$ denote the symmetric difference between h and c,

$$\begin{aligned} \Delta(c) &= \{h\Delta c \mid h \in \mathcal{H}\} \\ \Delta_{\epsilon}(c) &= \{r \mid r \in \Delta(c), \ \underset{x \leftarrow \mathcal{D}}{\mathsf{Prob}}[x \in r] > \epsilon\} \end{aligned}$$

- Then, for any $h \in \mathcal{H}$, $\operatorname{err}_{\mathcal{D}}(h) > \epsilon$ (i.e. h is "bad") iff $h\Delta c \in \Delta_{\epsilon}(c)$
- S is called an $\epsilon\text{-net}$ if $S\cap r\neq \emptyset$ for every $r\in \Delta_\epsilon(c)$
- If S is an ϵ -net, then the output hypothesis is good! Thus,

Prob[Algorithm outputs a bad hypothesis]

- \leq Prob[S is not an ϵ -net]
- $= \ \ {\rm Prob}[\exists r \in \Delta_{\epsilon}(c) \ {\rm s.t.} \ {\rm the} \ m \ {\rm i.i.d.} \ {\rm examples} \ S \ {\rm does} \ {\rm not} \ ``{\rm hit}'' \ r]$

- Let A be the event that there some region $r \in \Delta_{\epsilon}(c)$ which S does not hit. We want to upper bound Prob[A]
- Suppose we draw m more i.i.d. examples $T = \{y_1, \ldots, y_m\}$ (for analytical purposes, the learner does not really draw T)
- Let B be the event that there some region $r \in \Delta_{\epsilon}(c)$ which S does not hit but T does hit r at least $\epsilon m/2$ times
- Now, for any $r \in \Delta_{\epsilon}(c)$ that S does not hit, $\operatorname{Prob}[y_i \in r] > \epsilon$. Hence, by Chernoff bound, when $m \geq 8/\epsilon$, the probability that at least $\epsilon m/2$ of the y_i belong to r is at least 1/2.
- Consequently, $\operatorname{Prob}[B \mid A] \ge 1/2$.
- Thus, $\operatorname{Prob}[A] \leq 2 \operatorname{Prob}[B]$.
- We can thus upper bound Prob[B] instead!

Why is upper-bounding B easier?

- B is the event that, after drawing 2m i.i.d. examples $S \cup T = \{x_1, \ldots, x_m, y_1, \ldots, y_m\}$, there exists some region $r \in \Delta_{\epsilon}(c)$ which S does not hit but T hits $\geq \epsilon m/2$ times.
- Equivalently, B is the event that, after drawing 2m i.i.d. examples $S \cup T = \{x_1, \ldots, x_m, y_1, \ldots, y_m\}$, there exists some region $r \in \prod_{\Delta_{\epsilon}(c)} (S \cup T)$ for which $S \cap r = \emptyset$ and $|T \cap r| \ge \epsilon m/2$. It is not difficult to see that

$$|\Pi_{\Delta_{\epsilon}(c)}(S \cup T)| \le |\Pi_{\Delta(c)}(S \cup T)| = |\Pi_{\mathcal{H}}(S \cup T)| \le \left(\frac{2me}{d}\right)^{d}$$

• Prob[B] remains the same if we draw 2m examples $U = \{u_1, \ldots, u_{2m}\}$ first, and then partition U randomly into $U = S \cup T$.

- Fix U and $r \in \prod_{\Delta_{\epsilon}(c)}(U)$. Let $p = |U \cap r|$.
- Let F_r be the event that $S \cap r = \emptyset$, $|T \cap r| \ge \epsilon m/2$. We can assume $\epsilon m/2 \le p \le m$. Then

$$\begin{aligned} \mathsf{Prob}[F_r \mid U] &= \frac{\binom{2m-p}{m}}{\binom{2m}{m}} \\ &= \frac{(2m-p)(2m-p-1)\cdots(m-p+1)}{2m(2m-1)\cdots(m+1)} \\ &= \frac{m(m-1)\cdots(m-p+1)}{2m(2m-1)\cdots(2m-p+1)} \\ &\leq \left(\frac{1}{2}\right)^p \\ &\leq \frac{1}{2^{\epsilon m/2}} \end{aligned}$$

(In the following, if the underlying distribution \mathcal{D} on Ω is continuous, replace the sum by the corresponding integral, and the probability by the density function.)

