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Valiant’s Theorem

Basic question on sample complexity

Say we want to PAC-learn C using H, how many examples are sufficient?

Theorem

If learner can produce a hypothesis h ∈ H consistent with

m ≥ 1
ε

log
(
|H|
δ

)
examples, then

Prob[errD(h) ≤ ε] ≥ 1− δ.

i.e., it is a PAC-learner
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A Proof of Valiant’s Theorem

Call a hypothesis h bad if errD(h) > ε

Let h be any bad hypothesis, then

Prob[h consistent with m i.i.d. examples] < (1− ε)m

Noting that the hypothesis produced by learner is consistent with m
i.i.d. examples, thus by union bound

Prob[Learner outputs a bad hypothesis]
≤ Prob[some h ∈ H is bad and is consistent with m i.i.d. examples]
≤ |H|(1− ε)m

≤ δ

last inequality holds because

m ≥ 1
ε

log
(
|H|
δ

)
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Some Consequences of Valiant’s Theorem

Corollary

Learning Boolean conjunctions only need 1
ε log

(
3n

δ

)
samples. (Thus,

the learner is an efficient PAC-learner!)

Corollary

If learner can produce a hypothesis h ∈ H consistent with m examples,
then

Prob

[
errD(h) ≤ 1

m
log

(
|H|
δ

)]
≥ 1− δ

Interpretation:

errD(h) gets smaller when m gets larger, because there’s more data
to learn from

errD(h) gets smaller when |H| gets smaller. The more we know about
the concept, the smaller the hypothesis class becomes, thus the better
the learning error
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Occam’s Razor

Theorem (Occam’s Razor, Roughly stated)

If a learner always produce a hypothesis h ∈ H with |h| = O((n|c|)αmβ)
for some fixed α (arbitrary) and 0 < β < 1, then it is an efficient
PAC-learner.

Proof.

The set of all hypotheses that the learner can possibly output is relatively
“small” since each such hypothesis has small size.
Apply Valiant’s theorem.
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What Happens if H is Infinite?

Natural question

What if |H| is more than exponential or even infinite? How many (i.i.d.)
samples from D do we need given ε, δ?

V. Vapnik and A. Chervonenkis. “On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its
Applications, 16(2):264280, 1971.
gave a very original and important answer.
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VC-Dimension Intuitively

VC-Dimension of a function class measure how “complex” and
“expressive” the class is

Roughly, vcd(H) is the maximum number of data points for which no
matter how we label them, there’s always h ∈ H consistent with them

VC used this to derive bounds for expected loss given empirical loss

Since vcd is defined in terms of model fitting and number of data
points, the concept applies to almost all imaginable models

It’s a much better indicator of models’ ability than number of
parameters
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VC-Dimension Rigorously

Since h : Ω → {0, 1}, h can be viewed as a subset of Ω
For any finite S ⊆ Ω, let ΠH(S) = {h ∩ S : h ∈ H}
We call ΠH(S) the projection of H on S

Equivalently, suppose S = {x1, . . . , xm}, let

ΠH(S) = {[h(x1), . . . , h(xm)] | h ∈ H}

we call ΠH(S) the set of all dichotomies (also called behaviors) on S
realized by (or induced by) H
S is shattered by H if |ΠH(S)| = 2|S|

Definition (VC-dimension)

vcd(H) = max{|S| : S shattered by H}.
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VC-Dimension: Examples

Set of all positive half lines on R has vcd = 1
Set of all intervals on R has vcd = 2
Set of all half-planes on R2 has vcd = 3
Set of all half-spaces on Rd has vcd = d + 1
Set of all balls on Rd has vcd = d + 1
Set of all axis-parallel rectangles on R2 has vcd = 4
Set of all d-vertex convex polygons on R2 has vcd = 2d + 1
Set of all sets of intervals on R has vcd = ∞
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VC-Dimension: Sauer’s Lemma

Lemma (Sauer 1972, Perles & Shelah 1972)

