
Computational Learning Theory

Brief Overview of Machine Learning

Consistency Model

Probably Approximately Correct Learning

Sample Complexity and Occam’s Razor

Dealing with Noises and Inconsistent Hypotheses

Online Learning and Learing with Expert Advice

...
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Relaxing Some Assumptions from PAC

In PAC and the Inconsistent Hypothesis Models, we assumed

Examples are given in a batch

There’s an “underlying distribution” to learn from and measure
output quality

Suppose we relax both of these assumptions: we get Online Learning

Examples are given one at a time, in T steps

At step t, we’re given x ∈ Ω, we predict x’s label

Then, x’s true label is revealed

Main Question: how to measure learner’s quality?
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Mistake Bound Model

Suppose there’s some concept c ∈ C from which the “true” labels came

Quality of learner is measured by the number of mistakes M it made
in T steps

Example: if C is the class of boolean disjunctions, i.e. target concept
c has the form c = xi1 ∨ xi2 ∨ · · · ∨ xiq , then there’s an algorithm
learning C in the mistake bound model with at most n mistakes (n is
the number of boolean variables)

Easy to design a learner making ≤ log2 |C| mistakes

Take majority vote over all (remaining) consistent h ∈ C
This is called the halving algorithm, because if learner makes a mistake
then at least half the experts are removed

(We can do better than the halving algorithm)

But, what if there’s no c ∈ C consistent with examples?
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Learning from Expert Advices

In this model, think of each h ∈ C as an expert.

At each time step, given x, we get advices from experts on the label
of x

There might not be a “perfect” expert (i.e. consistent with examples)

Want learner to be as close to the best expert as possible!

“Halving algorithm” is no longer good because the best expert might err
in the beginning.
What is learning from expert advices good for?

In practice, we have many “prediction” algorithms to choose from,
but don’t know which one is best

Nice connection to game theory
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Weighted Majority Algorithm (WMA)

Idea: trust an expert less if he makes a mistake

Assign the ith expert a trustworthiness weight wi

Let α ∈ [0, 1] be a fixed parameter.

WMA

Initially, wi = 1 for all i ∈ [n] (there are n experts)

At time t,

let W v
t be the total weight of experts who predict value v (∈ {0, 1})

Learner predicts 0 if W 0
t ≥ W 1

t and vice versa
After getting the true label, for each i, set wi = αwi if he was wrong

(If α = 0, we get back the halving algorithm!)
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WMA: Analysis

Suppose WMA makes M mistakes, best expert i0 makes m mistakes

For any t, let Wt be total weight at time t.

Say, WMA makes a mistake at time t. Let W right
t and Wwrong

t be
total weights of experts who are right and wrong, respectively. Then,

Wwrong
t ≥ 1

2
Wt

Wt+1 = αWwrong
t + W right

t ≤
(

1 + α

2

)
Wt

weight of i0 at T = αm ≤ WT ≤
(

1 + α

2

)M

W0

Since W0 = n,

M ≤ ln(1/α)

ln
(

2
1+α

)m +
1

ln
(

2
1+α

) lnn

For example, α = 1/2, then M ≤ 2.41m + 3.48 ln n.
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Randomized WMA

We want M ≈ m, but
ln(1/α)

ln
(

2
1+α

) ≥ 2.

(the function is decreasing for α ∈ (0, 1), and the limit as α → 1 is 2)

Thus, if best expert has 25% error rate, then (the bound for) WMA is
only as good as random guessing

Randomized Weighted Majority Algorithm

Initially, wi = 1 for all i ∈ [n]
At time t,

Learner predicts 0 (1) with probability
W 0

t

Wt
(

W 1
t

Wt
)

After getting the true label, for each i, set wi = αwi if he was wrong
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RWMA: Analysis

pt = Wwrong
t
Wt

is the probability RWMA guessed wrong at time t

M is now a random variable, E[M ] =
∑

t pt

Wt+1 = αWwrong
t + W right

t = Wt (1− (1− α)pt)