$$\begin{array}{lll} \operatorname{Prob}[B] &=& \operatorname{Prob}\left[\exists r \in \in \Delta_{\epsilon}(c) \text{ such that } F_r \text{ holds}\right] \\ &=& \sum_U \operatorname{Prob}\left[\exists r \in \Delta_{\epsilon}(c) \text{ such that } F_r \text{ holds } \mid U\right] \operatorname{Prob}[U] \\ &=& \sum_U \operatorname{Prob}\left[\exists r \in \Pi_{\Delta_{\epsilon}(c)}(U) \text{ such that } F_r \text{ holds } \mid U\right] \operatorname{Prob}[U] \\ &\leq& \sum_U \left(\frac{2me}{d}\right)^d 2^{-\epsilon m/2} \operatorname{Prob}[U] \\ &=& \left(\frac{2me}{d}\right)^d 2^{-\epsilon m/2} \end{array}$$

$$\operatorname{Prob}[A] \leq 2 \operatorname{Prob}[B] \leq 2 \left(\frac{2me}{d}\right)^d 2^{-\epsilon m/2} \leq \delta.$$

When

$$m \ge \frac{c_0}{\epsilon} \left(\log\left(\frac{1}{\delta}\right) + d\log\left(\frac{1}{\epsilon}\right) \right)$$

(We will need ϵ bounded away from 1, say $\epsilon < 3/4$, for c_0 to not be dependent on ϵ , but that's certainly desirable!)

Theorem

For any sample space Ω and any concept class C with VCD(C) = d, there exist a distribution D on it, and a concept $c \in C$ such that, any learning algorithm which takes $\leq d/2$ samples will not be a PAC-learner with $\epsilon = 1/8, \delta = 1/7$. such that

The Proof

- Suppose $X \subseteq \Omega$ is shattered by \mathcal{C} , |X| = d
- Let \mathcal{D} be the uniform distribution on X, thus \mathcal{D} is 0 on ΩX .
- Without loss of generality, we can assume $\mathcal{C}=2^X$

Proof idea

Use the argument from expectation!

Pick $c \in C$ at random, show that the expected performance of the learner (over the random choice c) is "bad," which implies that there exists a $c \in C$ for which the performance is bad.

- Let S denote a random sample of $\leq d/2$ examples
- Let x denote a random example
- Let $h_{\cal S}$ denote the hypothesis output by the learner if its examples are ${\cal S}$

$$\underset{c,S,x}{\operatorname{Prob}}[h_S(x) \neq c(x)] \ge \underset{c,S,x}{\operatorname{Prob}}[h_S(x) \neq c(x) \mid x \notin S] \underset{c,x,S}{\operatorname{Prob}}[x \notin S] \ge \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

• Marginalizing over c, we have

$$\operatorname{Prob}_{c,S,x}[h_S(x) \neq c(x)] = \mathsf{E}_c \left[\operatorname{Prob}_{S,x}[h_S(x) \neq c(x) \mid c] \right].$$

Thus, there exists a $c \in C$ such that $\operatorname{Prob}_{S,x}[h_S(x) \neq c(x) \mid c] \geq \frac{1}{4}$.

- For this fixed c, we have $\operatorname{Prob}_{S,x}[h_S(x) \neq c(x)] \geq \frac{1}{4}$.
- Now, marginalizing over S, we have

$$\frac{1}{4} \leq \Pr_{S,x} \mathsf{eb}[h_S(x) \neq c(x)] = \mathsf{E}_S \left[\mathsf{Prob}_{S,x} [h_S(x) \neq c(x) \mid S] \right] = \mathsf{E}_S[\mathsf{err}(h_S)]$$

Thus,

$$\mathsf{E}_S[1 - \mathsf{err}(h_S)] = 1 - \mathsf{E}_S[\mathsf{err}(h_S)] \le 3/4.$$

By Markov's inequality,

$$\Pr_{S} \mathsf{Prob}[1 - \mathsf{err}(h_{S}) \ge 7/8] \le \frac{\mathsf{E}_{S}[1 - \mathsf{err}(h_{S})]}{7/8} \le \frac{3/4}{7/8} = \frac{6}{7}$$

Thus,

$$\Pr_{S} \mathsf{err}(h_{S}) < \frac{1}{8} \end{bmatrix} \leq \frac{6}{7},$$

as desired.