Suppose vcd(H) = d < ∞. Define

ΠH(m) = max{|ΠH(S)| : S ⊆ Ω, |S| = m}

(ΠH(m) is the maximum size of a projection of H on an m-subset of Ω.)
Then,

ΠH(m) ≤ Φd(m) =
d∑

i=0

(
m

d

)
≤

(em

d

)d
= O(md)

(Note that, if vcd(H) = ∞, then ΠH(m) = 2m,∀m)
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A Proof of Sauer’s Lemma

Induct on m + d. For h ∈ H, let hS = h ∩ S

m = 0 is obvious. When d = 0, |ΠH(S)| = 1 = Φ0(m)
Consider m > 0, d > 0. Fix arbitrary s ∈ S.

Define

H′ = {hS ∈ ΠH(S) | s /∈ hS , hS ∪ {s} ∈ ΠH(S)}

Then,

|ΠH(S)| = |ΠH(S − {s})|+ |H′| = |ΠH(S − {s})|+ |ΠH′(S)|

Since vcd(H′) ≤ d− 1,

|ΠH(S)| ≤ Φd(m− 1) + Φd−1(m) = Φd(m).
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Vapnik-Chervonenkis Theorem

Theorem

Suppose vcd(H) = d < ∞. There’s a constant c0 > 0 such that, if a
learner can produce a hypothesis h ∈ H consistent with

m ≥ c0

ε

(
log

(
1
δ

)
+ d log

(
1
ε

))
i.i.d. examples, then it is a PAC-learner, i.e.

Prob[errD(h) ≤ ε] ≥ 1− δ.
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Proof of Vapnik-Chervonenkis Theorem

Consider a concept c and a hypothesis class H
Suppose our algorithm outputs a hypothesis consistent with c on m
i.i.d. examples S = {x1, . . . , xm}
Let h∆c denote the symmetric difference between h and c,

∆(c) = {h∆c | h ∈ H}
∆ε(c) = {r | r ∈ ∆(c), Prob

x←D
[x ∈ r] > ε}

Then, for any h ∈ H, errD(h) > ε (i.e. h is “bad”) iff h∆c ∈ ∆ε(c)
S is called an ε-net if S ∩ r 6= ∅ for every r ∈ ∆ε(c)
If S is an ε-net, then the output hypothesis is good! Thus,

Prob[Algorithm outputs a bad hypothesis]
≤ Prob[S is not an ε-net]
= Prob[∃r ∈ ∆ε(c) s.t. the m i.i.d. examples S does not “hit” r]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 15 / 25



Proof of Vapnik-Chervonenkis Theorem

Let A be the event that there some region r ∈ ∆ε(c) which S does
not hit. We want to upper bound Prob[A]
Suppose we draw m more i.i.d. examples T = {y1, . . . , ym} (for
analytical purposes, the learner does not really draw T )

Let B be the event that there some region r ∈ ∆ε(c) which S does
not hit but T does hit r at least εm/2 times

Now, for any r ∈ ∆ε(c) that S does not hit, Prob[yi ∈ r] > ε. Hence,
by Chernoff bound, when m ≥ 8/ε, the probability that at least εm/2
of the yi belong to r is at least 1/2.

Consequently, Prob[B | A] ≥ 1/2.

Thus, Prob[A] ≤ 2 Prob[B].
We can thus upper bound Prob[B] instead!
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Proof of Vapnik-Chervonenkis Theorem

Why is upper-bounding B easier?

B is the event that, after drawing 2m i.i.d. examples
S ∪ T = {x1, . . . , xm, y1, . . . , ym}, there exists some region r ∈ ∆ε(c)
which S does not hit but T hits ≥ εm/2 times.

