Randomized Algorithms

Randomized Rounding

@ Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

@ Randomized Rounding for Cut Problems
@ Randomized Rounding for Covering Problems
°

Randomized Rounding for Satisfiability Problems

Randomized Rounding and Semi-definite Programming
Approximate Sampling and Counting
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(Randomized) Rounding

A (minimization) combinatorial problem II < an ILP
Let ¥ be an optimal solution to the ILP
Relax ILP to get an LP; let y* be an optimal solution to the LP
Then,
opT(IT) = cost(y) > cost(y™)
(If IT is maximization, reverse the inequality!)

*

Carefully “round” y* (rational) to get a feasible solution y* (integral)
to the ILP, such that y* is not too bad, say cost(y?) < o cost(y*)

Conclude that cost(y4) < « - opT(II)
Thus, we get an a-approximation algorithm for II

If a =1, then we have solved II exactly!
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An Integer Linear Program for Set Cover

Definition (Set-Cover Problem)

Inputs: a collection & = {S1,...,S,} of subsets of [m] = {1,...,m},
where S; is of weight w; € Z*.

Objective: find a sub-collection C = {S; | i € J} with least total weight
such that | J;c; Si = [m].

ILP for Set Cover

min WLy + -+ wpTy,
subject to Z xzj > 1, Viem], (1)
j:S;2i

zj € {0,1}, Vj € [n].

Let X be an optimal solution to this ILP.
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Relaxation

The relaxation of the ILP is the following LP:

min w1T1 + -+ WpTy
subject to Z xj > 1, Viem], 2)
j:S;3i

0<z; <1 Vje|nl.

Let x* be an optimal solution to this LP.
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First Attempt at Randomized Rounding

Want: a feasible solution x# which is not too far from x* on average.
Make sense to try:

Prob[av}4 =1] = 7j.

Solution quality:

E[cost(x ij x; = cost(x”) < cost(X) = OPT.

Feasibility? Consider an arbitrary constraint x;, + --- +xj > 1.
The probability that this constraint is not satisfied by x4

k— (2% 4 +25 )\ * 1\N* 1
N (e e I (T I

There are m constraints; thus, Prob[x* is not feasible] < m/e.

First attempt doesn’t quite work!
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Second Attempt at Randomized Rounding

@ Should round z; to 1 with higher probability. Let ¢ be a parameter
determined later.

Prob[z! = 0] = (1 — )’

(This is equivalent to running the first strategy independently ¢

rounds, and set m = 0 only when a:j =0 in all rounds.)
@ Solution Quality

E[cost(x?)] <t - OPT.

o Feasibility? Prob[x* does not satisfy any given constraint] < (1/e)t.
@ Thus, Prob[x4 is not feasible] < m(1/e)t.
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Finishing Up

@ Markov inequality gives

E[cost(x™)] _t-opT _t

p-OPT ~ p-OPT p’

Prob|cost(x?) > p - opPT] <
o Consequently,
t
Prob[x* is feasible and cost(x?) < p- oPT] > 1 —m(1/e)! — —.
p

We can pick t = §(Igm) and p = 4t so that 1 — m(1/e)! — % > 3.
@ To boost the confidence up (say, to 1 — 1/2™), run the algorithm m
times!

@ Basically, we got a ©(log m)-approximation algorithm for weighted
set cover.

@ Asymptotically, we cannot approximate better than that!
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