Thus,

αm ≤ WT = W0

T−1∏
t=1

(1− (1− α)pt)

≤ n

T−1∏
t=1

e−(1−α)pt

= ne−(1−α)E[M ]

Hence,

E[M ] ≤ ln(1/α)
1− α

m +
1

1− α
lnn.
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RWMA: Observations

When α = 1/2, E[M ] ≤ 1.39m + 2 ln n (much better than WMA)
ln(1/α)

1−α m ≥ m and → m as α → 1, but, 1
1−α lnn →∞ as α → 1

Need to choose α to balance these two.

First, since ln(1− x) > −x− x2 when x > −1, we have

ln(1/α) = − ln(1− (1− α)) < (1− α) + (1− α)2

implying

E[M ] < m + (1− α)m +
1

1− α
lnn.

Suppose we know m ≤ m̄. WLOG, assume m̄ ≥ lnn.

Choose 1− α =
√

ln n
m̄ to balance things out:

E[M ] < m + 2
√

m̄ lnn.
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RWMA: Observations

If best expert makes at most a constant fraction r of errrors over
time, i.e. m, m̄ ≈ rT , then

lim
T→∞

E[M ]
T

≤ lim
T→∞

(
r + 2

√
r
lnn

T

)
= r

So the algorithm RWMA converges to optimality with rate

O
(
1/
√

T
)
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A Slightly Different View of Learning from Experts

At time t, the n experts give advices x = (x1, . . . , xn), xi ∈ {−1, 1}
(instead of {0, 1}, for mathematical convenience)

We try to find a “expert weight function” w ∈ Rn such that our
prediction is

sign(wTx) = sign(w1x1 + · · ·+ wnxn).

(sign(α) = 1 if α > 0 and sign(α) = −1 if α ≤ 0.)

The problem is the same as finding a hyperplane separating T
n-dimensional data points into the +1-class and the −1-class.
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Rosenblatt’s Perceptron Algorithm

WLOG, we will assume that ‖x‖ = 1 for each (advice) vector x, since
normalizing x does not change the side of the hyperplane x is on.

Set w0 = 0
At time t,

Given (advices) x, predict +1 iff wT
t x > 0

Suppose the true label is yt (∈ {1,−1})
If we predicted +1 but yt = −1, set wt+1 = wt + x
If we predicted −1 but yt = +1, set wt+1 = wt − x

Why is it reasonable?

If we predicted +1 but yt = −1, then

wT
t+1x = (wt + x)Tx = wT

t x + 1

If we predicted −1 but yt = +1, then

wT
t+1x = (wt − x)Tx = wT

t x− 1

Either way, wT
t+1x moves in the right direction
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Analysis

Theorem

Let S be a set of labeled examples. Suppose there exists a good
separating hyperplane, i.e. there exists a unit-length w∗ ∈ Rn such that
〈w∗,x〉 > 0 for all positive examples and 〈w∗,x〉 < 0 for all negative
examples. Then, the number of mistakes M made by the Perceptron
algorithm is at most (1/δ)2, where

δ = min
x∈S

|〈w∗,x〉|.

(Recall that ‖x‖ = 1 for all examples x.)
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Proof of the Theorem

Fact 1: if we made a mistake at time t, then

〈wt+1,w∗〉 ≥ 〈wt,w∗〉+ δ.

(That is, in some sense the angle between wt+1 and w∗ is smaller, unless
wt+1 gets really long compared to wt. However, the next fact says that it
won’t be too long compared to wt.)
Fact 2: if we made a mistake at time t, then

‖wt+1‖2 ≤ ‖wt‖2 + 1.

Thus, after M mistakes, by Fact 1 we know 〈wT ,w∗〉 ≥ δM ; and by
Fact 2 we conclude ‖wT ‖ ≤

√
M.

Thus, δM ≤ 〈wT ,w∗〉 ≤ ‖wT ‖ ≤
√

M . Done!
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Later
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