Equivalently, B is the event that, after drawing 2m i.i.d. examples
S ∪ T = {x1, . . . , xm, y1, . . . , ym}, there exists some region
r ∈ Π∆ε(c)(S ∪ T ) for which S ∩ r = ∅ and |T ∩ r| ≥ εm/2.
It is not difficult to see that

|Π∆ε(c)(S ∪ T )| ≤ |Π∆(c)(S ∪ T )| = |ΠH(S ∪ T )| ≤
(

2me

d

)d

Prob[B] remains the same if we draw 2m examples
U = {u1, . . . , u2m} first, and then partition U randomly into
U = S ∪ T .
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Proof of Vapnik-Chervonenkis Theorem

Fix U and r ∈ Π∆ε(c)(U). Let p = |U ∩ r|.
Let Fr be the event that S ∩ r = ∅, |T ∩ r| ≥ εm/2. We can assume
εm/2 ≤ p ≤ m. Then

Prob[Fr | U ] =

(
2m−p

m

)(
2m
m

)
=

(2m− p)(2m− p− 1) · · · (m− p + 1
2m(2m− 1) · · · (m + 1)

=
m(m− 1) · · · (m− p + 1

2m(2m− 1) · · · (2m− p + 1)

≤
(

1
2

)p

≤ 1
2εm/2
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Proof of Vapnik-Chervonenkis Theorem

(In the following, if the underlying distribution D on Ω is continuous,
replace the sum by the corresponding integral, and the probability by the
density function.)

Prob[B] = Prob [∃r ∈∈ ∆ε(c) such that Fr holds]

=
∑
U

Prob [∃r ∈ ∆ε(c) such that Fr holds | U ]Prob[U ]

=
∑
U

Prob
[
∃r ∈ Π∆ε(c)(U) such that Fr holds | U

]
Prob[U ]

≤
∑
U

(
2me

d

)d

2−εm/2 Prob[U ]

=
(

2me

d

)d

2−εm/2
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Proof of Vapnik-Chervonenkis Theorem

Prob[A] ≤ 2 Prob[B] ≤ 2
(

2me

d

)d

2−εm/2 ≤ δ.

When

m ≥ c0

ε

(
log

(
1
δ

)
+ d log

(
1
ε

))
(We will need ε bounded away from 1, say ε < 3/4, for c0 to not be
dependent on ε, but that’s certainly desirable!)
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The Lower Bound

Theorem

For any sample space Ω and any concept class C with vcd(C) = d, there
exist a distribution D on it, and a concept c ∈ C such that, any learning
algorithm which takes ≤ d/2 samples will not be a PAC-learner with
ε = 1/8, δ = 1/7. such that
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The Proof

Suppose X ⊆ Ω is shattered by C, |X| = d

Let D be the uniform distribution on X, thus D is 0 on Ω−X.

Without loss of generality, we can assume C = 2X

Proof idea

Use the argument from expectation!
Pick c ∈ C at random, show that the expected performance of the learner
(over the random choice c) is “bad,” which implies that there exists a
c ∈ C for which the performance is bad.

Let S denote a random sample of ≤ d/2 examples

Let x denote a random example

Let hS denote the hypothesis output by the learner if its examples are
S
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The Proof

Prob
c,S,x

[hS(x) 6= c(x)] ≥ Prob
c,S,x

[hS(x) 6= c(x) | x /∈ S]Prob
c,x,S

[x /∈ S] ≥ 1
2
· 1
2

=
1
4

Marginalizing over c, we have

Prob
c,S,x

[hS(x) 6= c(x)] = Ec

[
Prob
S,x

[hS(x) 6= c(x) | c]
]

.

Thus, there exists a c ∈ C such that ProbS,x[hS(x) 6= c(x) | c] ≥ 1
4 .

For this fixed c, we have ProbS,x[hS(x) 6= c(x)] ≥ 1
4 .

Now, marginalizing over S, we have

1
4
≤ Prob

S,x
[hS(x) 6= c(x)] = ES

[
Prob
S,x

[hS(x) 6= c(x) | S]
]

= ES [err(hS)]
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The Proof

Thus,
ES [1− err(hS)] = 1− ES [err(hS)] ≤ 3/4.

By Markov’s inequality,

Prob
S

[1− err(hS) ≥ 7/8] ≤ ES [1− err(hS)]
7/8

≤ 3/4
7/8

=
6
7
.

Thus,

Prob
S

[
err(hS) <

1
8

]
≤ 6

7
,

as desired.
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